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Summary

As the primary site of T cell development, the thymus plays a key role in the generation of a strong 

yet self-tolerant adaptive immune response, essential in the face of the potential threat from 

pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the 

understanding that it is extremely sensitive to both acute and chronic injury. The thymus 

undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the 

aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of 

regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic 

regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described 

pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of 

double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is 

unable to fully restore the thymus, particularly in the aged population, and this paves the way 

towards the need for exogenous strategies to help regenerate or even replace thymic function. 

Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and 

hormonal modulation including growth hormone administration and sex steroid inhibition. Further 

novel strategies are emerging in the pre-clinical setting, including the use of precursor T cells and 

thymus bioengineering. The use of such strategies offers hope that for many patients, the next 

regeneration of their thymus is a step closer.
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Introduction

The thymus is the primary site of T cell development. As other reviews in this volume have 

highlighted, the specialized thymic microenvironment supports the development of a broad 

but self-tolerant T cell repertoire. This is vital to the development of a strong adaptive 

immune response against pathogens and tumours, without leading to autoimmune disease.

The importance of the thymus, however, must be reconciled with the potential for loss of 

thymic function over a lifetime, and the ensuing detrimental effects. The thymus is 

exquisitely sensitive to a range of acute insults. It is important to stress that these insults 

should not be considered in isolation, as significant potential exists for coincidental 

conditions to impair thymic function in the clinical setting. Hematopoietic stem cell 

transplantation (HSCT), for example, may acutely damage the thymus through the 

chemotherapy, radiotherapy and antibody therapy of the conditioning regime. This may be 

compounded by infections acquired by the immunosuppressed patient, and in the case of 

allogeneic HSCT, thymic graft versus host disease (GVHD). Following resolution of the 

acute insult, the thymus is, however, capable of intrinsic recovery.

In addition to acute degeneration, thymic decline also occurs as an inevitable chronic 

process, in which the thymus gland undergoes involution with age. Thymic involution differs 

from aging in other organs and cannot be reversed. Furthermore, the aging process impairs 

the ability of the thymus to regenerate from acute damage. There is thus an increasing 

recognized need for exogenous strategies that can rejuvenate the aged or damaged thymus. 

We review the most promising therapeutic avenues, some of which are now entering clinical 

trials. There are caveats to such approaches, however. There may be potential detrimental 

consequences to rejuvenating an organ that has been evolutionarily selected to involute with 

age. Nevertheless, thymic regeneration undoubtedly offers much therapeutic potential, and 

the ability to harness this epitomises the exciting intersection between regenerative medicine 

and immune biology.

Causes and targets of acute thymic damage

Notwithstanding its importance for generating a diverse T cell repertoire, the thymus is 

extremely sensitive to negative stimuli (Figure 1). However, despite this sensitivity, thymic 

regeneration can occur following resolution of the insult; although this ability is blunted 

with increasing age (1). Acute thymic damage can cause significant morbidity and mortality 

in conditions where active recovery of thymopoiesis is required to sustain immune 

competence, such as after clinically induced immune depletion (2), and has been directly 

linked to opportunistic infections and an adverse clinical outcome in recipients of allogeneic 

HSCT (3).

Cytoablative therapies

Although primarily directed against malignant cells, chemotherapy can target the 

haematopoietic system, including the T cell compartment (4, 5). Such T cell 

immunodeficiency results from ablation of both thymic and peripheral T cell subsets. Within 

the thymus, alkylating agents such as cyclophosphamide have been shown to deplete all 
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thymocyte subsets (6, 7). While thymic stromal cells were traditionally thought to be 

resistant to damage caused by chemotherapy or radiation, there is now considerable evidence 

to suggest that such agents can also damage the thymic stroma (8). Thymic epithelial cells 

(TECs) expressing the highest levels of MHC class II are particularly vulnerable to the 

effects of chemotherapy, particularly those located in the medulla (mTECs) (8), likely due to 

their higher rate of proliferation (9, 10). Since these cells play a key role in negative 

selection (11), this selective depletion may have profound implications for causing a lack of 

tolerance to self, following such treatments, although this remains hypothetical at present.

Following chemotherapy, homeostatic expansion of the peripheral T cell pool can facilitate 

CD8+ T cell recovery within months in both young and old patients (12), although clearly 

the repertoire diversity is impacted (13). However, while in younger patients, peripheral 

expansion is augmented by recovery of thymic function in older patients there is evidence 

that chemotherapy induced thymic damage may take years, if ever, to recover (5, 14, 15).

Similarly, radiation can induce acute thymic damage and loss of cellularity (16). Although 

all thymocyte populations are typically affected, the double positive (DP) thymocyte 

population is particularly sensitive to irradiation (17). However, like chemotherapy, radiation 

can also lead to stromal damage with considerable reduction in TEC numbers (16, 18). It is 

notable that certain cell populations, such as endothelial cells and innate lymphoid cells 

(ILCs), are relatively radio-resistant (19, 20), and there cells can play a role in endogenous 

thymic regeneration.

