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Abstract

Through the direct control of infection or by providing cytokine signals to other cellular players, T 

cells play a central role in the orchestration of the immune response. However, in many disease 

states, T cells are rendered dysfunctional, unable to carry out their effector functions. As T cell 

activation is bioenergetically demanding, some T cell dysfunction can have metabolic 

underpinnings. In this review, we will discuss how T cells are programmed to fuel their effector 

response, and how programmed or pathologic changes can disrupt their ability to generate the 

energy needed to proliferate and carry out their critical functions.

Introduction

Metabolism, broadly defined, represents a vast array of catabolic and anabolic biochemical 

processes that promotes cellular function and survival. These pathways are highly regulated, 

critically important, and date back to the very origins of life. However, it has become 

increasingly clear that in highly differentiated cellular systems (for instance, in the nervous 

and immune systems), metabolic and nutrient sensing pathways have diverse functions that 

go beyond growth or death decisions. In recent years, studies exploring how metabolism 

interfaces with immune function have garnered much interest. In this article, we will review 

studies that have dissected the extensive crosstalk between T cell activation states and 

metabolism/nutrient sensing. Furthermore, we will explore what is known about the 

metabolic nature of T cell dysfunction and the prominent questions that remain to be 

explored in this field.

Activation: fueling clonal expansion and differentiation

Naïve T cells must persist for an entire lifetime, lying in wait to sense their cognate antigen. 

However, upon activation, T cells must proliferate rapidly in order to effectively generate 

enough clones to direct the immune response and clear pathogens. During this expansion 
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phase, T cells need to be heavily biosynthetic, replicating DNA, producing new proteins, and 

generating membranes [1]. Memory T cells, having recovered from a robust immune 

response, must then again exist in a state of extreme quiescence, but be energetically primed 

to be reactivated with vigor and persistence. These three functional states are fundamentally 

distinct, and must too have distinct metabolism to support these broad cellular functions.

Highly proliferative cells are very anabolic, requiring immense biosynthetic processes to 

produce intermediates for cell growth. First described in cancer, very proliferative cells 

undergo complete glycolysis, fermenting glucose into lactate to generate ATP, even in the 

presence of oxygen (‘aerobic glycolysis’ or the ‘Warburg effect’) [2, 3]. T lymphocytes, too, 

were shown to change their metabolism in response to PHA stimulation, shifting the 

majority of their glucose flux into the aerobic glycolysis pathway [4].

As T cell activation pathways became clearer, so too did the appreciation that these 

pathways intersected with metabolic changes. T cell activation, for instance, can contribute 

heavily to activation of the phosphoinositol-3-kinase (PI3K) pathway [5]. These lipid 

signaling pathways can then contribute to the activation of Akt (Protein Kinase B), which 

has a central role in cellular metabolism [6]. Akt activation, downstream of T cell activation 

pathways such as T cell receptor, costimulatory pathways, and cytokines like IL-2 or IL-7, 

was shown to be crucial for maintenance of cell size and survival [7-10]. Akt can instruct 

metabolic changes through multiple mechanisms, including post-translational modification 

of glycolytic enzymes, enhancement of surface-expression of glucose transporters, and 

transcriptional upregulation of glycolytic regulators [9, 11-13]. As Akt is required for 

optimal function of T cells, its effects on glycolytic metabolism may, too, be required for T 

cell activation [14].

While the phenomenon of aerobic glycolysis was well described in T cell activation, its 

contribution to the T cell phenotype was poorly understood. However, it has been suggested 

that glycolysis is dispensable for T cell activation, but required for T cell effector functions 

like cytokine production [15]. Pearce and colleagues describe a role for the glycolytic 

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in binding Ifng mRNA and 

preventing effective translation. When glycolysis is active GAPDH instead participates in 

metabolism, freeing Ifng mRNA from regulation. Thus, glycolysis may play a crucial role in 

effector function by releasing distinct mRNA transcripts from post-translational repression.

A third state exists for conventional T cells: long-lived memory cells, resident to lymphoid 

organs, circulating in the blood, or resident in the tissues [16]. Like naïve T cells, these cells 

must persist for a lifetime, but must also respond with greater vigor upon re-activation. 

