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SUMMARY

The pathway to generate T cells from hematopoietic stem cells guides progenitors through a 

succession of fate choices while balancing differentiation progression against proliferation, stage 

to stage. Many elements of the regulatory system that controls this process are known, but the 

requirement for multiple, functionally distinct transcription factors needs clarification in terms of 

gene network architecture. Here we compare the features of the T-cell specification system with 

the rule sets underlying two other influential types of gene network models: first, the 

combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in 

complexity in most invertebrate embryos; second, the dueling “master regulator” systems that are 

commonly used to explain bistability in microbial systems and in many fate choices in terminal 

differentiation. The T-cell specification process shares certain features with each of these prevalent 

models but differs from both of them in central respects. The T-cell system is highly combinatorial 

but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are 

not always T-lineage specific, but they balance and modulate each other’s activities long before 

any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for 

gene networks in vertebrate developmental systems.
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Introduction: T Cell Development as a Developmental Model System

From the vantage point of immunology, the program of T cell development seems 

unexceptional, even particularly well-ordered. The hierarchy of intermediate states in early T 

cell development is well defined by multiple molecular criteria and the succession of these 

states has been shown to progress faithfully in adult life, in fetal life, and in very useful in 

vitro culture systems. Compared to other hematopoietic programs, T-cell development is a 

distinctive showcase for interesting cell fate determination mechanisms. T cell functional 

maturation is very distinct from the classic terminal differentiation programs of erythrocytes, 
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megakaryocytes, and granulocytes, for example, where maturity is tightly coupled with 

permanent growth arrest and commitment to die. The whole range of T-cell development 

also includes many more known branches than erythroid development or even B-cell 

development. This means that the questions of how choices are made, and whether choices 

are irreversible, once made, pervade any consideration of T-cell function. However, the basic 

principles that enable stem cells to generate T cells throughout fetal and postnatal life are 

normal and exemplary for the hematopoietic system.

Seen in a different light, however, T cell development has arrestingly strange properties. It 

has indeterminate timing; it comes in different variants depending on adult vs. fetal context; 

it includes a prolonged period of indeterminacy of cell fate, based on the delay in ability to 

repress key transcription factors of alternative lineages; and it shares different modular parts 

of its program with different alternative cell types (innate lymphoid cells for its functional 

components, B cells for its receptor-generating components), blurring the hierarchy of its 

relationships to other fates. Most glaringly, this program generates a huge excess of 

immature T cells that will be ruthlessly culled by a selection mechanism before maturation 

to discard all but a lucky few percent. These properties typify the difference between this 

developmental system based on multipotent stem cells and one based on rapid, efficient, and 

precise fate-determination mechanisms operating in early embryos of many organisms. 

Here, T cell development is less an exception than a prototype of the opportunities provided 

by a stem-cell based system as opposed to the rigorously scheduled program of cell type 

definitions created by gene network operation in the early embryos.

This comparison is timely in light of the recent death of our colleague, Eric H. Davidson, 

whose lively exposition of gene network rules governing early embryo development 

provided a framework for many far-reaching discussions. Which elements in developmental 

system design are essential and universal? What aspects of gene networks make parts of the 

developmental program more evolutionarily malleable? The answers obtained from early 

embryos of multiple types of invertebrates are very strong, but they are in some respects 

different from the ones that would emerge from an analysis based on vertebrate 

hematopoietic systems, as exemplified by T cell development. Thus, the question arises, how 

do particular rules of gene network design serve different biological needs?

This article considers how the set of gene network features that we must account for in early 

T cell development connect to and distinguish it from other established gene network models 

for development. These network features force some revisions of common paradigms, and 

they have broader consequences for understanding of the mechanism of T-cell specification 

and of hematopoietic specification more generally.

Paradigms for Development

Two kinds of gene network models have been highly influential in explaining development. 

One is to account for the highly ordered creation of complexity from a single totipotent cell 

in embryonic development, which has been investigated in key invertebrate systems. The 

other is for the choice between terminal differentiation fates in bipotent precursor cells, 

formulated as a duel between two mutually antagonistic transcription factors.
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Development at high efficiency: principles from invertebrate embryos

The most universal features of multicellular, highly organized metazoan animal life can be 

identified as those that are found in all three main branches of animal phylogeny: 

ecdysozoans (e.g. insects, crustacea, nematodes), lophotrochozoans (e.g. annelid worms, and 

mollusks ranging from clams to snails to octopuses), and deuterostomes (e.g. echinoderms, 

ascidians, fish, humans). All three branches have three germ layers and bilateral symmetry 

in their embryos (metazoans) and have numerous points of molecular similarity, despite 

often-alien looking body plans. All three branches share the use of a mode of embryonic 

development that has been called “Type I” embryogenesis (1–3). This set of developmental 

rules enables embryos to become capable of feeding independently in a short time. Such 

embryos start subdividing into future tissue types in an organized way during the early 

cleavage divisions soon after fertilization. Every cell counts. Future body axes of the 

bilaterally symmetric embryo are established from the time the egg is fertilized, due in part 

to localized deposits of signaling proteins or RNA in a particular region of the egg that are 

laid down during oogenesis, and often combined with polarized cytoskeletal movements 

triggered by the entry of the sperm. A cascade of signaling begins to create spatially 

differential gene expression as cleavage gets under way, and the fates of the cells become 

highly predictable due to the canonical nature of the cleavage pattern. Cells inheriting the 

cytoplasm with localized maternal determinants signal to their neighbors, which in turn 

activate genes encoding new signaling molecules to affect the next tier of neighbors. Cell 

types begin to turn on fate-specific distinctive gene expression patterns many cell cycles 

before they differentiate morphologically, and their fates are predictable and usually 

invariant from this early stage. Thus, despite its burgeoning variety of cell types and their 

morphogenetic changes in position, the embryo develops canonically and synchronously.

The crucial feature of this kind of development is its predictability and lack of ambiguity. 

Gene networks in these cases are used not only to generate complexity but also to make the 

process fail-safe: thus cells are used parsimoniously but regulatory genes are not, and gene 

network circuits are typically “over-engineered” (4). These features of gene networks have 

been demonstrated explicitly in a non-vertebrate deuterostome, the purple sea urchin 

Strongylocentrotus purpuratus (e.g. (5, 6)), and most of them are mirrored by evidence from 

another deuterostome, the sea squirt Ciona intestinalis (7–9), and two key embryonic model 

systems from the ecdysozoan branch of evolution, the nematode worm Caenorhabditis 
elegans (10, 11) and the fruit fly Drosophila melanogaster (12–15). Although the mode of 

embryonic development of Drosophila is divergent from the basic type I embryo (1), many 

features of type I embryonic networks still pertain to it. All these gene networks use the 

initially localized signals to trigger a hierarchy of progressive subdivisions to specify future 

tissue types. To enable different cells to express different genes at the end, the key is to set 

up diverse, stable patterns of transcription factor expression; to make an embryo, these 

expression domains must be strictly spatially organized.

A transcription factor coding gene as a rule is expressed not in the same pattern as any one 

of its own positive regulators, but rather, in a defined subset of the region in which each of 

its “upstream” regulators is active. This is because each regulatory gene is activated only by 

a particular combination of positive regulators in the absence of a certain set of negative 
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regulators (16). These conditions are “computed” by transcription factor binding to cis-

regulatory elements of the gene, so that new transcription factors are turned on only in cells 

where the domains of two old ones overlap, or in the region excluded by their overlap (e.g. 

(17–21)). Several tiers of factors are activated as development gets under way, in a 

sequential Boolean hierarchy (22). The increase in complexity of the developing embryo 

arises because each intermediate transcription factor coding gene in the network responds to 

a distinct, unique combination of inputs, thus propagating different state information to its 

own targets. Importantly, the set of factors activated in an early embryonic cell also usually 

includes at least one negative regulatory factor that excludes the expression of genes that 

might otherwise be expressed, e.g. in a sister cell. Repressors in the best-studied embryonic 

systems do not simply compete with activators at an enhancer, as a rule, but rather exert a 

veto over the ability of that enhancer to drive the target gene’s expression, and this helps to 

sharpen boundaries between future tissues (16). Once a fully specific set of transcription 

factors is active in a cell, then these collaborate to turn on the correct battery of cell type-

defining differentiation genes, and the cell’s fate is set. Because of the canonical positioning 

of the “upstream” factors in the embryo, though, each cell’s fate is predictable from one 

embryo to another even before this molecular lockdown has occurred.

This type I mode of embryonic development is different in a number of respects from the 

kind of development that dominates in vertebrates, which has been labeled “type II”. 

Vertebrate embryos during cleavage tend to establish large populations of cells whose fates 

are not defined until after they migrate across other domains of the embryo and experience 

different signals from the environments through which they move. Lineage is much less 

clearly specified and thus the regulatory state preconditions for particular pathways of 

development are less clear until much later in the developmental process. An exception that 

may prove the rule is the relatively early specification of trophectoderm in mammals: but 

this is the only part of the mammalian embryo that functionally performs like a type I 

embryo – an early-specified part that enables feeding. Because of the indeterminacy of the 

cell fates and their relationships to initial gene expression patterns in most vertebrate 

embryos, gene network models have not been able to capture the early events of these 

embryos to date. In contrast, strong and highly detailed gene network models have been 

developed and extensively tested for both the early sea urchin (22) and the early Drosophila 

embryos (14). These models have revealed the logical power of cross-regulation among 

transcription factor coding genes, evident even from the topological layout of the network 

interactions (23, 24), to specify novel organismal structures and cell type identities

The early theories about the role of diffusible signals called “morphogens” in patterning 

embryos led to predictions that transcription factors should cause different effects at 

different doses. The biophysics of transcription factor binding make it reasonable to imagine 

that the regulatory sites that a factor might need to bind in two different cell type-specific 

genes might have evolved to require different concentrations of the factor per nucleus in 

order to be engaged effectively. However, surprisingly, the evidence from the well-studied 

invertebrate embryos is ambivalent about dosage sensitivity (25, 26). Although the 

boundaries of expression of individual genes can be sensitive to different levels of a 

transcription factor, embryogenesis as a process seems to compensate, making it robust to 

substantial changes in absolute transcription factor activity levels so long as the right 
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relationships are maintained between levels at different parts of the embryo. What 

establishes the boundaries between cell types is not the absolute level of a transcription 

factor, then, but the gene network relationships between one part of the embryo and another, 

i.e. the ability of a repressor for genes of a particular cell type to be activated in one domain 

while the right combination of activators is turned on elsewhere.

Thus, the spatial subdivisions that are important for such embryogenesis programs use 

combinatoriality and gene network architecture to define a sequence of Boolean rules to 

generate an organized, diversified embryo. These rules are robust to considerable noise in 

absolute gene expression levels. This gives embryonic systems the ability to activate a 

massively diverse set of genes accurately in different parts of the embryo with precisely 

coordinated timing, despite the dependence of different cell types on different factors. This 

mechanism ensures that when a migrating mesenchyme cell is eventually brought into 

contact with a different cell type, it will be ready to receive and the other cell type will be 

ready to deliver the signals needed to trigger the next step of differentiation.