Steroid hormones

Glucocorticoid hormones, acting through the nuclear glucocorticoid receptor (GR), exert a 

wide range of immunosuppressive and anti-inflammatory effects, providing the rationale for 

their use in autoimmune disease, allergic and inflammatory disorders, allograft rejection, 

GVHD and lymphoid malignancies (21). Similarly, elevated levels of endogenous 

glucocorticoids, as produced in stress, starvation, infection and Cushing disease, may also 

lead to immunosuppression (22). In the thymus, glucocorticoids induce apoptosis of DP 

thymocytes, which preferentially express the GR (23), in an Apaf-1 and caspase-9 dependent 

manner, leading to acute involution (24, 25). In view of the wide range of conditions 

associated with their elevated levels, glucocorticoids thus represent a common pathway 

mediating many episodes of acute atrophy of the thymus. Interestingly, the thymic 

epithelium itself can also produce glucocorticoids (26), and this may have subtle effects on 

steady-state thymopoiesis. For instance, thymus-derived glucocorticoids can inhibit T cell 

receptor (TCR)-mediated deletion of DP thymocytes, and thus modulate which TCR 

avidities result in positive or negative selection (27, 28).

Increased levels of the sex steroid hormones, testosterone, progesterone and estrogen, 

likewise act through their nuclear receptors causing thymic involution. Their effect is most 

obviously manifest during puberty, during which the rate of thymic involution increases 

rapidly (29). Similarly, pregnancy is associated with an acute transient involution of the 

thymus (30). Sex steroids have multiple effects to reduce the lymphocyte pool within the 

thymus. Although sex steroids can directly induce apoptosis of thymocytes (31), studies 

using chimeras and androgen-resistant testicular feminization mice have demonstrated that 
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the primary mediator of sex steroid-induced thymic involution are the non-hematopoietic 

stromal cells (32). TECs express a functional androgen receptor (AR), and AR knock-down 

in this population partially abrogates sex steroid-induced thymic involution, further 

implicating TECs as important targets of androgens (33, 34). More recently it has been 

shown that androgens directly inhibit thymopoietic factors in TECs, including CCL25, a 

ligand critical for entry of T cell progenitors into the thymus, and Delta-like ligand 4 (Dll4), 

a Notch ligand crucial for the commitment and differentiation of T cell progenitors in a 

dose-dependent manner (35, 36). Furthermore, through their effects on both HSCs and the 

bone marrow microenvironment, sex steroids decrease lymphoid differentiation, reducing 

the number of available T cell progenitors in the thymus (37, 38).

Infection

Although previously thought to be an immune-privileged site (39), protected from infections 

and immune responses, increasing evidence over the last decade has highlighted that the 

thymus is indeed a target for a range of pathogens, including bacteria, viruses, fungi and 

parasites (40). The resulting lymphostromal disruption causes acute thymic involution and 

defects in thymic export of newly generated naïve T cells, leading to impaired immune 

responses against the pathogen (41). Thymic damage as a result of acute infection may be 

caused directly by the pathogen within the thymus or by the systemic effects invoked by 

infection.

Systemic pathogen specific factors most notably include bacterial lipopolysaccharide (LPS) 

released from gram-negative bacteria such as Escherichia coli (42, 43). LPS leads to severe 

acute thymic atrophy that peaks within 3–5 days, characterized by loss of DP thymocytes 

(44). In addition to the systemic effects of LPS, many infections also trigger a stress 

response and a surge in glucocorticoid levels, inducing thymocyte apoptosis as described 

above (25, 45). Other inflammatory mediators may rise during infection, leading to thymic 

damage, and again in particular depletion of the DP population. These include tumour 

necrosis factor α, the release of which can be triggered by infection with Francisella 

tularenis (46) and Trypanosoma cruzi infection (47); as well as the release of interferon γ 

caused by Salmonella enterica infection (48).

Pathogens may directly invade the thymus. HIV, the most well studied example, directly 

infects CD4+ SP thymocytes and progenitors, and induces apoptosis of uninfected 

thymocytes through secretion of viral products (49, 50). In addition, HIV infects thymic 

stromal cells, including TECs and dendritic cells (51–53). This leads to disruption of thymic 

architecture and degradation of the thymic microenvironment. Similar effects on TECs are 

observed in other chronic viral infections, such as CMV (54). Direct infection of the thymus 

by Trypanosoma cruzi can also alter the thymic environment by increasing deposition of 

fibronectin and laminin and increasing the expression of the chemokine ligands CXCL12 

and CCL4 by stromal cells. In addition to causing structural disruption to the thymus, these 

changes promote the migration of DP thymocytes, leading to their premature release from 

the thymus and further thymic involution (55).

Although thymic atrophy in the context of infection may be coincidental, the conservation of 

this phenomenon across a diverse range of pathogens suggests a greater significance. Thus, 
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induction of thymic involution may be a deliberate virulence strategy employed by 

pathogens in order to subvert immune responses, and propagate survival within the host. 

However, interestingly there is also emerging evidence in the context of mycobacterial 

infection that thymic infection in the absence of atrophy can result in the generation of naïve 

T cells tolerant to the pathogen (56). Thus, although it compromises T cell immunity, thymic 

atrophy may in fact represent a deliberate strategy employed by the host, to avoid the 

generation of an immune repertoire tolerant to certain pathogens. A further understanding of 

this process is therefore essential in the context of potential strategies to rejuvenate the 

damaged thymus.

