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Abstract

Purpose—Walking for health is recommended by health agencies, partly based on 

epidemiological studies of self-reported behaviors. Accelerometers are now replacing survey data 

but it is not clear that intensity based cut points reflect the behaviors previously reported. New 

computational techniques can help classify raw accelerometer data into behaviors meaningful for 

public health.

Methods—520 days of triaxial 30 hertz accelerometer data from 3 studies (n=78) were employed 

as training data. Study 1 included prescribed activities completed in natural settings. The other two 

studies included multiple days of free living data with SenseCam annotated ground truth. The two 

populations in the free living data sets were demographically and physical different. Random 

forest classifiers were trained on each data set and the classification accuracy on the training data 

set and applied to the other available data sets was assessed. Accelerometer cut points were also 

compared with the ground truth from the 3 datasets.

Results—The random forest classified all behaviors with over 80% accuracy. Classifiers 

developed on the prescribed data performed with higher accuracy than the free living data 

classifier, but did not perform as well on the free living datasets. Many of the observed behaviors 

occurred at different intensities than those identified by existing cut points.

Conclusions—New machine learned classifiers developed from prescribed activities (Study 1) 

were considerably less accurate when applied to free-living populations or to a functionally 

different population (Studies 2 & 3). These classifiers, developed on free living data, may have 

value when applied to large cohort studies with existing hip accelerometer data.

Keywords

Accelerometer; Measurement; Machine Learning; Walking; Sedentary Behavior

Corresponding Author: Jacqueline Kerr, PhD, Associate Professor, Center for Wireless & Population Health Systems, Department of 
Family Medicine & Public Health, 9500 Gilman Drive #0811, La Jolla, CA 92093-0811, Phone: (858) 534-9305, Fax (858) 534-9404, 
jkerr@ucsd.edu. 

Conflicts of Interest
None of the authors have conflicts of interested and the results of the present study do not constitute endorsement by ACSM

HHS Public Access
Author manuscript
Med Sci Sports Exerc. Author manuscript; available in PMC 2017 May 01.

Published in final edited form as:
Med Sci Sports Exerc. 2016 May ; 48(5): 951–957. doi:10.1249/MSS.0000000000000841.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Over the past 20 years, there has been an exponential growth in knowledge regarding the 

role of physical activity (PA) in health promotion and disease prevention (3). For example, 

walking for health, is recommended in the national physical activity guidelines and by the 

Surgeon General, based on large epidemiological studies of self-reported behaviors. 

Accelerometers are now replacing survey data in large population studies due to concerns 

with inaccuracies and biases in self-report, but it is not clear that laboratory-derived intensity 

based cut points reflect the behaviors previously reported (32). For example, accelerometer 

based intensity cut points applied to the NHANES sample, indicate less than 10% of US 

adults, and only 3% of older adults, meet PA guidelines (31). Self-reported estimates, 

however, indicated that 30–50% of the population met guidelines (5). Further, accelerometer 

derived activities may not be related to health outcomes that are associated with self-

reported activities (6). Accelerometer cut points are also known to underestimate certain 

behaviors, such as cycling, that may be related to the provision of safe built environments 

and could be key a behavior to target for population changes in active living (27). Large 

cohort studies are poised to analyze recently collected accelerometer data and impact public 

health guidelines. If intensity based cut points alone are applied, we will miss the 

opportunity to understand more about specific behaviors that can be communicated clearly 

to the public in health guidelines.

To develop and validate new methods for predicting PA behaviors, such as cycling or 

walking, the behaviors have to be known (i.e., ground truth is available). These data are then 

used to train the resulting classifier. The easiest way to observe a behavior is to prescribe and 

observe it in a laboratory setting. Prescribed behaviors have the advantage of ensuring that 

all behaviors of interest are captured and balanced, whereas free living data may not include 

behaviors of interest if they are infrequently performed in the general population. Although 

they are not performed, they may still be behaviors that would be targeted in an intervention. 

Further, laboratory trials and observational protocols have the advantage of using indirect 

calorimetry to estimate energy expenditure. However, it is doubtful that laboratory-based 

activities accurately reflect free-living behaviors across study samples that are older, obese, 

or have co-morbidities (1). Further, samples of prescribed activities even in free living do not 

reflect free living behaviors over multiple days in naturalistic settings.