Duels between “Master Regulators”

A very different view of cell type specification has come from a “bottom up” approach to 

characterizing lineage identity, and from the precedents set by binary fate choices in 

microbial systems (27, 28). In this “master regulator” model, there is an option for much 

more cell-to-cell diversity in fate choice and in the timing of fate decisions even within an 

initially equivalent precursor population.

When terminally differentiated cells execute their specific gene expression programs, there 

are often a small number of transcription factors that work on many of the cells’ 

characteristic set of genes in parallel. Whereas the actual cis-regulatory systems of these 

differentiation genes can receive inputs from multiple transcription factors, some of them 

fairly broadly distributed, attention is usually focused on the handful of factors that drive 

cell-type specific genes and are themselves most narrowly expressed in the cell types of 

interest. Then, any gene expression that depends on those factors is inferred to be the result 

of the factors’ “Master Regulator”1 functions. The simplification possible when seeing the 

world through a lens of a few “master regulators” can be enticing. Even more attractively, 

some “master regulators” appear to be capable of positive autoregulation, while the “master 

regulators” of some differentiation programs appear to be able to antagonize the action of 

transcription factors that are viewed as “master regulators” of alternative differentiation 

programs; the Thpok (Zbtb7b)--Runx3 antagonism governing CD4/CD8 T cell maturation 

lineage choice provides a good example (rev. by (29–31)). Thus with a very small number of 

key molecular actors, far fewer than in a comprehensive gene network, there is the prospect 

of explaining both expression of one differentiated fate and exclusion of an alternative 

differentiated fate.

1“Master regulator” is in quotes throughout because in molecular terms, none of these transcription factors work in isolation or 
override the context in which they are expressed. Authors refer to them as “master regulators” in some cases to emphasize their 
functional contributions to the processes in which they participate, and in other cases to propose a deliberately simplified model of 
those processes.
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The examples of such potent regulatory factors with simple circuits of interactions between 

them have prompted creation of models in which developmental choice is based on a 

proposed duel between the contending “master regulators” (32–34). This kind of model is 

very easy to convert into systems of differential equations, which makes such a model 

appealing across disciplines. The solutions to these systems of equations predict a state 

space defined by the levels of these two regulators with dynamically stable and unstable 

nodes resulting from their cross-regulation. Such state space diagrams have a canonical 

form, and predict that cells must ultimately be driven to a state in which one or the other 

“master regulator” dominates; the main difference among various versions is how long a cell 

is likely to persist in the region outside of these extremes. Note that these aspects of the 

model can be accurate representations of “lockdown” machinery that maintains lineage 

fidelity in the committed, differentiated states, no matter how the cells arrived at them. Note 

also that such models incorporate a stochastic element that allows substantial asynchrony 

between different cells in a population in their transitions to irreversible fates.

However, with such a model in hand, it is often gradually suspected that there is a stage of 

real development that corresponds to the unstable equilibrium between the two “master 

regulators”. The model predicts that such a cell type would be perfectly bipotent, and that 

the real developmental choice is based on the contest between the two factors in the cell to 

drive it to one of the stable end states. Interestingly, the idea of a perfectly bistable switch 

imposes on this single-cell decision the binary choice bias that is also common in embryonic 

systems, where for completely understandable reasons cell fates frequently segregate at 

mitosis (e.g. because one daughter cell remains near a signal source while the other is 

separated from it). The idea that metastable precursors exist that express low levels of the 

regulators of more than one fate has been supported by early evidence of multi-lineage 

priming in hematopoietic precursors. However, note that the (widespread) assumption that 

there should be two alternative fates in contention is not precisely required by the biological 

evidence. From hematopoietic multipotent progenitors to their differentiated descendants, 

there is no evidence for any particular mitosis at which the two daughter cells are required to 

adopt different fates, in contrast to the embryonic cases. Furthermore, since mitosis does not 

play the role here that it does in canonical embryonic cleavages, the only reason the 

alternatives can be assumed to be only two is because of a choice to include only two 

“master regulator” transcription factor genes in the model.

Key differences between gene networks for type I embryonic and dueling “master 
regulator” models

The cardinal features of these two kinds of models have implications for the relationship 

between gene network architectures and the biological phenomena that the network models 

seek to explain. Table 1 summarizes points of comparison between them. The features 

optimized by the type I embryo system are to increase complexity with precise timing and 

predictable cell-fate assignments. The source of the steadily increasing complexity comes 

from the combinatorial logic that is the rule, not the exception, for gene expression. That is, 

these early embryos require each newly expressed regulatory gene to be activated by a new 

combination of several transcription factors that were already activated in intersecting but 

different regions of the embryo. The precision of timing comes from a well-defined time 

Rothenberg et al. Page 6

Immunol Rev. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



zero point (fertilization of a mature oocyte), and from the observation that there are few if 

any initial silencing mechanisms to be overcome. This means that target genes rapidly 

respond once the correct combination of trans-acting positive regulators is available in a cell. 

The precision of fate assignments comes from the potency of negative regulators where they 

are present. In these embryonic systems, repression generally trumps activation in a 

noncompetitive way. Spatial patterning-associated repressors abort target gene expression in 

their domains, even if activators are present at high level (18).

By contrast, the dueling repressor models apply best to more terminal differentiation 

decisions when two alternative end states are already defined by the reciprocal actions of 

two alternative transcription factors, and where it does not matter precisely which fate is 

adopted by which cell. Combinatoriality is explicitly left out of these models in which the 

two “master” factors are used to account for the whole response. Indeed, the only genes of 

interest that must respond to more than one regulator in these models are the genes encoding 

the factors themselves. Unlike the embryonic models, the entire dynamic response of the 

system is highly dose-dependent as well as noise-sensitive, because of the simplicity of the 

regulatory inputs. At high levels of the factors, the one with higher effective activity wins all. 

At low levels of both factors, the system can remain balanced in a bipotent state, but 

unstable regulator expression accelerates the transition to differentiation in either direction. 

The ability of the alternative transcription factors to repress their antagonists’ positive targets 

may be included but need not be absolute, because the two factors will repress each other. 

Thus, quickly or slowly, the winning factor will starve the alternative factor’s targets of their 

positive inputs. An often-overlooked corollary of this kind of model is that it is strongly 

influenced by relative doses of the two factors but becomes dosage-insensitive as each factor 

approaches dominance. Because winning also allows a factor to increase its own expression, 

each individual factor must coherently keep driving the developmental system to the same 

endpoint as its own levels increase.

Key elements of both kinds of models can be found in early T-cell development, but there 

are sharp divergences from the assumptions of both model types as well.

T cell emergence seen from perspectives of established developmental 

models

Pathways, stages, and major factors: overview

Hematopoietic differentiation from stem cells in postnatal mammals is a multi-outcome, 

branched developmental system. Most of the developmental options are implemented in the 

bone marrow, where there are likely to be different local signaling environments that foster 

different outcomes, but these are still anatomically somewhat obscure. The thymus is an 

outstanding exception, since cells that are to become T cells almost always need to 

immigrate to the thymus from the bone marrow through the blood. The thymus provides a 

specialized architecture to guide T cell development of the precursors through migration 

through a sequence of distinct anatomical domains. Because there are very few cells taking 

non-T cell developmental fates in the thymus, the analysis of thymocytes over the years has 

provided a very fine-grained picture of T-cell developmental stages, characterized by 
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different surface markers, gene expression patterns, cell cycle behaviors, T-cell receptor 

(TCR) gene rearrangement statuses, and intrathymic locations (35–37). Because the cells are 

viable and functional upon transfer to host mice, thymic organ cultures, or stromal co-

cultures that mimic the thymic microenvironment, it has also been possible to characterize 

the different stages of thymocyte development in depth in terms of developmental potential 

at each stage and developmental kinetics of transition to the next stage.

These stages and their relationships are shown in Fig. 1A. Here are defined [i] the early 

intrathymic precursor “ETP” stage, [ii] the immediately precommitment DN2a stage 

(DN=double negative for mature T-cell coreceptors CD4 and CD8), [iii] the newly 

committed DN2b stage, [iv] the DN3a stage that is the first major period of TCR gene 

rearrangement, [v] the DN3b, DN4, and Immature Single Positive stages when cells 

proliferate vigorously following the first successful TCR locus gene rearrangement, and 

finally [vi] the DP (CD4, CD8 double positive) stage when the second TCR locus is 

rearranged and successful cells for the first time express their final TCR recognition 

specificity. The DP stage is the point of departure for differentiation all the later effector 

subsets of T cells using the αβ form of the TCR, and considerable work is dedicated to 

understanding the mechanisms involved in those branching pathways. That later set of 

lineage specializations is outside the scope of this review. However, the identity of the cells 

as T cells of one kind or another is set by the end of DN3 stage (Fig. 1A).

In postnatal mice, the whole T-cell pathway emanates from a multipotent precursor that still 

has the ability to give rise to natural killer cells, at least one or two additional types of innate 

lymphoid cells, B cells, dendritic cells, granulocytes, and macrophages, and to some extent 

also mast cells. The relationships of cells with this combination of potentials to other 

hematopoietic cells are shown in Fig. 1B. The thymus-settling precursors are closest to the 

Lymphoid-biased Multipotent Precursors and the Common Lymphoid Precursors, i.e. 

uncommitted intermediates with a strong preference for lymphoid fates in vivo but a latent 

capacity to adopt myeloid fates in vitro. These adult progenitor cells are thought to have lost 

erythroid and megakaryocytic potential at an earlier stage. As noted above, it is still 

controversial whether other precursors may exist that maintain erythroid and granulocyte/

macrophage potential but lack lymphoid potential; cells with these features are most evident 

in early fetal liver before the emergence of true hematopoietic stem cells. But the connection 

of lymphoid and myeloid fates is the one that needs to be resolved for T cell development.