Graft versus host disease

GVHD is a complication of allogeneic HSCT, characterised by three distinct phases: (1) 

tissue damage from conditioning therapy or other causes, (2) activation of alloreactive donor 

T cells by host antigen-presenting cells, and (3) target tissue damage mediated by soluble 

and cellular effectors (57, 58).

Although acute GVHD has been traditionally viewed as a disease of gut, liver and skin, there 

is now a large body of evidence demonstrating that the thymus is an extremely sensitive 

target of alloreactive T cells (59–62). Clinical manifestations of GVHD are associated with 

changes to both the lymphocyte and stromal compartments of the thymus, leading to acute 

involution. These include loss of cortical and medullary thymocytes, loss of TECs, 

decreased demarcation of the cortico-medullary junction and disrupted architecture of the 

gland (63, 64). Such changes have been shown to lead to decreased thymic output of naïve T 

cells, as indicated by TCR excision circles (TRECs), and a distorted TCR repertoire (65).

More recently, murine models of GVHD have demonstrated that loss of thymic cellularity is 

primary due to loss of the large DP subset, as a consequence of both a block in 

differentiation block in early DN thymocytes and also increased apoptotic cell death in the 

DP population (59). TECs have likewise been identified in these models as direct targets for 

alloreactive T cells, but in addition to acting as targets, there is also evidence that given their 

expression of MHCI and MHCII, these TECs can act as antigen presenting cells sufficient in 

themselves to prime alloreactive T cells (60). Together with the fact that the thymus is 

extremely sensitive to GVHD-mediated damage (62), this raises the distinct possibility that 

GVHD can be restricted to the thymus even during subclinical GVHD, and thus in many 

cases may not be detected in the clinical setting yet still have detrimental consequences for T 

cell reconstitution.

Murine models of GVHD have also highlighted that thymic damage in such cases is 

associated with impaired negative selection of thymocytes and Treg development, which 

may be potential contributory factors to the development of chronic GVHD and 

autoimmunity post HSCT (66, 67).

Moreover, given that corticosteroids are often used as a first line treatment for GVHD (58), 

and that they induce thymic involution in and of themselves, their use will likely compound 

the detrimental effects on thymic function during GVHD. Thus, the treatment of thymic 

GVHD is a conundrum that may require alternate therapeutic approaches.
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Endogenous thymic regeneration

Endogenous thymic regeneration is a crucial function that allows for renewal of immune 

competence following immunodepletion caused by cytoreductive chemotherapy or radiation, 

acute infection and stress (Figure 1). Although the potential for the thymus to regenerate 

itself has been known for some time, surprisingly little is known about the mechanisms 

involved with this regeneration.

One of the first studies to identify a potential pathway of endogenous regeneration focused 

on fibroblast growth factor 7 (FGF7, also known as KGF). In this study, it was found that 

although KGF was redundant for steady-state thymopoiesis, it was crucial for regeneration 

after injury such as that caused by TBI, as mice deficient for KGF exhibited significantly 

worse thymic recovery compared to wildtype controls (68). KGF targets thymic epithelial 

cells and promotes their proliferation and differentiation (69, 70). Furthermore, KGF has 

been used in several studies and clinical trials as a means of boosting thymus function after 

damage (see below).

Another pathway of endogenous thymic regeneration identified is centered on ILCs and their 

production of interleukin-22 (IL-22), a recently identified cytokine predominantly associated 

with maintenance of barrier function at mucosal surfaces. This study proposed that 1) the 

depletion of CD4+CD8+ DP thymocytes triggers, 2) upregulation of IL-23 by dendritic cells 

(DCs), which induces 3) the production of IL-22 by intrathymic ILCs. IL-22 directly 

promotes the proliferation and survival of TECs, therefore this cascade of molecular and 

cellular events leads to regeneration of the supporting microenvironment and, ultimately, to 

rejuvenation of thymopoiesis (19). Additionally, a subsequent study correlated the increased 

expression of IL-22 after damage with increased expression of Foxn1 (71). Foxn1 is a 

molecule critically involved with thymus ontogeny and is also clearly important for thymic 

maintenance and regeneration (72, 73). In fact, forced expression of Foxn1 leads to 

regeneration of the aged thymus (74, 75) and thus activation of Foxn1 after damage could 

represent a potent pathway of endogenous or exogenous thymic regeneration. Although it is 

tempting to think that IL-22 may be directly promoting expression of Foxn1, currently there 

is no clear evidence of such a link.

It is also very likely that molecules involved in steady state thymopoiesis also contribute 

towards thymic regeneration. These include IL-7, CXCL12, SCF, CCL25, and the notch 

ligand DLL4. In fact, many of these have been identified as part of the mechanistic pathways 

for exogenous thymic regeneration through such systemic means as sex steroid ablation, 

which crucially needs IL-7 (but not KGF) to mediate regeneration (76), and induces 

expression of the Notch ligand Dll4 (36), CCL25, which induces importation of progenitors 

(35), and VEGF, which promotes vascularization and endothelial cell function and is also 

likely involved in endogenous thymic regeneration (77, 78).