The research presented here describes a mobile technology – wearable cameras – that allows 

observation of behaviors across multiple days in free living populations. We used machine 

learning techniques to develop models (i.e., classifiers) that predict PA behaviors using raw 

data from tri-axial accelerometers. The aims is to compare the accuracy of a classifier 

developed on prescribed activities performed in free living setting with a classifier trained on 

multiple days of data from free living adults in naturalistic settings. Further, we will 

investigate the accuracies of a classifier trained on one population group applied to a 

functionally different population. Since current population studies employ accelerometer 

intensity cut points of single axis count data, we also compared our behavior classifications 

to these so that researchers can start to appreciate the differences in the two approaches and 

consider existing physical activity and sedentary behavior prevalence rates in this light.
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METHODS

Overview

Data are from 3 studies in which prescribed activity or wearable cameras allowed us to 

capture PA behaviors in free living settings assessed by a tri-axial accelerometer recording 

data 30 times a second. A machine learning algorithm classified participants’ daily activities 

into 6 types of behaviors: 1) sitting, 2) standing, 3) standing & moving, 4) walking/running, 

5) sitting in a vehicle, and 6) cycling. Participants provided informed consent and all study 

procedures were approved by the research ethics board of the university. Detailed protocols, 

coding manuals, and procedures are available from the corresponding author and/or 

published (19).

Study design and sample

Study 1 – Prescribed trips—The aim of this study was to collect hip-worn GT3X+ 

ActiGraph accelerometer data on transportation modes across the city. Two trained research 

assistants in San Diego collected data under varying conditions (e.g., open space vs. urban, 

indoor vs. outdoor) for a variety of transportation modes such as walking and driving. A 

similar distance was travelled for each transportation mode and transitions between 

transportation modes were balanced (10). Trips were prescribed and the start and end time of 

each trip was noted. Over 500 trips were recorded.

Study 2 – Cyclist cohort—The aim of this study was to collect accelerometer data on 

cycling because it is known to be misclassified by accelerometers and travel diaries. Eligible 

participants were 18–70 year old university employees who routinely cycled for 

transportation. Participants agreed to wear the SenseCam and the hip-worn GT3X+ 

ActiGraph accelerometer during waking hours for 3–5 days. Approximately half of the 

sample wore devices during the weekend with at least one work day included, while the 

remainder wore the units on weekdays only (19).

Study 3 – Overweight women cohort—The aim of this study was to develop PA 

measurement algorithms for application in 2 weight loss trials that are part of the NCI‐

funded Transdisciplinary Research in Energetics and Cancer (TREC) Initiative (23). Briefly, 

36 overweight or obese women wore the SenseCam and the hip-worn GT3X+ ActiGraph 

accelerometer during waking hours for 7 days. Almost half of these women were breast 

cancer survivors. Details are published regarding participant eligibility criteria and design of 

these randomized trials (24).

Devices and data processing used for physical activity assessment

Accelerometer data—Participants/researchers wore a GT3X+ ActiGraph accelerometer 

on a belt over the right hip. While wrist based accelerometers are being worn in some 

population studies e.g. NHANES, there are numerous large cohort studies with raw data 

from hip based accelerometers which could benefit from new data processing techniques. 

Further, it is not yet clear if the wrist location will provide equally accurate assessments as 

the hip in free living adults (12,29,33). Accelerometer non-wear time was defined as 90 

minutes of consecutive zeros (7). Accelerometer data were processed in standard fashion 
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using ActiLife v6.2.1 software, with 30 Hertz data aggregated to 60 seconds. Accelerometer-

based sedentary behavior (SB) was computed as the number of minutes spent below 100 

counts per minute (cpm) from the vertical (y) axis data (20). MVPA was defined by the 1952 

cut point. For the purposes of machine learning, the accelerometer assessed acceleration on 

all 3 axes at a rate of 30 Hertz.

Wearable camera (SenseCam) data—Participants in Study 2 and 3 wore the 

SenseCam on a lanyard around their neck with clothing-safe, adhesive tape attached to 

reduce movement. Details of the SenseCam system are described elsewhere (8,9). Briefly, it 

takes photos every 10–15 seconds when an onboard sensor is activated by a change in 

movement, light, temperature or presence of another person. If no photo is triggered by the 

sensors, a photo is taken every 20 seconds. Over 3000 wide angle low resolution images can 

be collected per day. Participants were trained on IRB-approved procedures for ensuring 

privacy and confidentially for themselves and others. These procedures are described in 

detail elsewhere (18). Briefly participants review their images and can delete any they do not 

wish to share, they are instructed to employ a privacy button when needed, to remove the 

camera in sensitive settings, and to ask permission to wear it when appropriate.