Key regulatory factors that are known to be differentially important in these pathways are 

introduced in Fig. 1A and discussed further below. Importantly, the thymus provides a clear 

extrinsic signal to trigger T cell development, activating the Notch pathway by interaction of 

the Notch ligand Delta-like 4 on the thymic stroma with Notch1 molecules on the surfaces 

of the immigrant precursors and their immediate descendants. Although Notch pathway 

activation is not unique to the thymus, the thymus provides a particularly strong Notch 

signal in the context of cytokines that support lymphocyte proliferation and developmental 

progression. Notch signaling creates a specification mechanism that converts the cells from 

multipotency to committed pro-T cells, and then the committed state becomes Notch-

independent.
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Explanation of T cell specification by a “Type I embryo” model: combinatorial definition of 
identity

To think about a stem-cell differentiation process using terms developed for embryonic 

differentiation, it is convenient to consider lineage choice to be the equivalent of spatial 

demarcation of distinct embryonic territories. Thus, the identity of the cells like the identity 

of the embryonic territory depends on the overlap between positive regulatory inputs to the 

cell type gene network, and the exclusion of negative regulatory inputs. T cell differentiation 

from ETP stage to DP stage depends on a collection of disparate transcription factors, each 

with its own expression profile. Myb, Runx1 with its partner CBFβ, and Ikaros combine 

with GATA-3, TCF-1 (encoded by Tcf7), Gfi1, Bcl11b, some representation of Ets1-

subfamily ETS factors (“E26 transformation-specific”, a large family with many members 

expressed), and strong, unencumbered activity of E protein dimers, either E2A-E2A 

(encoded by Tcf3) or E2A-HEB (encoded by Tcf12). The factors that need to be excluded 

are EBF1 and Pax5, which would otherwise divert the cells to B-cell lineage; antagonists of 

E protein dimers like Id2, which would promote an innate lymphoid type fate; and C/EBP 

factors and PU.1, which would otherwise promote neutrophilic granulocyte or macrophage 

fates (C/EBP factors and PU.1) and dendritic-cell fates (PU.1). Other factors that probably 

need to be excluded are Irf8, a key participant in macrophage, B-cell, and dendritic-cell 

development; factors involved in erythroid and megakaryocytic development; and factors 

that would otherwise promote self-renewal in a multipotent state. Thus, the prediction would 

be that if the right combination of factors could be established in a hematopoietic precursor, 

it would become a T cell.

In reality, the triggering and execution of the T-cell developmental program depend on 

Notch pathway signaling. This is needed directly to activate Tcf7 at least, and probably also 

to help activate Gata3 and Bcl11b, to optimize the levels of Runx1 expression, and to induce 

repressors like Hes1 that silence Cebpa. However, this signal is not a stable component of 

the regulatory state mix. Notch responsiveness cuts off before the DP stage, and once 

induced, most of the regulatory genes that contribute positively to the T-cell program sustain 

maximal levels of expression even when Notch signaling is withdrawn. This can be viewed 

as a classic case of the kind of embryonic circuitry that “transforms transient spatial 

regulatory inputs into stable regulatory state” (2, 38). The conversion from Notch-

dependence to Notch-independence in this kind of model would arise from the positive 

regulation that the Notch-induced regulatory genes provide for each other which collectively 

renders the Notch input dispensable.

There are two large questions in using this kind of formalism to explain the T-cell 

developmental process. First is to explain how the thymic microenvironment can cause the 

right combination of factors to be expressed in the hematopoietic progenitor cells with other 

factors excluded. Lacking organized spatial axes along which different signaling cues can be 

provided in complex anatomical crossing patterns, the thymic stroma mainly seems to 

provide the single, repeated Notch signal. Thus, the developing T-cell progenitor needs to 

respond to Notch with its own intracellular cascade of successive, new regulatory states to 

enable this simple input to affect the levels of so many regulatory genes, considering that 

these genes otherwise have disparate expression patterns. The second question is whether the 
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predicted combination of transcription factors really is necessary, or really is sufficient, to 

create a T-cell identity. Is it the simple presence of the right combination of factors, or the 

cell’s achieving the right relative levels of this combination of factors, or the order in which 

the right combination of factors is induced to work, that generates T-cell identity? The 

identifications of a collection of required factors and a collection of factors to be excluded 

still leave some distance to the answers to these questions.

Explanation of T cell specification by a “dueling master regulators” model: defining the 
sequence of binary choices

In a dueling regulator model each choice is seen as binary, and hematopoietic stem cells 

generate far more than simply two cell types, as described in more detail below. Therefore, 

by this kind of model the T-cell pathway must emerge from a succession of binary choices, 

each governed by a different regulatory antagonist pair. As discussed in more detail in the 

next section, this view fits well with the classic hematopoietic lineage diagrams that 

dominated the literature until about 2005 (39), where the hematopoietic stem cell would first 

commit to a lymphoid vs. erythromyeloid fate (choice 1), followed by a subdivision of B 

from T and NK and/or a subdivision of NK from B and T (choice 2), and then followed by 

the separation of T cell fate from either an NK or a B cell alternative (choice 3). Crucial 

antagonist pairs in this scheme could include Ikaros as the pro-lymphoid factor with E 

proteins vs. Id2 in the (B or T) vs. NK choice, and GATA-3 vs. EBF1 in the T vs. B choice. 

A modification of the model would still work with the revised lineage diagrams more widely 

accepted from 2005 onward that first separate erythroid/megakaryocyte precursors 

(GATA-1+) away from a lymphomyeloid precursor (PU.1+)(40–44). Only then would 

lymphoid progeny be separated from myeloid progeny of the lymphomyeloid precursor, by 

antagonism of “myeloid” C/EBPα by “lymphoid” EBF1 in the B cell case, and by GATA-3 

and Runx-mediated silencing of PU.1 in the T cell case.

By a dueling regulator model, the correct analysis of the circuitry of T-lineage choice 

depends on the agonist-antagonist regulator pair at the heart of the mechanism. Thus, to 

explain T cell specification by such a model, the central issue is to define the most relevant 

alternative to T-cell differentiation in the cell immediately before it commits to the T cell 

fate. The “master regulator” duel itself can then be validated by showing that the agonist and 

antagonist transcription factors actually coexist in the cells before they choose between these 

options. Proving whether the system really is bistable at that point then depends on showing 

that the factors engaged in the struggle actually do regulate themselves positively, do 

antagonize each other’s expression, and do each promote one of the outcomes in the balance 

in a monotonically increasing way.

A closer look at the details of T cell specification in the context of hematopoietic 

differentiation suggests that both kinds of models incorporate useful elements, but that the 

real program uses a distinctive hybrid kind of mechanism.
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Hematopoiesis: a distinctive terrain for gene networks

A multidimensional landscape of hematopoietic transcription factors

One way to reduce a complex developmental landscape to a form in which dueling master 

regulator models can work is to posit that all fates are generated by a hierarchical series of 

binary decisions. Indeed, this has been a classic theme in hematopoiesis research. As already 

noted, hematopoiesis was long assumed to begin with a split between erythromyeloid and 

lymphoid fates, followed by splits between erythroid and myeloid cells and splits between B 

and T lymphocytes, then finally myeloid cells were supposed to split between granulocyte 

and macrophage fates (39). Dueling master regulator models scored key successes in this 

binary choice hierarchy, as the divergence between erythroid and megakaryocytic fates on 

the one hand and macrophage and granulocytic fates on the other hand (here termed 

“myeloid fates”) could be explained in terms of GATA-1 and PU.1 (32, 45–48). Then, also, 

granulocyte vs. macrophage divergence could be explained in terms of relative expression of 

C/EBPα and PU.1 (49), using an additional continuous-to-discrete conversion subcircuit of 

Gfi1 in opposition to Egr1, Egr2 and Nab2 (33).

The founding model of this kind was the PU.1-GATA-1 relationship, which is thought to 

play a key role in the separation between myeloid and erythro-megakaryocytic lineages. 

Both PU.1 and GATA-1 are indeed potent positive regulators of these respective fates, and 

they both have mechanisms for positive autoregulation and for mutual repression at the 

transcriptional level plus protein-protein antagonism. However, through more than 15 years 

of intense investigation, it remained controversial whether there is any true common 

(erythro-)myeloid precursor in which these factors compete on a level playing field for a 

winner-take-all outcome (40, 43, 50–54). Evidence for biased, GATA-1-dominant or PU.1-

dominant precursors is ample, and in the past year single-cell transcriptome analyses 

coupled with single-cell fate determination methods have showed that in the great majority 

of these supposed bipotent precursors the contest has already been won by one or the other 

(55–57). Then in the PU.1-expressing multipotent cells, at least, there is a variety of possible 

lymphoid and myeloid developmental options that depend on more than simply PU.1 itself 

(58, 59). Evidence from zebrafish embryos shows that the mutual antagonism of PU.1 and 

GATA-1 is not hard-wired but actually depends on a transcriptional modulating factor, 

Trim33 (Tif-1γ)(60). In mammalian hematopoiesis also, it has been suggested that the 

mutual antagonism is not a simple function of PU.1 and GATA-1 themselves, but occurs 

primarily when C/EBPα and FOG-1 (Zfpm1) provide “henchman” duties (61). In agreement 

with this, multipotent hematopoietic precursors also generate mast cells, the highly robust 

and sustainable regulatory state of which excludes FOG-1 and C/EBP factors but requires 

stable expression of PU.1 together with GATA-1 and GATA-2 (62–65). Thus, factor-factor 

reciprocal antagonism within network circuits is a valuable and potent mechanism for 

driving cells to different end states, but in reality more than two factors may be involved, and 

thus the decisions may involve more than two potential cell fates.

The ability to use these simple circuits to explain hematopoietic development has been 

further challenged as increasing evidence showed most lymphoid cells to branch off from 

myeloid cell precursors some time after erythroid potential had been lost or minimized (40, 
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41, 52). This meant that the actual GATA-1-PU.1 choice was between erythro-

megakaryocytic fates and a mixture of lymphoid and myeloid potential. Thus a new binary 

choice needed to be postulated to explain lymphoid vs. myeloid divergence. One switch-

determining factor appeared to be C/EBPα, which would be retained in myeloid lineages but 

silenced in B and T cell lineages, and in an alternative model Ikaros, E proteins, and Gfi1 

were all postulated to work against PU.1 to confer lymphoid identity (66). However, neither 

Ikaros, E proteins, nor Gfi1 are unique to lymphocytes, none of them directly repress C/

EBPα (which activates Gfi1 in the macrophage-granulocyte model), and the complexity of 

the circuitry required opened new questions. In fact, although C/EBPα is repressed in both B 

and T cell precursors, it is not repressed by a common pan-lymphoid mechanism: EBF1 

and/or Pax5 silence it in B cells (67, 68), whereas Notch signaling via Hes1 silences it in T 

cells (69). Therefore, even the lymphoid-myeloid split needs to be modeled as more than a 

binary choice (discussed further below).

Most importantly, expression patterns of candidate “master regulators” themselves do not 

fall into the neat hierarchical system of binary exclusions that would be required by a 

system-wide use of a dueling regulator model (Fig. 2). A multidimensional picture gives a 

clearer representation of the domains of different transcription factors’ actions in 

hematopoiesis. In Fig. 2, this is approximated by overlapping colored contours that are 

superimposed on a putative lineage tree leading to developmental end states.

One glaring exception to the GATA-1-PU.1 antagonism, just noted, is the existence of mast 

cells which depend upon sustained activity of both factors, albeit with lower PU.1 levels 

than in mature macrophages. Dueling regulator models predict that cells can exist with low 

levels of both antagonists, but they predict that such cells should be developmentally 

unstable. By contrast, mast cells are not only stable but also capable of maintaining their 

phenotype through many generations of proliferative expansion. Also relevant are the classes 

of granulocytes that use GATA-1 and/or GATA2 along with PU.1 and high levels of C/EBP 

factors, such as eosinophils and basophils (64, 70, 71)(Fig. 2). If the separation between 

erythroid cells and myeloid cells involves a decisive choice between silencing GATA-1 and 

silencing PU.1 and/or C/EBPα, then the origin of these cells is obviously problematic – do 

they emerge before or after the split, or do they have some special mechanism to reactivate 

the silenced master regulators in the presence of the others? The potential compatibility 

between GATA factors and myeloid factors is strikingly underlined by results of 

manipulating developmentally arrested mutant pro-B cells. Here, despite the lymphoid-

biased context, GATA factor introduction not only fails to protect the cells from direction to 

myeloid fates, but actually promotes conversion to myeloid fates, acting similarly to C/

EBPα (72).