Chronic thymic damage: Involution of the thymus with age

Aging is an inevitable process occurring in all living organisms, associated with the 

progressive decline of function in tissues and increased susceptibility to disease (79). 
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Specific to the immune system, advancing age is associated with an array of defects in both 

innate and adaptive immunity, collectively termed immunosenescence, which impairs the 

ability to respond to both pathogens and vaccinations (80, 81). Elderly subjects demonstrate 

increased incidence of a range of bacterial and viral infections, and exhibit increased 

mortality from these diseases in comparison to younger patients (82). Furthermore, 

immunosenescence may also lead to a loss of tumour immune surveillance, increasing the 

propensity for neoplastic disease in the elderly (83). There may also be immune 

dysregulation, such that older subjects experience increasing autoimmune disease (84). A 

key feature of immunosenescence is involution of the thymus, characterized by both a 

progressive decrease in thymic cellularity and a loss of tissue organization (29, 85). This 

leads to profound age related defects, both quantitative and qualitative, in the T cell 

compartment.

Consequences of thymic immunosenescence

Involution of the thymus with age ultimately causes a decrease in the thymic output of naïve 

T cells and subsequently a constriction of the peripheral TCR repertoire. As T cell 

production decreases, there is homeostatic expansion of existing peripheral T cells, which 

leads to a skewing towards an increased proportion of memory T cells, and a consequent 

reduction in the diversity of TCR repertoire (86, 87). However, even those naïve T cells that 

are produced in the aged thymus are functionally impaired; expressing higher levels of 

senescence markers such as CD57 and exhibiting limited proliferation in response to antigen 

stimulation (88). Furthermore, they have reduced homing receptors such as CD62L and 

CCR7, interfering with their mobilization to relevant sites of action (89). The overall 

consequence of these changes is a defective adaptive immune response to neo-antigens, 

including new pathogens, vaccinations and tumour-associated antigens (90).

Thymic involution also contributes to the development of autoimmune disease in older age. 

The thymus provides a site where naïve T cells reactive to self are deleted through negative 

selection, both by interaction with thymic epithelial cells (TECs) and thymic dendritic cells. 

As these thymic cells are lost with age, the ability to mediate this central tolerance is 

impaired, and there is a greater chance that auto-reactive T cells will be released into the 

periphery (91, 92).

It is important to note, however, that despite thymic involution and alterations to the T cell 

compartment, some residual thymic function does persist into old age. Significant levels of 

naïve T cells can be detected in centenarians (93) and high levels of TRECs can still be 

detected in elderly subjects (94). Similarly, TDT expression within the thymus can be shown 

in aging persons (95). This residual function highlights that the thymus gland does not 

become a vestigial remnant in later life, but instead continues to function, albeit at a lower 

rate. Nevertheless, this low level function may be readily lost in the face of the acute insults 

described above, many of which are more common in the elderly population. This is 

compounded by a reduced ability of the aged thymus to endogenously regenerate following 

acute damage, although the reasons for this are not clear. The need to develop strategies to 

rejuvenate or replace thymic function, as discussed below, is thus particularly relevant to the 

aging population.
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Mechanisms of age related thymic involution

There are phenotypic changes within both lymphoid and stromal compartments during age-

related thymic involution, at least some of which will be exacerbated due to the extensive 

support offered by crosstalk interactions (96). The most prominent change in the thymus 

with age is the significant progressive decrease in the number of thymocytes within the 

organ. It has been estimated that in mice, the thymus of a 24 month-old mouse contains <1% 

of the T cells found in a neonatal equivalent.

Thymopoiesis is characterized by the stepwise differentiation of pro-T cells, the most 

primitive which is the early T-lineage progenitor (ETPs), itself a direct descendent of the 

circulating BM-derived progenitor (97). With age, although the number of bone marrow 

hematopoietic stem cells (HSCs) increases, their function, particularly towards lymphoid 

differentiation, declines considerably (98, 99). Although the ability of aged progenitors to 

get in to the thymus, and the ability of the thymus to accept these circulating progenitors, 

remains unchanged with age (100), this decrease in the supply of BM-derived progenitors 

results in a significant reduction in the number of ETPs in older individuals (101).

In addition to these numerical deficiencies, functionally, ETPs exhibit reduced proliferation 

and differentiation potential in the aged thymus (101). Similarly, later stages of DN 

thymocyte development are also affected, including differentiation blocks at the DN2, DN3 

and DN4 stages (102, 103) and the accumulation of an abnormal population of 

CD44+CD24−CD3+ DN cells in the thymus of older mice (102, 104). Although the 

significance of these cells remains unclear, a similar population has been found in the aged 

bone marrow, associated with a reduction in haematopoiesis (105). Aged DP and single 

positive (SP) thymocytes express reduced levels of CD3, possibly impairing TCR-signalling, 

and exhibit a decrease in Concanavalin A-induced proliferation (104).

Such defects in thymocyte proliferation and differentiation at all stages may represent 

intrinsic abnormalities within lymphocytes derived from an aged bone marrow. However, 

thymocyte development is also instructed by the thymic microenvironment as part of the 

lymphocyte-stromal cross talk. Thus, defective thymocyte development is also due in part to 

abnormal extrinsic signalling from the altered thymic environment. Highlighting these 

extrinsic factors influencing thymic involution, young ETPs, administered by intrathymic 

injection, are capable of developing in young mice but fail to do so in older recipients (106). 