Naïve T cells survive mainly by oxidative phosphorylation as they require very little 

proliferation and are functionally quiescent [1]. After T cell expansion and contraction, 

memory T cells switch back from aerobic glycolysis to mainly utilizing oxidative 

phosphorylation, and generate energy using fatty acid oxidation [17]. Further, memory T 

cells maintain a vast mitochondrial reserve, which renders them bioenergetically primed for 

reactivation [18]. Interestingly, memory T cells have also been shown to utilize glucose to 

make ATP, utilize this ATP to synthesize fatty acids, and then break the same fatty acids 

down through fatty acid oxidation [19]. This “futile cycle” may be utilized to maintain long-
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term mitochondrial health [20]. Further, T cell differentiation into epigenetically-regulated 

and transcriptionally programmed effector lineages can also be heavily influenced by 

metabolic signaling and nutrient sensing, a subject which has been reviewed extensively 

[21-26].

Anergy: maintaining tolerance through modulation of metabolism

In 1987, Mark Jenkins and Ron Schwartz described a peculiar phenomenon that revealed a 

fundamental aspect of T cell recognition and activation [27]. Culture of T cell clones on 

chemically fixed antigen presenting cells resulted in a state of T cell hyporesponsiveness: 

when these T cells were re-stimulated after seeing antigen in this altered context, they did 

not proliferate nor produce IL-2, despite the fact that had seen antigen and proliferated 

initially. This phenomenon, now termed T cell clonal anergy, was assumed to be the product 

of non-inflammatory antigen presentation and the dominant form of peripheral tolerance 

[28]. After the discovery of costimulation and the two-signal hypothesis, it became 

abundantly clear that costimulation (CD28 ligation most prominently) provided the 

additional signaling required to escape anergy and become effectively activated [28]. In the 

absence of that CD28-derived “Signal 2”, T cells would enter into the anergic state, unable 

to effectively respond to future stimulations, even if they included CD28 ligation.

While CD28 was revealed to be a crucial second signal for T cell activation, additional 

studies revealed not only more costimulatory molecules but also molecules which dampened 

T cell activity, termed “co-inhibitory molecules”. Cytotoxic T Lymphocyte Antigen 4 

(CTLA4) was one of the first of these coinhibitory molecules studied [29], whose genetic 

deletion in mice resulted in massive lymphoproliferation and lethal autoimmunity [30, 31].

However, the fundamental basis of the anergic phenotype was largely unknown. Lack of 

costimulation resulted in NFAT nuclear translocation in the absence of AP-1, which resulted 

in less transcription of IL-2 and other cytokine genes, and the stability of Il2 mRNA itself 

was also implicated as a mechanism by which T cells stimulated without costimulation 

resulted in hyporesponsiveness [32, 33]. The advent of microarray technology revealed that 

anergic T cells expressed a robust transcriptional profile, resulting in not only master 

regulators that enforced the anergic phenotype (Egr2, Egr3, Dgka, Cblb) but also 

downregulation of many cytokine and cell cycle genes [34, 35].

In order to study the additional signals that lead to anergy, many immunosuppressive 

compounds, with different mechanisms of action, were employed. For instance, cyclosporine 

and FK506 (tacrolimus), FKBP12-binding compounds that inhibit calcineurin (PP2B), 

prevent effective NFAT nuclear translocation and subsequent IL-2 production [36]. Both 

have been used clinically to prevent organ rejection and to treat autoimmunity [37, 38]. Its 

mechanism of action effectively blocks signaling downstream of TCR (Signal 1). While 

cyclosporine is an effective immunosuppressant, due to the blockade of TCR signaling, long 

term tolerance could never be achieved because anergy requires effective signal 1 in the 

absence of signal 2.

Around this time, another immunosuppressant was studied: rapamycin, a cyclophilin-

binding, macrolide antibiotic produced by Streptomyces hygroscopicus, discovered on 
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Easter Island (‘Rapa Nui’) [39]. This compound (also known as sirolimus) is a potent 

immunosuppressant that could result in tolerance and has been used extensively in 

transplantation [40-42]. Study of its downstream target, the mechanistic target of rapamycin 

(mTOR), revealed that costimulation, the net sum of positive costimulatory and negative 

coinhibitory signals, was routed in part through mTOR. mTOR is a protein kinase, 

conserved from yeast to man, which integrates environmental signals of nutrient availability, 

energy charge, and growth factor signals, to make cell fate decisions in terms of metabolism, 

ribosome biogenesis, translation initiation, and the inhibition of autophagy [43]. 