The domains of action of these transcription factors obviously intersect each other in 

different combinations across the diagram. It is also evident that the biological system 

exploits the freedom of this combinatoriality, often violating hierarchy, to specify multiple 

distinct cell types with a minimal number of different factors in play. This requires a 

network with greater complexity in its drivers than a simple succession of “master-regulator” 

duels.
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Lineage-specific ordering of developmental fate exclusions

Cell fate choices may depend on cross-regulation between different potent transcription 

factors, but again the fate decisions do not fall into a strict hierarchy. Indeed, it appears that 

cells expressing C/EBP factors have access to fates that depend on this factor, such as 

neutrophil, macrophage, basophil or eosinophil fates, while those that express GATA-1 have 

access to erythroid, megakaryocytic, eosinophil, basophil, or mast cell fates. Lymphocyte 

precursors express none of these. However, the order in which lymphocyte fates subdivide as 

compared to the order in which they separate from macrophage, granulocyte, and dendritic 

cell fates is surprisingly dependent on the fate chosen.

Precursors of both B and T cells have been examined in detail by flow cytometric separation 

followed by single-cell assays of developmental potential in broadly permissive conditions 

in vitro, as well as by transfer to adoptive hosts in vivo (Fig. 3). In the B cell pathway, 

myeloid potential is excluded quite early, whereas for another stage or two B cell precursors 

still appear to be able to give rise to T cells if exposed to inducing Notch ligands (73–75). 

Thus, from the B lineage vantage point, myeloid potential is apparently lost before the 

bifurcation of the B and T-cell branches. However, in the T-cell lineage, this order is 

reversed. Access to at least some myeloid fates continues for multiple cell divisions after 

entry into the thymus, and through the ETP to DN2 transition: DN2a pro-T cells can be 

trans-differentiated into macrophages, granulocytes, or dendritic cells simply by changing 

the culture conditions (44, 76–83). However, T-cell precursors lose B cell potential much 

earlier, within a very short time after arriving in the thymus, and despite the cells’ still 

retaining obvious myeloid potential (79, 80, 84–87). From the T-cell precursor perspective, 

then, lymphoid lineage bifurcation between B and T cells becomes cell-intrinsic even before 

the split between lymphoid and myeloid fates (Fig. 3).

The discrepancy is not a contradiction; it simply shows that exclusion of a given fate 

alternative (a repressive mechanism) is carried out by a different mechanism than initiation 

of progress toward another fate alternative (an activating mechanism). B cells block the T-

cell pathway only after they begin to express their own distinctive regulators, EBF1 and 

Pax5, which inhibit Gata3, Tcf7, and even the expression of the Notch1 signal receptor that 

would be required to activate either one. To exclude the myeloid fates, different mechanisms 

are used in most T cell precursors, which can simply turn off PU.1, than in B cell precursors, 

which must exclude myeloid development despite continuing to express PU.1. (It is 

interesting to speculate whether any of the rare pro-B cells that can be converted to T-cell 

precursors in vitro would transiently regain access to dendritic-cell or myeloid pathways in 

the process, but this would be difficult to test.) Most cells have to start down either a Notch-

influenced T-cell pathway or a Notch-averse B cell pathway before it is clear which tool they 

can use to jettison their heritage of myeloid potential.

In general, a cell can remain in a single lineage path due to a combination of intrinsic and 

extrinsic factors, so that the dominant role of Notch signaling in T-cell development and the 

differential expression of myeloid-potentiating factor PU.1 gives B and T cells different 

options (Fig. 4). B and myeloid cells share the strong regulator PU.1 throughout B cell 

maturation, but require different dosages of PU.1 for their differentiation (88, 89). B cells 

sharply reduce PU.1 expression levels at the beginning of their development from 
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multipotent precursors (58), possibly even preceding their expression of EBF1 and Pax5. 

Cells becoming pro-B cells from fetal liver appear to escape the mechanism that allows PU.1 

to regulate itself positively (90–92), and developing B cell precursors can also dilute out 

higher levels of PU.1 from their precursors by maintaining a rapid rate of proliferation 

throughout specification: this is important because the PU.1 protein itself is very stable(58). 

It is known that different PU.1 regulatory sites are open in a pre B cell line than in a 

macrophage cell line or mature macrophages (91). It has been argued that a key negative 

regulator of PU.1 is Ikaros (66), although this is not consistent with all progenitor-cell gene 

expression data (93). Indeed, in B lineage cells Ikaros acts to repress PU.1 although in 

myeloid cells it can cooperate in upregulating PU.1 (90). PU.1-driven myeloid development 

might still pose a threat to B cell lineage fidelity until C/EBPα is fully silenced by EBF1 and 

Pax5, but the downregulation of PU.1 is intrinsically controlled. This could help to reduce 

detectable myeloid potential in cell transfer assays from an early stage.

By contrast, T cells cannot be specified without Notch signaling, so that in the 

microenvironment where B cells normally develop, an intrinsic blockade of T-cell potential 

may be optional until much later. The chromatin status of the earliest B-cell and T-cell 

signature regulatory genes is also notably asymmetric in the early precursors of the opposite 

lineages. In E2A−/− or EBF1−/− pre-pro B cells, the Gata3 and Tcf7 loci are in an accessible 

chromatin state similar to their states in ETP pro-T cells, whereas in early T-cell precursors, 

both the Ebf1 and the Pax5 genes are maintained in chromatin states repressed by Polycomb 

Repressive Complex 2 (H3K27me3).

Developing T cells initially express a considerable level of PU.1, but silence it completely 

during lineage commitment (78, 94, 95), approximately 10–14 cell divisions after entering 

the thymus (96, 97). Thus these cells have only a short time in which myeloid potential 

poses a threat to lineage fidelity. The thymic microenvironment is nonpermissive for 

expression of this myeloid potential. First, there is no myeloid-supporting growth factor 

present, and second, the extrinsic Notch signals in the thymus not only push forward the T-

cell program but also restrain PU.1 from implementing the myeloid or dendritic cell program 

effectively in vivo (98). One aspect of the mechanism is that the Notch-activated factor Hes1 

represses C/EBPα expression (69), but Notch signaling also affects the spectrum of genes 

regulated by PU.1 in the absence of C/EBPα (99). The persistent myeloid potential is only 

visible if the cells are removed from contact with Notch ligand in an experimental 

commitment test during these sensitive stages (99–101).

Whereas myeloid alternatives are only a transient threat for developing T cells, T cell and B 

cell precursors share their use of Ikaros, Myb, Gfi1, Runx factors, and especially their use of 

E proteins and IL-7/IL-7 receptors as major regulators and proliferation signals throughout 

their development. The thymus can be a very favorable site for B cell development except 

where cells can receive Notch signals by direct contact with Notch ligands: Notch1−/− 

precursors generate B cells abundantly in the thymus (102). Thus, when B-cell potential is 

blocked early in mammalian T-cell precursors (86, 103, 104), it is tempting to speculate that 

this is not only to maintain lineage fidelity but also to make sure T-cell precursors do not 

need to compete for the local supply of IL-7 (105–107). Imposing this block intrinsically is 

seen to be one of the earliest events in T-cell development, and it is mediated at least in part 
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by the Notch-dependent induction of GATA-3 which then maintains B lineage exclusion 

even when Notch signals are withdrawn (84, 85). The reason B and T cells need to exclude 

different fate options in this piecemeal way is precisely because their precursors do not first 

pass through a binary choice at which all nonlymphoid fates are excluded.

Dose dependence and diverse mechanisms of dosage control

The definition of cell type by various mixtures of overlapping transcription factors is more 

consistent with the multiple-input combinatorial mechanisms of territorial patterning in the 

“type I embryo” models than with the binary fate subdivisions that would emerge from 

“dueling master regulator” models. However, one aspect of the hematopoietic system stands 

out in contrast to the models used to explain boundary formation in embryos. Transcription 

factors have highly dose-sensitive effects in hematopoietic fate choice; they do not work in a 

simple digital way. The preceding section referred to the need for B cells to keep PU.1 

expression at much lower levels than those needed for this same factor in myeloid 

development. Lineage-specific and stage-specific dose restrictions for a given factor in 

different contexts are not exceptional but common in mammalian postnatal hematopoiesis. 

In marked contrast to the model systems in which embryonic development has been 

dissected genetically, in mammalian hematopoiesis transcription factor activities are 

frequently haplo-insufficient, with altered development resulting from even a small twofold 

change in expression. Stem cell establishment and self-renewal are sensitive to 

heterozygosity in Runx1 (108, 109) and Gata2 (110), all dendritic cell development and 

choices between macrophage vs. granulocyte development are sensitive to PU.1 

heterozygosity(49, 111), generation and stability of B cells are sensitive to heterozygosity in 

EBF1 particularly when combined with heterozygosity in E2A, Runx1, or Pax5 (112–114), 

and early T cell development is sensitive to twofold dosage reductions in GATA-3 (84, 115, 

116).

This dose dependence implies, first, that positive regulation of cell lineage features (and 

survival) depends on transcription factor binding to non-optimal sites at key loci, where 

binding is not saturated easily; and second, that the ability of one transcription factor to 

repress the major regulator of a competing program is likewise graded and incomplete. A 

clear example is the effect of modest reduction in GATA-3 expression in the early T cell 

precursors that coexpress GATA-3 with PU.1: reduced GATA-3 expression leads quickly to 

upregulation of PU.1 levels, implying that GATA-3 is already damping down PU.1 

expression but in a weak, concentration-sensitive way. These weak cross-regulatory effects 

and the dose-dependence that pervades the system are features that are not common in 

deterministic embryonic systems, although they are accommodated in the dueling master 

regulator models within the range of expression levels where the ultimate winner is not yet 

decided.

Dosage differences can result from many mechanisms besides heterozygosity for a 

functional gene, or changes in the activity of an upstream regulator. A recent addition to the 

list of mechanisms for graded dosage control came from analysis of the dynamics of PU.1 

expression in multipotent progenitors (58), a population which in principle contains the 

precursors of macrophages, granulocytes, B cells and T cells, all of which will go on to 
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regulate PU.1 in clearly divergent patterns (Fig. 4). These cells initially express high levels 

of PU.1, but as they differentiate, two different regulatory mechanisms combine to drive PU.