Architecturally, the non-hematopoietic stromal microenvironment of the thymus undergoes 

marked structural changes with age, primarily within the TEC compartment. With age, the 

cortical and medullary thymic epithelial regions become irregular and atrophied, with loss of 

the definition of the cortico-medullary junction (107); there is diminution of the thymic 

epithelial space and enlargement of the perivascular space (29); and increased adiposity 

(108, 109). Underlying some of these changes within the TEC compartment is the reduced 

expression of the transcription factor FOXN1, a key regulator of TEC differentiation in the 

fetal and postnatal thymus (72, 110). Indeed, induced expression of FOXN1 in murine 

models has been shown to delay age related thymic involution (75), and can also robustly 

rejuvenate the aged thymus through expansion of the TEC compartment (74). In addition, 

TECs exhibit decreased MHC class II expression, attenuating their ability to interact with 

developing thymocytes (9), and their production of the thymopoietic cytokine IL-7 by TECs 
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is also reduced with age (111). Similar to the aging of many other organs, there is also an 

accumulation of fibroblasts in the aged thymus, leading to progressive fibrosis with age and 

again impeding the normal architecture of the gland (107). The accumulation of abnormal 

mesenchymal cells may also lead to abnormal signalling, such as adipokine secretion by 

adipocytes, which may further interfere with thymopoiesis, and warrants further 

investigation (109). The overall consequence of these structural changes is a progressive loss 

of thymic niche spaces, and thus a reduction in thymocyte development.

Underlying causes of age related thymic involution

Although aging affects all aspects of an organism, the thymus exhibits a unique pattern of 

aging, distinct from other tissues and organs (112). Thymic involution occurs much earlier 

than other acknowledged features of aging, beginning in early childhood and peaking at 

puberty (29). Following this initial phase, thymic tissue is estimated to be lost at 

approximately 3% per year until middle age and then subsequently at 1% per year (113). 

There is, however, individual variation, and in addition a sexual dimorphism exists, such that 

the rate of involution is greater in males than in females (114). Thus, although a full 

discussion of the causes of aging in general are beyond the scope of this review, below we 

focus on those aetiological factors which are particularly relevant to this pattern of 

involution observed in the thymus.

The variation in thymic involution between different strains of mice highlights how genetic 

polymorphisms may influence this process. This area has been investigated further through 

the use of recombinant-inbred (RI) mice (115). C57BL/6 and DBA/2 mice were used to 

generate 18 strains of RI mice, termed BXD. Using mathematical modelling, these mice 

could be classified into four groups on the basis of their initial thymic mass and the 

subsequent rate of thymic involution. A higher rate of thymic involution was shown to be in 

part due to a block in thymocyte development and thus decreased thymopoiesis. Quantitative 

trait loci influencing the rate of thymic involution could be identified most strongly on 

chromosome 9. The genes in this region thus represent a future target for further 

investigation.

Hormones, produced through the hypothalamic-pituitary axis, can influence age related 

thymic involution. Several studies have shown that growth hormone (GH) can rejuvenate the 

aged thymus (see below). The corollary of this has been to invoke the decline in serum GH 

concentration with age as playing a role in thymic involution.

The thymus is known to be acutely sensitive to sex steroids (see above), and similar lines of 

correlative evidence have strongly linked changes in sex steroid levels, especially androgens, 

to thymic degeneration with age. Notably, the greatest rate of thymic involution with age is 

observed at puberty (29), and sex steroid ablation is found to rejuvenate the aged thymus 

(see below). Furthermore, the increased level of androgens in males offers an explanation for 

the increased rate of thymic involution evident in males (114).

However, caveats exist to ascribing age related thymic involution solely to the changes in 

hormones with age. As discussed, the initiation of thymic involution begins in childhood, 

prior to the fall in serum GH or puberty associated rise in sex steroids. Furthermore, thymic 
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involution continues with age even when sex steroid levels fall (116). Thus, further 

aetiological factors are required to explain the pattern of aging observed in the thymus.

The accumulated damage from oxygen free radicals is a recognised contributor to the aging 

process in many organ systems, leading to chronic damage evident in later life. Such free 

radical damage may play a key role in the aging of the thymus. This is supported through the 

finding that reducing metabolic activity, for example by caloric restriction (117) or 

modulation of IGF signalling (118), can reduce thymic involution. It is notable that the rapid 

course of involution demonstrated in the thymus would be difficult to reconcile with chronic 

free radical damage. However, it has recently been shown that thymic stromal cells are 

deficient in the enzyme catalase, making these cells much more sensitive to damage by 

oxidative by-products and thus offering an explanation as to why thymic involution proceeds 

more rapidly than aging in other organs (119).

Is there a physiological purpose of age related thymic involution?

The unique response of the thymus to aging, both in terms of age at initiation and rate of 

involution, raises the question that there may be a hitherto yet undiscovered biological 

purpose to thymic involution. This concept is supported by the finding that thymic involution 

with age is an evolutionary conserved process, evident across most species.