Interestingly, T cells have conscripted this mTOR machinery to integrate costimulatory 

signals as well, and T cells that receive costimulation in the context of mTOR blockade 

become anergic [26].

However, the role of mTOR is not simply to integrate costimulatory signals. Akt and mTOR 

signaling are crucially involved in the metabolic phenotype of T cell activation. As T cell 

activation is so metabolically demanding, T cells require the ability to sense the nutrient 

status of their microenvironment. CD28 signaling, routed in part through mTOR, is thus 

required to upregulate metabolic machinery including amino acid transporters, glucose 

transporters, transferrin receptors, and the sustained upregulation of glycolysis [44]. 

Importantly, rendering T cells anergic through TCR stimulation alone not only prevents 

upregulation of metabolic machinery, but also prevents it from being upregulated in future 

stimulations, even those delivered with costimulation, suggesting that these cells are 

“metabolically anergic” [45]. Starvation of T cells through blockade of glucose, amino acid, 

or energy charge sensing results in durable anergy induction, suggesting that nutrient sensing 

represents a key “safety” to prevent activation in metabolically dearth conditions [45]. As 

tightly regulated metabolism is crucial to effective T cell expansion and function, anergic T 

cells are transcriptionally rendered metabolically deficient. By preventing the upregulation 

of metabolic machinery required to carry out the effector response, the transcriptional 

program induced by an anergy-inducing stimulus maintains the hyporesponsive nature of the 

cells; even upon receiving a fully activating stimulation in the future, T cells will be unable 

to metabolically support efficient cytokine production and effector expansion.

Exhaustion: dysfunction through insufficient metabolism

While anergy represents T cell activation in the context of minimal signals (immature APCs 

delivering pMHC in the absence of costimulatory molecules, for instance), with little to no 

inflammation, there are other settings in which T cells receive strong and sustained signals. 

In chronic viral infections, evasion of the immune response results in viral persistence [46]. 

This effectively means that T cells responding to this virus will receive continual TCR 

stimulation and costimulatory molecule signaling, all in the presence of chronic, 

inflammatory cytokines. Zinkernagel and Ahmed described the fate of T cells responding to 

a chronic viral infection in mice (lymphochloriomeningitis virus clone 13; LCMVCL13) [47, 

48]. T cells responding to viral epitopes in the context of LCMVCL13 were significantly 

hyporesponsive, compared to those responding to the same epitopes of an acute strain of the 

same virus. They reasoned that this dysfunctional hyporesponsiveness was driven by chronic 

activation, resulting in the inability to effectively rest after initial expansion, a phenotype 

now termed ‘T cell exhaustion’ [49]. Exhausted T cells fail to secrete cytokines, lyse target 
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cells, or proliferate effectively [50]. Further, this chronic stimulation drives the elevated and 

sustained expression of co-inhibitory molecules like PD-1, LAG-3, Tim-3, and 2B4, which 

further act to suppress the activation of T cells [50].

However, T cell exhaustion is not limited to chronic viral infection. Cancer, too, represents a 

chronically inflamed state with persistent antigen, resulting in chronic T cell activation. 

Unsurprisingly, T cells that infiltrate tumors exhibit dysfunction akin to exhaustion seen in 

chronic viral infections: an inability to lyse tumor cells or produce cytokines upon tumor 

recognition [51]. This, too, is associated with elevated and sustained expression of 

coinhibitory molecules. Indeed, blockade of coinhibitory molecule signaling results in 

increased antitumor T cell responses and has led to astonishing clinical responses [52]. Thus, 

exhaustion represents a hyporesponsive state that is phenotypically similar to anergy. 

However, while anergy is a transcriptionally programmed process induced by minimal 

signaling, exhaustion occurs, pathologically, by abundant inflammatory signals (Figure 1). 