1 levels higher or lower in different progeny types. One is the maintenance or termination of 

PU.1 autoregulation. The myeloid descendants of the progenitors maintain positive 

autoregulation of PU.1 (Spi1 gene) expression mediated through at least three different site 

clusters in the Spi1 cis-regulatory system (91, 117), and their absolute rates of Spi1 
transcription are constant at a high level. The B lymphoid descendants, on the other hand, 

lose sensitivity to autoregulation and reduce their own absolute rates of Spi1 transcription by 

nearly an order of magnitude. (Introduction of exogenous PU.1 does not appear to 

upregulate transcription from the endogenous locus in these cells, although this is hard to 

prove because many developing B cells are killed by excess PU.1.) Another mechanism is 

needed, however, to increase PU.1 activity from the level in the precursors to the level 

needed for macrophage maturation, and the surprise is that this mechanism is not 

transcriptional. Instead, it depends on the fact that PU.1 protein in these cells is extremely 

stable, to the extent that a major contributor to its turnover function in a cell is not actual 

decay but rather the dilution caused by cell division. Because of this stability, PU.1 levels 

can be increased in cells that maintain a constant rate of PU.1 synthesis simply by slowing 

the cell cycle (58). In the cells becoming macrophages, PU.1 itself promotes a cell cycle 

lengthening, in part by reducing the expression of Myc and Myb. However, this mechanism 

can be manipulated experimentally, with the same cells adopting macrophage or non-

macrophage fates depending upon whether they are allowed or encouraged to slow their cell 

cycles or not (58).

Making cell cycle control a regulatory input as well as a simple effect of other factors is an 

important change of perspective. Interestingly, cell cycle control as an input to 

developmental decisions is reminiscent of the highly regulated cell cycle timings and 

geometries of embryos, but in the hematopoietic case it is being used in a cell autonomous, 

geometrically random, stochastic way very different from the rules in embryos. An 

important corollary of this mechanism is that the ratio of long-lived factors like PU.1 to 

short-lived factors such as C/EBPα in the cell nucleus should be extremely sensitive to cell 

cycle length changes, without change in their transcription rates, because the relative 

contributions of mitotic dilution to their protein steady state accumulations should be so 

different for the two proteins. Thus any third factor that affected cell division rates could 

dominantly alter the balance between two other factors, affecting cell fate in a dose-sensitive 

system like hematopoiesis, even when their synthesis rates remain the same. Furthermore, as 

single-cell RNA-seq analysis has been used to dissect stem and progenitor cell populations, 

it has become increasingly clear that differential expression of cell cycle genes is a major 

criterion of functional distinction (118). The role of cell cycle length control in 

developmental choice may help to distinguish different kinds of stem cells too.

Cytokine dependence and cell fate: cell cycle arrest and death for commitment and 
boundary formation

Cell cycle control in hematopoiesis is clearly dependent on microenvironmental conditions, 

especially the availability of appropriate cytokines. Thus the ability to read out any of the 

gene network control circuitry that is influenced by cell cycle length and continuation will 
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perforce be microenvironment-dependent. A fundamental aspect of differentiation along 

each hematopoietic pathway is the activation of distinctive lineage-specific cytokine 

receptors that will become essential for progenitor proliferation and survival along that 

pathway. It is well understood that the potentials of different progenitors will not be read out 

accurately if some of the key growth factors needed by certain classes of descendants are not 

included in the assay conditions, because those descendants will not expand or survive. 

However, the ability to proliferate also enables cells to shift from one regulatory state to 

another by diluting away prior transcription factors and prior chromatin marks. In a key 

transition of T-cell development, β-selection, the clearance of immature characteristics only 

occurs normally if the cells are able to undergo a full extent of proliferation (usually >5 cell 

cycles)(119, 120). By the same token, when cell division stops, it enables terminal states to 

be stabilized by reducing chromatin state changes and allowing transcriptional regulators 

like PU.1 to accumulate.

Cytokine dependence does more than control the extent of clonal expansion of precursors. It 

is also used in hematopoiesis as a mechanism for enforcing lineage fidelity of a cell’s gene 

expression pattern. One aspect of this is the positive feedback circuitry connecting cytokine 

receptors to the transcription factors important to promote the receptors’ expression. An 

elegant example is the ability of PU.1 to drive the expression of two growth factor receptors, 

GM-CSF receptor (Csf2ra/Csf2rb) and M-CSF receptor (Csf1r), which upon ligand binding 

transduce signals that feed back to stimulate transcription of Spi1 (PU.1 coding gene)(121, 

122). Another example, from B cell development, is the ability of IL-7R dependent signals 

to enhance expression of EBF1, which then reciprocally helps to sustain IL-7R expression 

(123–127)(although also see (128)).

But cytokine receptor dependence does not simply enhance growth: it can also set the 

boundary between regulatory states of permitted cell types, by creating a no-man’s land 

between them. Interestingly, when a cell is shifting from one developmental state to another, 

it not only gains responsiveness to a new cytokine, but also can lose responsiveness to the 

cytokine that had been supporting it till then. Typical cases are the losses of sensitivity to 

Kit/Kit ligand (Stem Cell Factor) signaling during lineage commitment in both early T cells 

and early erythroid cells (78, 129, 130). The stringency of this regulation is shown in 

experiments where a developing cell is perturbed by the forced expression of a transcription 

factor used in another lineage. If the growth factor environment is unchanged, then very 

commonly there is severe mortality in the transduced cells (100, 131, 132). This can occur 

within a day or two, even before the cells lose expression of their previously supportive 

growth factor receptors from the cell surface, and the death can substantially mask any 

transdifferentiation effects of the introduced factor. However, many of the 

transdifferentiating cells can be rescued simply by shifting the cells quickly into a different 

growth factor environment matching the one in which the introduced factor usually works 

(101), or more neutrally, by adding a Bcl2 transgene without changing the growth factor 

environment (95, 99, 100, 132). Then transdifferentiating cells with inter-lineage phenotypes 

at the single-cell level become readily detectable.

The implication is that in vivo, the integration of cytokine receptor functional pathways into 

particular cell lineage programs act as a quality control to make any improperly specified 
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cells nonviable. Generation of cells with abnormal cytokine signaling behavior is a sensitive 

indicator of an abnormal regulatory state, and may immediately condemn the cell to die, 

unless its microenvironment dramatically changes. Note that this process can be seen as the 

equivalent of an auxiliary cell-type boundary formation mechanism. If cells with defective 

fate specification can simply be killed by their loss of response to survival promoting 

cytokines, there is no need to make the specification process itself perfect.

Thus, cytokine dependence as an integral aspect of fate determination enables the system to 

dispense with the need for the sharp, dominant repression machinery of embryonic systems. 

It opens the ability to use damping repression primarily, which tunes regulator levels 

quantitatively. This makes possible transcription factor dosage control to specify an 

increasing diversity of cell types, while allowing the system as a whole still to generate 

strikingly efficient and coherent differentiation decisions.

T-cell specification: something old, something new, something borrowed

An inheritance of multipotent precursor transcription factors in early T cells

The migration of T-cell precursors to the thymus before commitment means that the most 

immature thymocytes at any given time provide a clear early view of cells that are fated to 

become T cells eventually, long before they express many T-cell genes yet. This opportunity 

is rare as compared to precursors of other hematopoietic cell lineages, mixed together in the 

bone marrow or fetal liver, which often cannot be recognized as such until after they begin to 

express a distinctive lineage-specific gene expression program. In T cell precursors, perhaps 

uniquely, it is possible to distinguish the initiation of the developmental program from its 

culmination.

Molecular and functional characterization of T-cell precursors has shown that early T-cell 

precursors at ETP and DN2a stages maintain expression of a variety of stem and progenitor-

associated regulatory genes. Some of the factors encoded by these genes remain essential 

parts of the T-cell gene network and are either sustained or upregulated, e.g. Myb, Runx1, 

Ikaros, and E2A. Others of these factors are expressed, apparently through as many as ten 

cell cycles, and then silenced as the cells commit intrinsically to a T-cell fate (36, 96). This 

early-expressed set of factors has been labeled “phase 1 regulators” and is enriched for 

transcription factors that would cause acute lymphoblastic leukemia if not repressed 

efficiently, such as SCL (Tal1), Lyl1, Lmo2, Mef2c, Bcl11a, Hhex, Erg, and Mycn, and the 

growth factor receptors Kit and Flt3. The myeloid-promoting factor PU.1 and the erythroid-

linked factor Gfi1b are also expressed like Phase 1 genes, with robust expression in early T 

cell precursors, although less directly associated with leukemia. PU.1, like Bcl11a and 

several of the other phase 1 factors, is a clear holdover from the lymphoid-biased 

multipotent precursors found in the bone marrow (43, 133, 134).

This load of prior regulatory apparatus might be assumed to promote self-renewal with 

continuation of the multipotent state. However, it is flexible enough to permit induction of a 

new program, the T-cell development program, under the influence of Notch signaling and 

IL-7/IL-7R signaling in the thymic microenvironment.
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Understanding the role of the phase 1 factors is still incomplete, but several examples are 

now in hand. The factors implicated in T-cell leukemia are thought to be involved normally 

in some of the initial proliferative expansion that the ETP and early DN2a cells undergo 

before lineage commitment, even though the exact target genes are not identified. The proto-

oncogene Lyl1 also plays a needed positive role in activating expression of at least one other 

important T-cell gene, the zinc finger factor Gfi1 (135). Our own evidence focuses on PU.l, 

which is not only a myeloid “master regulator” but also a factor important to maintain 

survival, lineage identity, and growth factor receptor expression in multipotent 

lymphomyeloid precursors, macrophage precursors, and dendritic cells.

In early T cells, PU.1 is important to arm the cells for optimal proliferation, and PU.1 

protein binds to a large fraction of active regulatory sequences in the cells, but its roles are 

complex (136, 137). First, in a muted version of the binary competition model, PU.1 

dampens the intensity of Notch pathway signals, while at the same time the presence of 

continuing Notch pathway stimulation restrains PU.1 from activating a myeloid program 

(99). The “soft” mutual antagonism between PU.1 and Notch signaling is still being 

dissected in terms of mechanism, but it has the consequence that when PU.1 is finally 

silenced during commitment, one of the systemic impacts is an increase in most Notch target 

gene expression (136). Second, PU.1 drives expression of a fascinating set of cell biology 

genes likely to be involved in chemokine response, G protein coupled receptor signaling, 

and cytoskeletal dynamics, which may be important specifically in the early intrathymic 

migrations of the precursor cells. Third, at the same time, PU.1 cross-regulates other phase 1 

transcription factor genes, sustaining some (Bcl11a, Lmo2, Mef2c) and damping down 

expression of others (Erg, Mycn, Gfi1b, Kit) (99, 136). Finally, it is possible that PU.1 in the 

precommitment stages of T-cell development acts as a pioneer factor to open certain sites for 

later-dominant factors that will contribute positively to T-cell differentiation, like Ets1 (138).

The split impact of PU.1 on other phase 1 genes is an important feature of the T-cell system. 