It has been shown that with age, there is decreased influx into the thymus of lymphoid 

progenitor cells from the bone marrow, and this is associated with a risk of developing T cell 

leukaemia, due to excessive prolongation of the time developing thymocytes reside in 

thymic niches (120). It is thus speculated that thymic involution is needed to prevent the 

development of a pro-leukemic environment within the thymus (121). Alternatively, thymic 

involution may represent a trade-off in terms of bioenergetics. In youth, it is important to 

develop broad TCR diversity for the purposes of a strong adaptive immune system. Once 

developed, however, an organism may need to give priorities to other functions, such as 

reproductive capability, and thus reducing the energy consumption associated with thymic 

function is a requisite to achieve this.

Thus, although rejuvenation of the aged thymus undoubtedly offers therapeutic potential, 

there are caveats to be considered. Novel strategies to enhance thymic function in the aged 

individual will need to be performed carefully, both at the appropriate time and in the correct 

context.

Exogenous strategies to enhance thymic recovery

Rejuvenation of immune function remains a prominent unmet need in several clinical 

situations. Over the past decades, the mechanisms that regulate thymic recovery after 

injuries and the development of strategies that can boost its endogenous repair have been the 

focus of intensive research. Here we summarize preclinical and clinical studies of promising 

strategies that have the potential to be translated into novel regenerative therapies.
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Keratinocyte Growth Factor (KGF)

Keratinocyte Growth Factor (KGF), also know as fibroblast growth factor 7 (FGF-7), is a 

protein with a predicted molecular weight of 22.5kDa that belongs to the fibroblast growth 

factor family. It is primarily secreted in a paracrine fashion from mesenchymal cells and 

promotes proliferation of epithelial cells (122). KGF binds to an epithelial cell–specific 

splice variant of the fibroblast growth factor receptor-2 (FgfR2-IIIb) expressed on TECs 

within the thymus. The FgfR2-IIIb receptor is activated not only by KGF but also by other 

close members of the family (FGF-1, FGF-3, and FGF-10) (123, 124). Although mice that 

are deficient for KGF show no signs of defective steady-state thymopoiesis, KGF KO mice 

show a deficit in thymic recovery after immune insults, such as sub-lethal radiation and 

HSCT.

As a result of these studies exogenous administration of recombinant KGF has been tested 

for its ability to enhance thymic regeneration, particularly in the setting of HSCT. KGF 

protects epithelial cells from several thymic injuries, including radio- and chemotherapy, 

allogeneic or syngeneic HSCT and GVHD (125–127). The mechanism by which KGF acts 

appears to be in promoting TEC proliferation, as BrdU incorporation in TECs increases up 

to 10 fold when mice are treated with KGF for 3 days (128). Ultimately this increase in TEC 

proliferation leads to increased thymocyte expansion and enhanced T cell export. 

Mechanistically, engagement of the FgfR2-IIIb promotes stimulation of the p53 and NF-kB 

pathways, and results in the upregulation of BMP2, BMP4, Wnt5b, and Wnt10b in young 

mice (128). A recent study in a non-human primate model showed that adult rhesus 

macaques, receiving KGF after autologous HSCT, had accelerated hematopoietic recovery, 

improved thymopoiesis (as evaluated by TREC analysis) and enhanced naïve T cell recovery 

following transplant. However, the increase in T cell recovery was not associated with an 

improved immunity against CMV reactivation or an improved response to tetanus toxoid 

vaccination (129). However, while KGF can also promote the expansion of young and old 

thymi in mice (68), there is some debate as to its effectiveness in promoting steady-state 

thymopoiesis in non-human primates (129).

Human recombinant KGF (Palifermin) is an FDA approved drug for the prevention of 

mucositis in recipients of high dose chemotherapy. However there are as yet no clinical 

studies designed to evaluate the sole efficacy of KGF in enhancing thymus function and T 

cell reconstitution in immunocompromised patients (127).

Interleukin-7 (IL-7)

IL-7 is a common gamma-chain (γ-chain) cytokine of 25-kDa involved in several adaptive 

immune processes including thymopoiesis, B cell development, and lymph node 

organogenesis (130). It also represents a pro-survival factor for ILCs. In the thymus, IL-7 is 

primarily produced by cTECs, and to a lesser extent by fibroblasts. The IL-7 receptor 

(IL-7R) is a heterodimer complex consisting of the IL-7Rα (CD127) and the CD132 

common γ-chain receptor. Although the γ-chain is expressed on all hematopoietic cells, 

IL-7Rα is almost exclusively expressed on lymphoid cells. In fact, IL-7 is a critical non-

redundant cytokine for both T and B cell lymphopoiesis, and in the thymus IL-7R 

stimulation promotes proliferation, differentiation and survival of the developing 
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thymocytes. It has been suggested that the engagement of the IL-7R induces cell 

differentiation through Jak-Stat signalling, and cell proliferation and survival through the 

PIK3/Akt pathway (131). Consistent with this, a defect in the IL-7Rα chain or the common 

γ chain in humans results in the severe combined immunodeficiency syndrome (SCID) (132, 

133).