SenseCam image annotation—SenseCam image data were downloaded and imported 

into the Clarity SenseCam Browser (9). A standardized coding protocol was developed 

based on existing behavioral taxonomies (e.g., SOFIT (21)) and refined using principles of 

nominal group technique (26). Inter-rater reliability of image coding was established using 

an iterative cycle of blind-coding (relative to other coders) followed by discussion, with all 

disagreements resolved by group consensus. Subsequent coding was done by 3 research 

assistants who demonstrated >80% agreement with criterion-coded images. Once certified, 

~10% of all subsequent images were checked to minimize observer drift.

Coding procedures—A series of at least 5 consecutive images (approximately 2 minutes) 

in the same behavior were grouped as an ‘Event’ and assigned a corresponding behavior 

code. First, ‘Sedentary Posture’ was determined as sitting, lying or reclining. Second, 

‘Standing’ was defined as standing, moving in place, and moving towards an object. When 

objects in the image were in the same place from one image to the next, ‘Standing Still’ was 

coded. If movement was observed, it was coded as ‘Standing & Moving’. If progress 

towards a distant point was observed, it was coded as ‘Walking/Running’. Street and 

stationary “Cycling” was coded when handle-bars were present in the image. “Riding in a 

vehicle” was coded when a steering wheel or dashboard was observed.

Machine learning algorithms—The machine learning process is comprised of three 

steps: feature extraction, minute-level classification, and time-smoothing. The feature 

extraction step is the process of transforming raw accelerometer data streams into vectors of 

a consistent length that capture predictive information. We broke the data stream into 1-

minute windows of accelerometer data, each with a corresponding PA behavior label. A 

window of acceleration measurements contains T = 60s × 30 Hz = 1800 time samples of 

acceleration measurements along the x, y and z axes, which we represent as a matrix,
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Most features were computed from the vector magnitude of the 3-axis acceleration.

We computed 43 features from each 1-minute window of acceleration data, which included 

basic descriptive statistics as well as entropy, angular features (e.g., roll, pitch and yaw), 

principle direction of motion, autoregressive coefficients, Fast Fourier Transform 

coefficients, total power and dominant frequency. We normalized the features to have mean 

zero and standard deviation one to account for the scale difference between features. The list 

of features and their importance are described elsewhere (12). Using a 1-minute epoch 

resulted in 198,622 minutes of data over 520 days which had corresponding ground truth 

labels.

Minute-level Classification—We tested several standard machine learning algorithms to 

classify PA behaviors: k-nearest neighbor, support vector machines, naive Bayes, decision 

trees, and random forests. Of these algorithms, the random forest algorithm, which is an 

ensemble method based on decision trees, produced the highest accuracy. It is notable that 

Shotton et al. also used random forests to recognize human poses for the Xbox Kinect sensor 

(28). The training phase of the algorithm consists of building the decision trees, i.e. learning 

the branches that lead to a tree that correctly classifies as many examples in the training data 

set as possible. A random forest combines the outputs of multiple randomized decision trees. 

To learn each decision tree, we chose a stratified random sample of 2000 training examples 

per behavior class (at 1-min epoch) and a random subset of 25 features. We learned 500 of 

these randomized decision trees. To classify a given test example, the random forest 

traverses each tree until it arrives at a leaf node. Each leaf node has a probability score for 

each behavior, according to the ratio of training examples of each behavior that land in that 

node. The random forest sums these probability scores in the final leaf node over the trees, 

and chooses the PA behavior with highest probability for the given test example. We chose 

the parameters for our classification algorithms (i.e., number of trees to use) using a held-out 

day of data that were not included in the final cross-validation results.

Time-smoothing—The final stage of the machine learning process uses information about 

neighboring minutes to improve the minute-level predictions output by the random forest 

classifier. We used a hidden Markov model (HMM) with one observation per minute to do 

time-smoothing. The hidden states in the HMM are the true behaviors, and the observed 

states are the behaviors predicted by the random forest classifier. Transition probabilities 

between hidden states model the probabilities of transitioning between different behaviors 

from minute to minute. Observation probabilities between hidden and observed states model 

the probability of the random forest classifier correctly classifying behaviors. The training 
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stage of the HMM consists of learning these transition and observation probabilities from 

the examples in the training dataset. To smooth test data, the HMM learns the most probable 

sequence of hidden states using the Viterbi algorithm. The ML algorithms presented in this 

paper are available in an R package (https://cran.r-project.org/web/packages/TLBC/

index.html).