It shows that the progenitor-associated regulatory genes are themselves responding to 

multiple positive and negative regulatory inputs in a balanced progenitor state. The 

persistence of this pattern through multiple cell cycles seems inconsistent with a dueling 

regulator model. The limits of PU.1’s “master regulator” activity in the T-cell pathway are 

also evident from the fact that several of the genes most responsive to PU.1, including 

regulatory genes Mef2c and Lmo2, are downregulated at least one stage before PU.1 levels 

themselves drop (99, 136, 137). This implies that other factors must be modulating PU.1’s 

activity. At the same time, however, the reproducible, sustained co-expression of PU.1 

together with some of its negative regulation targets show again that PU.1 negative 

regulatory effects work to reduce the amplitude of target gene expression without silencing. 

This kind of damping repression is typical of the relationships among many regulators in the 

T-cell program, but is substantially different from the silencing repression that is central to 

boundary formation in type I embryos.

Activation of the T-cell program

Phase 1 gene expression and regulatory activity overlaps with the activation of the T cell 

program itself at the single cell level. The T-cell program can be recognized by the induction 
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of three regulatory genes: Gata3, Tcf7 (encoding TCF-1), and the Notch-triggered target 

gene Hes1. T cells complete their commitment multiple cell cycles later, when they progress 

to DN2A stage and then finally turn on expression of the Bcl11b gene. This is the most 

nearly T-cell specific of all the regulatory genes in the program and one of the two 

regulatory genes in the whole genome with the greatest increase in expression from the ETP 

stage to the newly-committed DN2b stage.

Multiple other regulatory changes take place between the initiation of the program and the 

success of lineage commitment; several phase 1 genes are already silent by the time that 

Bcl11b is turned on. However, while they are expressed, these phase 1 genes are an integral 

part of the T-cell program and foreshadow its activation. Single-cell analysis using 

fluorescent reporters for the Bcl11b locus together with reporters for phase 1 genes Bcl11a 
(133) or Spi1 (PU.1; Fig. 5) confirm that the cells first activating Bcl11b expression still 

have detectable expression of these phase 1 gene reporters, though they become 

downregulated afterwards. DN2b cells, by now functionally committed, still clearly retain 

PU.1 protein as shown by single-cell fluorescent staining (78). As discussed below, they also 

sustain a clear pattern of PU.1 binding at many regulatory sites throughout the genome, as 

shown by ChIP-seq of these purified populations (chromatin immune precipitation analyzed 

by deep sequencing) (137). These results make it highly unlikely that phase 1 gene 

expression signals are coming from non-T contaminants; instead, the T-cell program is built 

on a multilineage hematopoietic precursor foundation.

Molecular features of the emergent T-cell program are once again unexpected from the 

dichotomous perspectives of either the dueling regulator models or the boundary formation 

functions in type I embryos. The T-lineage specific genes to be activated are presumably 

being driven in their expression by the positive regulators that are newly activated during T-

cell development, and their activation supposedly distinguishes these cells from their stem/

progenitor antecedents. However, although only limited ChIP-seq data are available for 

phase 1 regulators in early T cells, the results seen to date open the possibility of an 

intermediate phase of active collaboration between the prior state regulators and the new 

regulators. Following PU.1 as a factor obviously alien to the eventual T-cell program, it is 

remarkable that PU.1 binds in ETP cells to a pattern of sites with numerous points of 

difference from its occupancy patterns in EBF1−/− pre-pro B cells, B cells, or macrophages 

(137). Many of the differences concern sites uniquely occupied in the ETP and DN2a cells, 

where PU.1 is recruited to the vicinity of genes specifically activated in the T-cell lineage 

(137). The functional significance of these binding events is not certain, but it is noteworthy 

that these genes do not require PU.1 binding to be silent in non-T lineage cells. Thus it is 

quite possible that PU.1 is being drawn to participate in gene regulatory complexes that 

activate T-cell genes or poise them for future activation. Such an interpretation is further 

suggested by the fact that the earliest sites where T-lineage factor GATA-3 is seen binding to 

the DNA, soon after its own induction in ETP cells, are often closely associated with sites of 

PU.1 binding as well; at later stages when the PU.1 protein levels fall, GATA-3 redistributes 

to other sites (137). The sustained presence of phase 1 regulators could thus promote a 

gradual regulatory handover to the T-cell regulatory state, rather than a boundary erected 

immediately, or a winner-take-all duel.
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Complex regulatory interactions within the T-cell program

GATA-3: essential but troublesome regulator

There is indeed a need for cross-regulatory constraint in T-cell development, but some of it 

must be exerted within the T-cell program itself, and not only to exclude non-T cell program 

elements. Ironically, a particularly urgent example is provided by GATA-3, the T-lineage 

relative of GATA-1 that has such a paradigmatic role in the PU.1-GATA-1 dueling regulator 

model. GATA-3 is essential for T-cell development from the earliest stage throughout 

multiple later developmental checkpoints, and it is restricted in its hematopoietic expression 

to T cells and T-cell-like Innate Lymphoid Cells (116, 139–141). GATA-3 can indeed 

antagonize alternative developmental program regulators, through its ability to repress PU.1 

and its ability to squelch access to the B-cell program (84, 85, 132, 142). But in other 

respects it is very unlike a “master regulator”.

GATA-3 not only has dose-dependent effects on different aspects of the commitment process 

(84), but also has the capacity to destroy T-lineage specification if it is overexpressed (132, 

143). In this way, its role in early mouse T-cell development differs from its roles in mature 

Th2 effector differentiation or its role in Innate Lymphoid Cell Type 2 development, where 

overexpression promotes stronger differentiation along the same pathway where endogenous 

expression is essential (144–146). In early T cells, GATA-3 inadequacy leads to poor 

viability from the ETP stage, poor ETP to DN2 progression (84, 85), derangement of the 

DN2 stage so that DN2 and DN3-like features are intermixed (84), and failure to undergo 

TCRβ rearrangement (147). However, overlapping the time windows of these effects, 

GATA-3 overexpression also leads to gross losses of viability from ETP and CLP stages, 

steep losses of expression of PU.1 (transiently) and IL-7Rα, abnormalities at the ETP and 

DN2 stages if the viability loss is compensated, and a preference to redirect development to 

a mast-cell like fate (84, 132, 142, 143). More moderate degrees of overexpression transform 

developing thymocytes to lymphoma (148). Thus, strict dosage control is vital to keep 

GATA-3 levels appropriate for the developmental stage even within the T-cell program.

One aspect of the delicacy of GATA-3 function is that its pattern of DNA binding is quite 

variable. Other factors, including PU.1, exhibit lineage-specific differences in their binding 

sites across the genome, which probably reflects different chromatin accessibility at these 

sites in different contexts combined with different opportunities for crowd-binding with the 

other transcription factors available in those contexts (137, 149–154). GATA-3 takes this 

flexibility to an extreme, however, as its genomic occupancies redistribute considerably even 

between different stages of DN thymocyte development and between later branches of 

effector T-cell development (137, 155). Some of the sites with dynamic occupancy are 

associated with important regulatory genes of lympho-hematopoietic development, and 

although they are not among its most sensitive target genes, there is evidence that GATA-3 

contributes positive regulation at least to Ets1 and Bcl11b and negative regulation to Spi1 
(PU.1) and Bcl11a (84). It is likely that binding to many of these sites is intrinsically weak 

enough so that it depends either on cooperation with other transcription factors, or on 

dosage. If the system is tuned to require GATA-3 action to be targeted by the availability of 
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other partners, then an increase in GATA-3 dosage could override this specificity, to bad 

effect.

Fortunately for homeostasis, in early T cells GATA-3 is not positively autoregulating. 

Exogenous GATA-3 cannot enhance endogenous Gata3 expression (132), and Gata3 
knockout early T cells from which the exons encoding the DNA-binding domain have been 

deleted continue to express RNA from the Gata3 promoter at stable or even increased levels 

(84). Thus GATA-3 levels appear to be dependent primarily on other factors. Later in T-cell 

development, GATA-3 expression levels come under control of the signaling pathways 

responding to TCR engagement and Stat6, but these do not account for the expression 

dynamics in the early stages. Instead, Gata3 control after initial Notch-dependent induction 

is probably maintained by Myb and TCF-1 as likely positive regulators (99, 156, 157), and 

PU.1 and E2A as conditional or mild negative regulators (99, 136, 143). In fact, Gata3 
expression at RNA and protein levels in developing mouse pro-T cells appears to be kept 

within a ~3x range from late ETP through DN3a stage (84), and recent evidence suggests 

that for much of this time only a single Gata3 allele is active, suggesting a constraint on 

chromatin opening as well (115). GATA-3 is powerful and important, but it cannot be the 

controlling protagonist in a regulatory duel for the T-cell fate.

Roles of Bcl11b: imposing commitment over shadow priming for innate lymphoid 
programs

In the past six years, a discrete new T-lineage commitment function has been identified that 

is not also needed for ETP survival, and this has been helpful to dissect components of the 

fate determination process. This new function is the role of Bcl11b. The combinatorial 

action of GATA-3, TCF-1, Notch signaling, and the inherited progenitor factor Runx1/CBFβ 

converge to cause the Bcl11b gene to be turned on in late DN2a stage (H. Y. Kueh, M. A. 

Yui, K. K. H. Ng, et al., submitted)(85, 157–160). This event is functionally linked to T-cell 

lineage commitment (159, 161, 162), and in vivo it is accompanied by a wave of repression 

of phase 1 regulatory genes (Kueh, Yui, Ng, et al., submitted)(rev in (36)). If Bcl11b is 

deleted before the cells undergo commitment, but strong Notch and IL-7 signals from the 

environment are maintained, the cells proliferate in an uncommitted, DN2a-like state. 

However, the cells become less sensitive to Notch signals than controls when Bcl11b fails to 

be expressed, and even modest reductions in Notch ligand availability then enable Bcl11b-

deleted pro-T cells to shift quickly to an NK-like regulatory state (159). In the thymus in 
vivo, interestingly, Bcl11b-knockout pro-T cells do not have adequate access to these 

proliferation requirements to sustain self-renewal (163). However, the robust growth of 

Bcl11b knockout cells in Notch-stimulating conditions in vitro (162) offer a valuable look at 

the intrinsic sustainability of an uncommitted pro-T cell gene network state over many days 

or weeks.

Genome-wide analysis of RNA expression in Bcl11b knockout pro-T cells situates them 

between DN2a and DN2b stages (Fig. 6A)(164)(J. A. Zhang, L. Li, and E.V.R., unpublished 

data). This is a satisfying result insofar as Bcl11b itself is not turned on until late in DN2a 

stage, and thus should only be able to affect gene expression after that. Focusing on the 

genes that normally change expression from DN2a to DN2b, Bcl11b-knockout DN2 cells 
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resemble DN2a cells in maintaining expression of genes that are normally turned off in 

DN2b, while failing to turn on many genes that are normally turned on in DN2b (Fig. 6A, 

DN2a-like groups 1 & 2). However, with respect to a smaller number of genes, Bcl11b-

knockout DN2 cells appear more DN2b-like; a certain number of DN2b-specific genes are 

activated and a certain number of DN2a-specific genes are repressed in Bcl11b-knockout 

cells as though they were normal DN2b cells (DN2b-like groups 1 & 2). Interestingly, 

important developmental regulators are represented in both DN2a-like and DN2b-like 

groups (Fig. 6B). The incomplete arrest phenotype shows that the effects of Bcl11b loss are 

gene specific. Bcl11b is not a “master regulator” any more than GATA-3, since direct 

Bcl11b targets or gene network subcircuits dependent on Bcl11b are a select subcomponent 

of the gene expression changes that normally accompany commitment, not a switch 

governing the whole process.