Given its critical role in thymopoiesis and in promoting pro-survival signals to peripheral 

lymphocytes, IL-7 has been extensively studied for its potential to enhance recovery after 

immune-insults (130). Several studies have demonstrated the beneficial effects of exogenous 

administration of IL-7, which enhances thymopoiesis and export of recent thymic emigrants, 

in addition to increasing the homeostatic proliferation of mature peripheral T cells (134, 

135). Such effects ultimately lead to accelerated T cell recovery after syngeneic and 

allogeneic HSCT (136–138). Furthermore, administration of IL-7 has also been reported to 

increase antigen-specific T cell responses to vaccination and viral infections (139, 140). A 

more recent report described the results of a phase 1 clinical trial of recombinant human 

hIL-7 (CYT107) in recipients of T cell depleted allogeneic HSCT (NCT00684008). This 

study shows that CD3, CD4 and CD8 counts are increased in hIL-7 treated patients, and 

while no significant effects were reported on thymic output as measured by analysis of 

recent thymic emigrants, patients receiving hIL-7 did show a broader TCR beta repertoire 

diversity compared to untreated patients (141).

Interleukin-22 (IL-22)

IL-22 is a cytokine that belongs to the IL-10 cytokine family. It has gained increasing 

interest recently for its potential tissue protective effect (142). In particular, IL-22 has been 

primarily implicated in promoting epithelial integrity and antimicrobial immunity at 

mucosal surfaces. IL-22 is mainly produced by Th17 cells and innate lymphoid cells (ILCs) 

and it binds to a heterodimeric cell surface receptor, IL-22R, composed of IL-10R2 and 

IL-22R1 subunits (143–148). IL-22R is expressed on cells of epithelial origin, such as 

keratinocytes, intestinal or lung epithelial cells, and hepatocytes, and it is absent on cells of 

the immune system (142, 149). The key role of IL-22 in mediating endogenous recovery of 

thymus function after acute damage is described in detail above, and this provides the 

rationale to use IL-22 treatment as a potential therapeutic option, to stimulate thymic 

recovery in immunocompromised patients (19).

Based on these findings, a phase IIa clinical study has recently been initiated to evaluate the 

safety and tolerability of human recombinant IL-22 (hrIL-22) in conjunction with systemic 

corticosteroids in the treatment of gastrointestinal acute GVHD in patients receiving HSCT 

(NCT02406651). Importantly, peripheral T cell counts will be evaluated as a part of the 

study, allowing for further investigation of hrIL-22 as an immune-boosting therapy.

Growth hormone (GH) and Insulin-like growth factor 1 (IGF-1)

Several neuroendocrine hormones have been shown to mediate important effects on the 

immune system. Growth hormone (GH), also known as somatotropin, is a peptide hormone 

primarily secreted by the anterior pituitary gland (150); although interestingly, a previous 

study has also reported that GH can be produced by ex-vivo isolated human thymocytes and 
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TECs (151). The potent effects of GH on thymic function have been extensively investigated 

using GH deficient mice, which exhibit defects in T cell development. However, given that 

the GH-receptor (GHR) is expressed by TECs as well as developing thymocytes (151), it is 

unclear which are the primary targets of these effects of GH. In addition, exogenous 

administration of recombinant GH has been found to promote thymus regrowth in several 

preclinical mouse models (152). GH administration promotes improved thymic cellularity, 

increased TCR diversity and enhanced recovery of the hematopoietic compartment in 

immunocompromised and aged animals (153, 154). Several intrinsic and extrinsic 

mechanisms have been identified for the beneficial effects of GH on thymic function such as 

enhanced proliferation of TECs and trafficking of common lymphoid progenitors (CLPs) 

into the thymus (155–157).

Mechanistically, it has been shown that GH activates the JAK2/Stat5 pathway leading to the 

expression of several downstream genes. Insulin-like growth factor 1 (IGF-1) has been 

described as the principal mediator of the biological effects of GH (158–160). IGF-1, 

sometimes referred as somatomedin C, is a protein with a structure similarity to insulin. 

IGF-1 is expressed by thymic stromal compartment, in particular by TECs and fibroblasts, 

while the IGF-1 receptor is expressed not only by the stromal component (mainly by the 

epithelial cells and fibroblasts) but also by the hematopoietic compartment (161).

Encouraging results have been generated in several clinical studies. Recombinant human GH 

enhances thymic recovery and immune reconstitution in HIV-infected patients (162). More 

recently, a phase 1 clinical trial was performed to test the safety and efficacy of GH in 

improving immune reconstitution post unrelated cord blood transplant (NCT00737113).

Sex steroid inhibition (SSI)

Surgical or chemical sex steroid inhibition (SSI) is a well-described approach to promote 

thymic growth in several pre-clinical and clinical studies (163, 164). In fact, several reports 

have shown that SSI promotes thymic enlargement in young as well as in old mice and 

promotes accelerated thymic recovery after immune insults, such as radio- and 

chemotherapy, syngeneic and allogeneic HSCT and GVHD (7, 76, 165, 166). Androgen 

deprivation has been the focus of extensive research for the treatment of prostate cancer 

patients, and in the past years several pharmacological treatments have been developed to 

block directly the effects of the androgen receptor on the target cells or to suppress the 

hypothalamus-pituitary-gonadal axis that systemically promotes the release of androgens 

from the gonads. Several of those therapeutic treatments have been investigated for their 

potential to reversibly inhibit sex steroids and promote thymic regrowth and immune 

reconstitution in mice and humans. Clinical studies using LHRH-agonists, which desensitize 

the LHRH-receptor and ultimately lead to the inhibition of luteinizing hormone (LH) and 

follicle stimulating hormone (FSH) release, showed that the treatment promoted accelerated 

engraftment post-HSCT and enhanced T cell reconstitution in autologous and allogeneic 