Estimating accuracy—Classification accuracy is estimated within each dataset using 

leave-one-participant-out cross-validation. In this procedure each participant is held out in 

turn. A classifier is trained on the remaining participants and applied to the held-out 

participant. Overall accuracy is averaged across all participants. Classification accuracy 

across datasets is estimated by training a classifier on all the data from a given dataset and 

applying the trained classifier to each participant in another dataset. For each behavior we 

report the balanced accuracy, which is the mean of sensitivity and specificity.

Accumulated minutes—Finally, we create day-level variables to represent minutes/day 

in each behavior. Mixed effects linear regression, adjusted for nesting of days within 

participants, was used to compare minutes/day as indicated by each classifier.

RESULTS

As shown in Table 1, Study 1 (Prescribed trips) included 2 female research assistants who 

were under 30 years old. Participants in Study 2 (40 cyclists) had a mean (SD) age of 36 

(12) years, 30% were women, and 25% were overweight or obese (BMI ≥ 25 kg/m2). 

Participants in Study 3 (36 overweight women) had a mean age of 56 (16) years and all were 

overweight or obese. Table 1 also shows the proportion of time spent in behaviors when 

wearing the PA measurement devices. In the free living samples (Studies 2 and 3), 

participants spent the most time in SB (~50%). In the cyclist cohort, over 6000 minutes of 

bicycling was observed (6.3%) compared to almost no cycling in the overweight women 

group (0.1%). Only 12.4% of the total data did not have a corresponding annotation.

Figure 1 compares the current accelerometer thresholds for MVPA and SB to known PA 

behaviors with box and whisker plots. It is notable that the intensity ranges with the 

prescribed trips performed by research staff (Study 1) were different in comparison to the 

free living cohorts (Studies 2 and 3). Panel A shows that when the 1952 cut point was used 

to define MVPA, approximately 50% of Walking/Running was not at moderate level 

intensities in the cyclist cohort (Study 2) and almost 80% was not at moderate level 

intensities in the cohort of overweight women (Study 3). In addition, this cut point did not 

capture any cycling behavior. Panel B shows that when using the 100 cpm accelerometer cut 

point, most of Standing Still, and even some Standing & Moving, was incorrectly classified 

as SB. Panel C shows that all of Sitting, and two thirds of Sitting in a Vehicle, was correctly 

classified as SB.

Table 2 gives data regarding the accuracy of traditional cut points when compared to 

annotated PA behaviors. Overall, these cut points classified 43% of walking and 9% of 

cycling as MVPA; 68% of riding in a vehicle, 84% of sitting, and 66% of standing as sitting. 

These data also show the accuracy of machine learning algorithms when trained on different 
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populations. Overall, the best performing algorithm was from the Prescribed Trips (Study 1) 

when applied to itself (93% accuracy). The Study 1 algorithms performed less accurately in 

the free living samples (Study 2: 86%, Study 3: 80%). The algorithms developed on the free 

living cohorts (Studies 2 and 3) performed with 89% accuracy when applied to themselves. 

However, classifiers trained on one free living population (cyclists in Study 2) showed 

approximately 6% lower accuracy when applied to a functionally different free living 

population (overweight women in Study 3).

Table 3 presents comparisons of predicted minutes/day of each behavior in Study 3, 

according to classifiers trained on Study 2 and Study 3. On average, Study 2 overestimated 

participants’ minutes/day of cycling and standing and underestimated participants’ minutes 

of sitting, riding in a vehicle and walking, when compared to estimates according to Study 3.

DISCUSSION

These findings demonstrate that multiple behaviors can be correctly classified with new 

machine learning approaches and that these behaviors provide information not captured by 

intensity cut points alone. For example, our data confirm that 50% of walking, which is the 

most common and modifiable form of PA in the US (3) does not often occur at intensities 

identified as moderate in laboratory trials in young people. The new behavior classification 

may have numerous benefits for research and policy. Research that is focused on specific PA 

behaviors is needed so that public health recommendations for PA can be specific and 

interpretable. In particular, a robust measure of walking is needed to design and evaluate 

studies of walking as a health-related exposure. This type of PA measurement can address 

public health questions such as whether longer bouts of slow walking have the same health 

impacts as shorter bouts of fast walking. In addition, it is likely that the intensity or speed of 

walking needed to improve health will vary depending on the population of interest (e.g., 

young fit males versus older, obese women). Improving cycling facilities in the US has also 

been proposed as an impactful policy to change population level activity levels, and our 

findings show that machine learning techniques applied to hip worn accelerometers predict 

cycling with accuracies up to 99%. Finally, given that commuting in a vehicle comprises a 

meaningful proportion of many adults’ day, it is important to be able to classify this behavior 

for epidemiologists studying the health effects of driving or environmental exposures 

experienced during driving.