However, there are conserved mechanisms that promote both anergy and exhaustion, the 

most well studied being strong TCR stimulation. TCR ligation promotes nuclear activity of 

NFAT, and dominant NFAT activity can promote both anergic and exhausted phenotypes, 

dependent on context [32, 53, 54]. Exhausted T cells persist, in the presence of chronic 

activation, unable to efficiently carry-out effector functions. Thus, it may stand to reason that 

some of the dysfunction in T cell metabolism may result from inefficient metabolic activity.

Co-inhibitory molecule signaling (elevated in exhausted T cells) has had many ties to 

metabolic signaling pathways. CTLA-4 has been shown to interact with PP2A [55, 56], a 

negative regulator of Akt, mTOR, and MAPK signaling, while PD-1 can stimulate PTEN 

and SHP2 phosphatase activity, which negatively regulate PI3K signaling upstream of Akt 

[57]. Thus, metabolic pathways downstream of Akt/mTOR may be impacted by coinhibitory 

molecule signaling, and coinhibitory molecule signaling enforces the “exhausted” phenotype 

of T cells in part by modulating metabolism. There are some hints in recent studies to this 

reasoning. CTLA-4 signaling, for instance, has been shown to modulate metabolic signaling 

and inhibit the generation of mitochondrial reserve [58]. Studies of PD-1 signaling have 

revealed that it, too, can modify the metabolism of T cells. PD-1 signaling has been shown 

to inhibit glycolytic metabolism and promote metabolism of lipids [59]. Acting through Akt 

and Foxo, PD-1 can promote its own expression during chronic viral infection and 

consequent T cell exhaustion [60]. This promotes their persistence, but also inhibits their 

effector function. Thus, the metabolic insufficiencies induced by PD-1 signaling may be due 

to the need to promote long-term persistence, but, in the case of chronic infections or cancer, 

result in escape of transformed/infected cells. As such, exhausted T cells may be 

metabolically deficient, but it is still unclear if this underlies or is merely associated with 

their dysfunctional phenotype. It may be that in the face of limiting nutrients, chronic 

activation, and coinhibitory molecule signaling, the majority of metabolic flux is spent 

merely maintaining cell survival, with little in reserve to promote effector function.

Concluding remarks

Metabolism and nutrient sensing are ancient signaling pathways that are critically important 

for the function of all cells. However, in cells of immune origin, it is of paramount 

Delgoffe and Powell Page 5

Mol Immunol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



importance to maintain the survival and recall of every clone that persists through selection 

into the periphery. These pathways have been conscripted by T cells to make cell fate 

decisions rather than whether to divide or die. Metabolism thus represents a key node of 

regulation for T cell function. Sufficient, and sometimes distinct, fuels are required 

throughout their functional states as naïve, effector, or memory T cells. T cells can enter into 

alternative, dysfunctional states when these needs are not met, including anergy 

(metabolically inert) and exhaustion (metabolically insufficient). Future elaboration of how 

metabolic fitness underlies healthy and dysfunctional T cells has the potential to reveal novel 

therapeutic modalities for the treatment of a variety of diseases.
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Highlights

- T cells dramatically change their metabolism to support effector cell expansion

- T cell clonal anergy induces programmed changes in metabolism which can 

underlie hyporesponsiveness

- Dysfunction in T cell exhaustion may be linked with an inability to meet these 

metabolic requirements
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Figure 1. T cell function and dysfunction are linked with metabolism
During normal T cell activation, cells receive TCR and CD28 stimulation, produce autocrine 

levels of IL-2, and respond to APC-produced differentiation cytokines, resulting in a switch 

to anabolic metabolism during their highly proliferative effector phase. When cells are 

rendered anergic, they receive only TCR stimulation with little accessory signaling, resulting 

in low autocrine levels of IL-2, a failure to commit to anabolic metabolism, and are 

transcriptionally programmed to downregulate metabolic machinery required to engage 

future effector responses. In situations of chronic activation, T cells also receive heightened 

inflammatory stimuli including interferons, TNF, and other cytokines, and begin to 

upregulate co-inhibitory molecules in an attempt to feedback on the immune response. 

These signals (and others) may restrain mTOR activation and anabolic metabolism, 

potentially creating a pathologic phenotype of metabolic insufficiency.
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