Strikingly, in addition there is also a third class of gene expression changes in the Bcl11b 

knockout cells that does not fit into the pattern of either DN2a or DN2b. Affected genes in 

this class include Notch 1, which is under-expressed in Bcl11b-knockout cells as compared 

to either DN2a or DN2b normal controls. However, the most common feature of the mutant-

specific gene expression phenotype is the overexpression of a large and highly coherent 

group of genes that would not normally be expressed in early T cells at all, neither before 

nor after the onset of Bcl11b expression (Fig. 6B, Bcl11b-deficiency-specific) (164). These 

upregulated genes include many that are implicated in innate lymphoid cell function, NK 

cell function, and innate-like T cell specification: Id2, Il2rb, Fcgr3, Zbtb16, and Nfil3. Also 

precociously activated are Maf, Ikzf2, Zbtb7b, and Pou2af1, factors expressed in other 

mature T-cell subsets (165). At a lower level, but markedly above background, Bcl11b-

knockout cells activate the highly NK-specific transcription factor Zfp105 as well (159, 

162). These gene expression responses give Bcl11b-knockout cells an NK cell (or NKT-like) 

functional bias that distinguishes them from mainstream normal T cells. However, they also 

represent a surprise.

The emergence of a new program of gene expression by deletion of one transcription factor 

implies that that factor would normally be acting as a repressor for the program. In the case 

of Bcl11b, the absence of expression of these genes in normal cells would imply that Bcl11b 

is a very efficient repressor of these genes. However, the comparison should not just be 

between fully committed (DN2b) normal cells and their Bcl11b-deficient counterparts; the 

developmentally informative comparison is also with precursor normal cells that have not 

had any opportunity to express Bcl11b yet (DN2a cells). It would make sense for Bcl11b-

deficient cells to continue to express phase 1 genes that are normally expressed until Bcl11b 

is activated, if Bcl11b were needed to terminate their expression. But the results here show 

that many genes that are initially silent in the cells before Bcl11b is ever expressed change to 

become expressed by default just around the time that Bcl11b is turned on to restrain them. 

In other words, the phenotype of Bcl11b-knockout cells implies that developing T cells are 

not only programmed to acquire T-cell characteristics, but also programmed to acquire 

innate-like characteristics – yet to hold those characteristics in check, using Bcl11b to 

prevent activation of this parallel gene expression program.
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Why does this make sense? Importantly, there are few genes yet known to be truly unique to 

innate lymphocytes; much of the distinction between innate lymphocytes and T cells at the 

single-cell level has to do with the types of triggering receptors they express and the 

thresholds for their effector responses, which are higher for T cells. Thus, the arming of 

normal mature T cells for effector function is very close to the establishment of an innate 

lymphocyte effector gene expression program, except that in the T cell there is also a 

stronger restraint mechanism to keep the cells quiescent until unleashed. Thus it seems 

plausible that as T-cell specification proceeds toward its climax, the cells could also gain 

latent properties that we classify as “innate” programs.

In accord with this view, we know that at least three important T-cell regulators are shared 

with the innate program: GATA-3, TCF-1, and Runx1; Notch is used for ILC2 and ILC3 

specification as well (rev. by (35, 166)). In fact, Bcl11b itself is also an essential enabling 

factor for one particular innate cell subset (ILC2) to emerge as opposed to the others (NK, 

ILC1, ILC3)(167–169). There are also hints that cytokine receptor stimulation, such as the 

stimulation that fosters early pro-T cell expansion, also stimulates expression of regulatory 

infrastructure for T/innate lymphocyte effector function. The mechanism that appears to 

control all these effector programs, from data in hand thus far, is the balance between E 

protein dominance and Id2 dominance. A role for Bcl11b on the E protein side of this 

balance is strongly hinted by the massive upsurge in Id2 expression when Bcl11b is deleted 

(Fig. 7)(159). Here again, the type of repression that Bcl11b is likely to be providing is not 

permanent silencing repression. The genes repressed by Bcl11b will permanently remain 

accessible in mature T cells for conditional activation in response to the appropriate 

combination of TCR and cytokine signals, conditions which cause Bcl11b to undergo 

modest downregulation (170). From the point of view of the NK, ILC1, CD8 effector, and 

NKT cell programs, Bcl11b activation would thus be the key event in an incoherent 

feedforward loop, activated by the same regulators that may contribute to the innate-cell 

programs, but then acting as an antagonist to them.

Transcription factor vector addition defines cell type

The evidence is strong that T-cell specification depends on multiple transcription factor 

combinatorial action. However, there are different ways to understand this requirement for 

combinatoriality in executing the T-cell developmental program. Most often the model is 

that of a pathway, and indications of the stages at which different factors work are based on 

an implicit model that there is a kind of regulatory relay. Thus, in this model each factor is 

working to push the cells inexorably toward the T-cell goal, even as “and” logic requires 

more and more of them to be active for the last genes in the pathway to achieve correct 

regulation. We can visualize what this could mean for the different factors if we imagine 

development as a series of gene expression changes that can be plotted to form a linear 

trajectory in principal component space (Fig. 7A). According to this additive pathway-relay 

model, all the gene expression changes driven by any of the individual factors would be 

vectors parallel to the main trajectory (Fig. 7A; different colored arrows represent effects of 

different factors). If this is the correct way to explain the roles of these factors, then any loss 

of T-cell factor expression would arrest T-cell development, but leave the regulatory state at 

some point on the same pathway (Fig. 7A, right).
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The phenotypes of Bcl11b knockout cells and GATA-3 overexpressing cells suggest that the 

combinatoriality may depend on something else, however. In these cases, the cells not only 

become arrested but also acquire new, non-T identities, similar to what happens when a 

factor working mainly outside the T-cell program, like PU.1, is overexpressed. The gain of 

function effects of PU.1 and GATA-3 are not a simple reversal of the defects seen when 

these factors are deleted in early T cells. As already mentioned, the asymmetry is partly due 

to dose dependence, but it is manifested through the gene network effects that different 

regulators have on each other, partly antagonizing each other’s expression (GATA-3 vs. PU.

1, even Bcl11b vs. GATA-3) and selectively blunting some of each other’s functions (Notch 

signals vs. PU.1). Thus, a better way to represent the action of successive factors in our gene 

expression principal component space may be as a vector addition among non-parallel 

vectors (Fig. 7B, left). In this model, the correctly coordinated action of the different factors 

drives the cell from the initial state to the end state, but with actions that partially synergize 

and partially counterbalance each other. Then in such a model, when one factor is lost or 

excessively activated, the cell naturally falls off the T-cell trajectory to a different end state 

(Fig. 7B, right). In this case, combinatoriality is not only required to complete the pathway, 

but to define the direction of the pathway itself.

Stabilizing fate in the T-cell system

In classic models of differentiation, the mature cell that emerges is postmitotic. This acts as 

a natural source of stability for the regulatory state of the cells that controls gene expression. 

For T-cell precursors, however, cell cycle arrest may be a checkpoint or a pause, but it is not 

the end of proliferation or differentiation choices, which continue long after maturation is 

complete. Even more interestingly, the relative expression levels of different factors among 

the T-cell specification core may keep changing. Some relationships can be maintained in 

certain T-cell subsets: for example, the positive regulatory cooperation of GATA-3 and 

TCF-1 appears to continue through the CD4/CD8 lineage choice into the Th2 effector T-cell 

differentiation program (171, 172). However, Notch signaling stops after β-selection and 

may only resume in the periphery as part of the antigen stimulation program. GATA-3 levels 

are variable among helper cell lineages and between helper and killer cells, Myb and Gfi1 

are turned off after the cells leave the thymus, and the correlation between Bcl11b and 

TCF-1 expression levels is dramatically shattered in the Treg lineage (173, 174). E protein 

activity levels are particularly dynamic, as the E protein HEB (Tcf12) rises to a sharp peak 

in the DP stage, then declines, while all encounters with TCR stimuli throughout T cell 

development and function activate one or another of the E protein antagonists, Id2 or Id3 

(175, 176). Rather than using T-cell transcription factors to set up a stabilizing mutual 

activation feedback circuitry, the T cells treat them as free variables for additional 

combinatorial diversification of regulatory states. Yet despite this transcription factor 

instability, T cells retain stable expression of their key signature genes through weeks, 

months, or years of function, migration, and proliferation in different environments. Thus 

even if the developmental process triggered by Notch signaling uses “fuzzy logic” to 

establish T-cell identity, this identity is surprisingly durable.

One of the consequences of the first TCR-dependent selection event, during the transition 

from DN3 to DP, is a general increase in H3K27me3 repressive marking of quiescent loci 
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across the genome (177), even when these genes had been transcriptionally silenced one or 

two stages previously (137). The deep silencing of progenitor-associated transcription factor 

genes is indeed likely to contribute to stability, but it remains mysterious what really is 

needed to sustain positive regulation of the T-cell identity genes themselves. In at least one 

case, we have preliminary evidence that the regulatory requirements for activation of an 

important gene are considerably more complex than the requirements for keeping it on, 

starting almost immediately after its activation (Kueh, Yui, Ng, et al., submitted). This kind 

of phenomenon suggests that a major threshold could lie at the level of a process like 

chromatin opening.

Concluding remarks

There are many unknowns yet to be revealed in this culmination aspect of the T-cell 

development process. Does T-cell development require such a large number of regulatory 

inputs only in order to open genes, so that only a few factors are needed to sustain them 

later? Does the extended proliferation in the early stages of T-cell development make its own 

regulatory contribution, either by dilution of previously expressed transcription factors or by 

helping to remodel chromatin structure? How small, in the end, might be the core 

“maintenance” T cell gene regulatory network? Could only a few stably expressed 

regulatory factors in fact be enough, and are those that are needed truly T lineage-unique at 

all? Finally, how important is the order in which T-cell regulators are serially deployed in 

order to guide the process to the right endpoints? Can the process be substantially 

accelerated and simplified?

In this review we have drawn a picture of the T-cell development process as one guided from 

a multipotent stem cell state by a gradual process that depends on extensive transcription 

factor combinatoriality but permits fluid combinations of factors to occur and then reform 

with other partners through multiple stages. One enabling feature of the process is its 

hallmark use of damping repression rather than silencing in most transcription factor cross-

repressive interactions, which both permits coexistence and restrains overexpression. The 

dosage restraint makes it possible for this program to use factors which at other levels of 

expression, or without the constraint of Notch signaling, push cells to completely different 

end states. This mechanism is important to understand in depth through modeling, but the 

right framework has to be chosen. This system has obvious differences in its functional rules 

of operation both from the Boolean behavior of well-characterized embryonic cell networks 

and from the simple bistability of the dueling regulator models.