While SB research is in its infancy, there is considerable interest in determining the degree 

to which interventions to reduce SB can improve health (22). However, using an 

accelerometer cut point to assess SB will lead to considerable misclassification. While the 

100 count captured most sitting outside of a vehicle (90%), almost 70% of standing time 

also occurred under the 100 cpm threshold for SB. This is problematic for detecting breaks 

in sitting and prolonged sitting that may have stronger relations with outcomes than total 

sitting (2). Our machine learning algorithms appeared to increase the accuracy of identifying 

sitting behavior (both in and outside a vehicle) and decreased inaccurate classifications of 

standing as being sedentary. Additional comparisons of sedentary vs standing using machine 

learned techniques can be found elsewhere (33). ActivPAL devices also assess sitting and 

standing with high accuracy.
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Our algorithms performed similarly to algorithms developed using other machine learning or 

statistical techniques (11,13,17,25,30,33). Most previous studies have been conducted in 

laboratory settings (13), or with some observed data in outdoor locations (30). No previous 

study has employed automatically captured observations over multiple days in free living or 

included driving and cycling. Our findings suggest caution when applying accelerometer 

algorithms developed in restricted settings, such as laboratory trials among young adults. For 

example, algorithms developed on treadmill walking are unlikely to represent free living 

walking in diverse study samples. Our analyses show that algorithms developed in more 

controlled conditions performed with 13% less accuracy on data obtained from free living 

populations. Bastian et al. (1) found a 20% difference in behavior predictions between 

laboratory and prescribed activities. In our prescribed data, the research assistants walked at 

higher intensities than participants in free living.

In addition to the biomechanical differences that are reflected in the raw acceleration 

patterns, the structure of the training data is important. The performance of the cycling 

algorithm, for example, was particularly affected by the very low minutes of cycling in study 

3. While balancing the amount of data collected on each behavior provides appropriate 

examples to train the algorithm, information about the prevalence of certain behaviors in 

free-living can be used to improve prediction performance (e.g. sitting is the most prevalent 

behavior in free living but not in laboratory trials). Further, training the algorithm on real-

length bouts of behaviors can improve the accuracy of predicted bout length (e.g. to predict 

long bouts of sitting, the training data should contain long bouts of sitting).

There are a number of limitations to these analyses. It is possible that the “ground truth” 

annotated image data employed to train the machine learning classifiers contained error. 

Nonetheless, compared to participant diaries or records, the wearable camera is a 

considerably less burdensome and reactive technique for capturing free-living behaviors over 

multiple days. In addition, the thorough training and quality control procedures should have 

minimized coding errors. The sample sizes of the study cohorts were modest, although 

comparable to most studies of this sort (11,13,17,25,30,33). The total minutes and days of 

data collected, however, were much greater than previous studies. In addition, we only 

predicted a small set of behaviors and studies with more behaviors are likely to show lower 

prediction rates. A strength of this research is that it is the first conducted in free living 

individuals over multiple days, includes overweight and obese adults, and focuses on 

transportation behaviors such as walking, cycling, and sitting in a vehicle.

Conclusion

Our findings indicate that machine learning algorithms to classify PA and SB can have high 

accuracy across markedly different, free-living cohorts over multiple days. We used this 

protocol to identify 6 behaviors. However this same protocol can be used to develop 

machine learning algorithms to predict many other behaviors, such as housework, gardening, 

TV watching, and specific sports.

Classifiers predict behavior most accurately when they are specifically trained, for example 

in voice recognition. Therefore, ideally, researchers would collect training data on their 

population of interest and include a calibration phase. For existing hip accelerometer data in 
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large cohorts, this step may not be possible, so it is important for researchers to understand 

that classification accuracy will depend on how similar their cohort is to the data on which 

the classifier was trained. In future, it may be possible to develop a robust classifier that is 

trained on a large, diverse cohort and therefore can be reliably applied to multiple population 

groups and behaviors with sufficient levels of accuracy, even if it is not the best performance 

for any one group. This approach might help with future standardization of processing (34). 

Researchers who may have been reluctant to use new techniques due to their lack of real 

world validation may now consider applying these algorithms to their population data with 

more confidence, if the samples are similar. While new approaches to accelerometer data 

processing may temporarily hamper calls for standardization of techniques (34), the public 

health benefits of incorporating a behavioral framework into analyses seem worth it. 

Granted, our machine learned approach is complex. However, it seems the most appropriate 

starting point for new data processing techniques; first demonstrate what levels of accuracy 

can be achieved and then refine algorithms to me simpler and assess what sacrifices to 

accuracy researchers are willing to make for feasibility. Although complex, the algorithms 

run smoothly in R (package available https://cran.r-project.org/web/packages/TLBC/

index.html) and do not consume much computer power or time. To date, no study has shown 

whether simpler approaches (29) can deliver similar accuracy levels in totally free living 

data.

Future studies should also compare an intensity-based approach to PA measurement (i.e., 

accelerometer cut points) with a behavior-based approach and assess which paradigm 

correlates most strongly with markers of PA activity and disease risk. Finally, future research 

should be conducted on wrist worn accelerometer data in free-living populations (not 

laboratory settings (14)), as these accelerometers are increasingly common. Nonetheless, hip 

based accelerometers are still employed in multiple large studies. Some researchers have 

employed 24 hour protocols for hip based accelerometers providing similar compliance 

benefits to the wrist worn devices (16). If the hip location provides more accurate estimates 

than the wrist for assessing PA in free living (33), some researchers may choose to stay with 

the hip location.

These data demonstrate how differences in the training setting, behavioral prevalence, and 

population can affect algorithm performance. The free living classifier we have developed in 

middle aged and older adults may have value when applied to existing large cohort studies 

with hip accelerometer data. Further validation will strengthen the evidence from our current 

findings.
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Figure 1. 
Comparison of Accelerometer Classification of Physical Activity and Sedentary Behavior to 

Actual Behaviors using 3 Study Designs and Samples with box and whisker plots (Study 1: 

Prescribed transportation modes by 2 research assistants; Study 2: Usual daily activities 

among 40 cyclists; Study 3: Usual daily activities among 38 overweight females).
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*Percentages reflect the amount of behavior falling within established accelerometer 

intensity thresholds. Within the box is the 25–75th percentile and the solid line is the 

median. The lines outside the box (whiskers) represent variability outside the quartiles
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Table 1

Studies in Which Prescribed Activity or Wearable Cameras Were Used to Capture Physical Activity Behaviors 

in Free Living Adults.

Study 1 Study 2 Study 3

Behavior Types Prescribed transportation Usual daily activities Usual daily activities

Sample Description (N) Research assistants (2) Cyclists (40) Overweight females (36)

% overweight or obese NA 25 100

Age, years (mean, SD) NAa 36 (12) 55 (16)

Female (%) 100% 30% 100%

Overweight or obese (%)b 0% 25% 100%

Days of monitoring physical activity 35 171 314

Proportion of time spent in activitiesc

Bicycling 9.7% 6.8% 0.1%

Riding in vehicle 32.2% 5.8% 11.5%

Sitting (not in a vehicle) 8.9% 51.3% 54.8%

Standing still 17.5% 8.7% 6.6%

Standing & moving NA 10.5% 7.2%

Walking/running 28.2% 6.7% 6.1%

Uncodeable 3.5% 10.2% 13.8%

Total 100% 100% 100%

aAged under 30 years old

bBody mass index ≥ 25 kg/m2

cAs determined by use of prescribed activities (Study 1) or a wearable camera in which images were manually coded for the type of activity (Study 
2 and 3)
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Table 3
Mean difference and agreement for minutes per day of behaviors in Study 3

Usual daily activities among 36 overweight females. N = 295 days

Estimated Mean (SE) Minutes/daya

Trained on Study 2 Trained on Study 3 Difference p

Walking/Running 31.7 (5.3) 57.7 (5.3) −26.0 (2.6) <0.001

Cycling 17.1 (1.7) 0.1 (1.7) 17.0 (1.3) <0.001

Riding in Vehicle 54.1 (5.4) 73.3 (5.4) −19.2 (3.6) <0.001

Sitting 353.5 (15.6) 363.2 (15.6) −9.6 (6.6) 0.142

Standing 73.0 (6.7) 62.3 (6.7) 10.7 (4.1) 0.009

Standing Moving 144.3 (10.8) 117.1 (10.8) 27.1 (5.1) <0.001

aFrom mixed-effects linear regression models adjusted for wear time and nesting of days within participants

Mean wear time = 674 minutes/day
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