But in the context of emergence from stem cells, the process through which T cells emerge 

makes sense. Recall that vertebrate embryos in general arise from a different process than 

type I embryos; vertebrate embryonic cells as a rule proliferate extensively and migrate to 

new parts of the embryo, defying fate maps, before their future identities are determined. It 

is possible that the rule set needed to solve the T-cell specification network will also prove to 

be a fine model for vertebrate development in general.
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Figure 1. 
Overview of mouse T cell development. (A) Stages of T cell development and regulatory 

genes active at different stages. Upper schematic: progression of stages from thymic entry to 

completion of TCR rearrangement in DP stage. For cell-surface markers used to define 

stages, see recent reviews (35, 36). The β-selection transition, in which DN3a cells pass 

quickly through the DN3b, DN4, and immature single positive (Imm SP) stages before 

arriving at the DP stage, is only triggered in cells that have successfully rearranged their 

Tcrb gene loci to express an in-frame TCRβ protein. To focus on steps leading to 

confirmation of T-cell identity, the figure omits alternative branches of T-cell development 

leading the TCRγδ cells and the positive and negative selection events that lead to functional 

sub-specialization after successful rearrangement of the Tcra locus to express TCRαβ dimers 

in the DP stage. Transcription factors and growth factor receptors listed are chosen as those 

known to play functional roles in aspects of normal or leukemic T cell development (see (35, 

36)). Gene names in parentheses denote expression at at lower levels or lower activity states 

than in stages where they are listed without parentheses. (B) Relationship of T-cell 
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precursors to other hematopoietic fates. The figure presents a compromise view of the main 

inputs to the T-cell pathway relative to MPPs, LMPPs, and myeloid or erythroid-committed 

cell types. The yellow background and boldface type highlight stages that are in the pathway 

to generate T cells. For simplicity, pathways leading to eosinophils, basophils, and mast cells 

and the complexities of precursor relationships in the Innate Lymphoid Cell (ILC)—Natural 

Killer (NK) and Dendritic cell (DC) pathways are omitted. As described in the text, the roles 

of certain restricted progenitors in the erythromyeloid lineages are still controversial (dashed 

arrows). The main pathways indicated here are supported by recent single-cell analyses (55, 

56).
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Figure 2. 
Broadly combinatorial use of key transcription factors in specifying distinct hematopoietic 

cell fates. A schematic view is presented of mouse hematopoiesis, superimposed by the 

overlapping domains of activity of PU.1 (blue), GATA family factors (GATA-1, GATA-2, or 

GATA-3, red), C/EBP family factors (violet, graded to indicate dosage relative to PU.1), E 

proteins (E2A and/or HEB, yellow), TCF family factors (TCF-1/LEF-1, orange), and 

EBF1+Pax5 (B lineage specific, green). Whereas C/EBP family factors do not appear to 

overlap with the domains of E proteins and TCF-1/LEF-1, and the EBF1+Pax5 combination 

is restricted to a single cell type, there is extensive variation in the combinations of GATA, 

PU.1, C/EBP, E proteins, and TCF-1/LEF-1 that are allowed to distinguish the other cell 

fates shown. Eryth=erythrocyte. Meg=megakaryocyte. Eos=eosinophil. Baso=basophil. 

Neut=neutrophil. Mac=macrophage. DC=dendritic cell. ILC=innate lymphoid cell. 

NK=natural killer. ProT= T-cell precursor up to commitment (during period of PU.1 

expression).

Rothenberg et al. Page 38

Immunol Rev. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Contrast between the timings of myeloid exclusion relative to alternative lymphoid fate 

exclusion in the lineages leading to T cells and B cells. Top: developmental potentials 

demonstrable in T-cell precursors at different stages. Bottom: developmental potentials 

demonstrable in B-cell precursors at different stages. Figure focuses on data from defined in 

vitro systems where the clone sizes and cloning frequencies can be measured, rather than in 

vivo systems where migration bias and differential proliferation may also contribute to 

outcomes. In each case, to demonstrate non-T (top) or non-B (bottom) potential, cells are 

transferred to conditions that selectively favor manifestation of these alternative options. 

Data for T cell developmental alternatives are from refs. (76, 78–81, 94, 98). Data for B cell 

developmental alternatives are from refs. (73, 75, 178, 179). Not shown are potentials for 

mast cell and innate lymphoid cell type 2 development, which have also been seen in DN2 

T-cell precursors (132, 180).
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Figure 4. 
Dynamic control of PU.1 activity levels in different hematopoietic lineages. Schematic of 

relative protein or RNA levels at different stages of development in five different pathways 

of hematopoietic development. For B, neutrophil and macrophage data, see (58). Although 

both T cells and erythroid cells silence PU.1 expression, PU.1 is specifically required for the 

T-cell developmental pathway to initiate, whereas it is not required for erythroid cell 

generation (134).
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Figure 5. 
T cell precursors in the thymus begin by expressing PU.1. Data from experiments using 

thymocytes from progeny of a PU.1-GFP reporter mouse (59) crossed with a Bcl11b-

mCherry reporter mouse (K. K. H. Ng, H. Y. Kueh, and M. A. Yui, unpublished), in which 

activation of the T-cell specific Bc11b gene in DN2 stage identifies cells definitively as T-

cell precursors. (A) Gating of immature T-cell precursors to separate ETP, DN2a, DN2b, 

DN3(a), and DN4 cells. (B) Expression of PU.1-GFP relative to Bcl11b-mCherry in the 

indicated populations of cells from panel A. Note that the level of GFP from this PU.1 

reporter is always low in early T cells, but the pattern of expression perfectly fits the 

measured PU.1 RNA and protein expression patterns determined by realtime PCR, RNA-

seq, and intracellular staining (78, 137). The upregulation of the Bcl11b-mCherry reporter is 

further used to distinguish the earlier DN2a cells (Bcl11b-mCherry-negative) from the later 

ones beginning to express Bcl11b (Bcl11b-mCherry positive). (C) Quantitation of PU.1-GFP 

levels in T-cell precursors as they activate the T-lineage specific reporter Bcl11b-mCherry. 

Points graphed show Mean Fluorescent Intensities for both markers at the indicated stages, 

from results in (B). Note that when Bcl11b is first turned on, the cells are still expressing 

PU.1 comparably to ETP cells. Results are representative of three independent experiments.
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Figure 6. 
Gene expression effects of Bcl11b deletion in the context of DN2a to DN2b progression. (A) 

Heat map of RNA-seq phenotype of Bcl11b−/− DN2a-like pro-T cells, compared with true 

DN2a cells and true DN2b cells. Bcl11b−/− cells were prepared as in ref. (162), and 

compared by RNA-seq with DN2a and DN2b cells as in ref. (137). Bcl11b-deficient cells 

mimic DN2a cells with respect to up- and down-regulation of different groups of genes 

(DN2a-like 1, DN2a-like 2) more than they mimic DN2b cells (DN2b-like 1, DN2b-like 2), 

since the DN2a-like groups contain more genes than the DN2b-like groups; but the 

phenotype is clearly split. Also note the top group of genes (“Bcl11b-deficiency specific”) 

which are strongly expressed in the mutant cells but not expressed in either normal control. 

(B) Quantitation of effects of Bcl11b deletion on expression of specific genes, from RNA-

seq analyses. Each gene is compared in expression levels between DN2a cells and Bcl11b-

deficient cells (left bars), and between DN2b cells and Bcl11b-deficient cells (right bars), 

with the colors showing whether the expression is higher in the wildtype cells (light, dark 

blue) or the mutant cells (red, orange). Differential expression is shown as fold difference on 

a log2 scale from −6 to +6. Where differences exceed |26| fold, for Cd2, Il2rb and Fcgr3, the 

value (log2) is provided numerically. Similar results for these genes have been obtained in 
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>4 independent experiments (J. A. Zhang, W. Zeng, L. Li, A. Mortazavi, E. V. Rothenberg, 

unpublished).
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Figure 7. 
Different types of combinatoriality for transcription factor action in T-cell specification: two 

theoretical possibilities. Different gene expression patterns of cells at different stages are 

shown as a trajectory from an initial gene expression pattern at one point in a three-

principal-component space to a final gene expression pattern at another point (thick dark 

blue arrows). Two models are shown in which the effects of different transcription factors on 

gene expression are shown as different colored vectors propelling the cells’ gene expression 

profiles along this path, where the individual roles of the factors differ. (A) A model in 

which all factors promote the T-cell program faithfully (vectors all parallel to the main 

trajectory), but in which participating factors are required to work in AND logic to drive 

developmental progression from start to finish. Left, parallel but stage-dependent effects of 

factors push cells along the unique trajectory of gene expression change. Right, if factor 

represented by magenta vector is removed, development halts but is still on the canonical 

track. Green and yellow vectors, and part of the light blue vector, are depicted as thin arrows 

in this case to indicate the constraint that these factors cannot work when the magenta factor 

is absent. (B) An alternative model in which individual vectors do not simply work to 

promote the T cell fate (not individually parallel to main path), but all have a component that 

can contribute to the main path and/or counteract another factor’s tendency to deviate from 

the main path. Although the panel shows the arrows operating sequentially to show their 

individual directions more clearly, note that this model also works well if they often act in 

combinations in overlapping time frames like the factors in A. Left, under normal conditions 

the resultant of adding the disparate transcription factor activities together pushes the cells 

along the main path. Right, if factor represented by magenta vector is removed, vector 

addition still advances the cell to change its gene expression pattern, but now it no longer 

follows the T-cell path.
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TABLE 1

Comparison and contrast of different classes of models for developmental fate specification

Type I models Dueling regulator models Hybrid models

Paradigmatic Examples Embryonic development

• Sea urchin

• Sea squirt

• Nematodes

• Fruit fly*

Bacteriophage

• lysis/lysogeny

Terminal differentiation

• CD4/CD8 T cells

• Erythroid cells vs. 
macrophage

Hematopoiesis
Vertebrate development?

Emergent properties Inexorable state transitions, 
predictable cell fates

Choice between two stable states, not 
predictable

Biased outcome but individual 
cell fates unpredictable

Increasing complexity Resolution of metastable states Increasing complexity

Transcription factor control Weak dose-dependence; 
effectively boolean

Strong dosage dependence in 
metastable states

Strong dosage dependence

Combinatorial action Two “master regulators” Combinatorial action

Deterministic Noise sensitive Noise sensitive

This table compares features of two well-studied classes of models for development and contrasts them with the form of model that may be 
required not only for hematopoietic lineage choice in adult mammals but also possible for vertebrate embryos as well.

*
Fruit fly (Drosophila melanogaster) does not develop by a classical type I mechanism because of its special syncytial early cleavage stages. 

However, many features of its rapid and deterministically acting gene network are type I-like
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