HSCT recipients (165). As a functional read out of the impact of the LHRH-agonist 

treatment on the thymic recovery, it was shown that the peripheral T cell repertoire was more 

diverse in patients receiving the agonist therapy (165).
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Although the effects of SSI on thymic regrowth have been known for more than one century 

(167, 168), the exact mechanisms underlying these regenerative effects are still not 

completely understood, although recent studies have demonstrated that SSI can directly 

promote the expression of CCL25 (35) and the Notch ligand DLL4 (36), as well as 

promoting the function of hematopoietic stem and progenitor cells (37, 38, 169). Further 

work is needed to understand these mechanisms, as transient ablation of sex steroids clearly 

represents a feasible and appealing immune regenerative strategy. Currently, two clinical 

trials are on going to test the effects of the LHRH-Agonist (Lupron) alone or in combination 

with KGF (Palifermin) in promoting immune recovery of allo-HSCT patients 

(NCT01746849 and NCT01338987).

Precursor T cells

Generation of large numbers of precursor T (pre-T) cells, readily available to be infused at 

the time of HSCT, represents an interesting therapeutic approach to accelerate immune 

recovery in immunocompromised patients. The development of newly generated thymic-

derived T cells can take several months after HSCT and several conditions, such as aging 

and GVHD, can delay this process even further (2). With the advent of the robust OP9-DL1 

system for generating precursor T cells ex vivo (170), the concept of using these ex-vivo 

generated pre-T cells to expand and mature in the thymus thereby shortening the duration of 

immunodeficiency has been a promising one. Previous work has shown that pre-T cells can 

be generated using ex vivo co-culture of HSCs with ectopically transduced OP9-DLL1 or 

DLL4, two critical factors for thymocyte proliferation and commitment to T cell fate (171). 

Importantly, similar results were also obtained using a cell-free culture condition where 

recombinant DLL1 or DLL4 were immobilized on the culture dishes (172, 173).

The adoptive transfer of pre-T cells with T cell depleted BM or purified LSK into lethally 

irradiated recipients increases thymic cellularity, improves T cell chimerism and enhances 

peripheral T and NK reconstitution (174). While clearly pre-T cells help T cell 

reconstitution by providing a ready source of T cell progenitors, there is a also a recently 

reported secondary effect whereby pre-T cells, through the process of thymic crosstalk, can 

actually enhance thymic stromal function long after the ex vivo pre-T have transited through 

the thymus (175). Functionally, pre-T cell administration after HSCT can enhance resistance 

to L. monocytogenes and promote increased immune clearance to the A20 tumor cell line 

(174). Importantly, pre-T cells represent an “off the shelf” therapeutic strategy, which can be 

administered across MHC barriers, since the immature cells will be educated in the thymus 

of the recipients, and can also be used as vehicles for chimeric antigen receptors (176). In 

addition, pre-T cells can be also genetically engineered to recognize virus-specific as well as 

tumor-specific antigens for tumor immunotherapy.

Thymus bioengineering

In addition to the identification of strategies that can boost the recovery of residual thymic 

functionality, substantial progress has also been made over the past years to the engineering 

of a transplantable artificial thymus. In addition to representing a clinically relevant 

alternative for patients with minimal residual functionality (for example as a result of aging 

or repeated cycles of immunosuppressive treatments), thymus transplantation represents one 
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of the few therapeutic options for patients with particular congenital immune deficiencies 

that result in complete athymia (such as Digeorge syndrome) (177–179). There is thus a 

significant clinical need for the development of ex vivo generated thymic tissue, rather than 

solely relying on endogenous thymus rejuvenation.

Immense effort has been invested in the past decades in order to characterize and rebuild in 

vitro the complex 3D structure that confers the thymus its specialized microenvironment. A 

particularly important area of investigation is the identification of biomaterials that can 

reproduce the 3D artificial matrix able to support cell-to-cell interactions. However, while 

the proof of concept has been demonstrated that 3D matrices seeded with thymic stromal 

cells can partially support T cell development from precursor hematopoietic cells (180, 181), 

the field has been limited by a lack of a sustaining source of epithelial cells to seed. 

However, recent studies have used several approaches that could overcome this barrier, 

including 1) identifying endogenous thymic epithelial progenitor cells (TEPC), 2) driving 

differentiation of embryonic stem cells or iPS cells into TEPC, and 3) transdifferentiation of 

other cell lineages into TEC-like, T cell supporting cells.

Although TEPC were identified in the developing thymus almost 15 years ago (182, 183), 

and the presence of an adult progenitor did indeed exist (184), it is only in the past two years 

that significant progress has been made into identifying the postnatal TEPC (185,186). 

Recent work has also demonstrated methods that could be used to drive primitive stem cells 

into thymic epithelial progenitors cells by precise regulation of crucial factors involved in 

TEC commitment and maturation, including FOXN1, HOXA3, TGFβ, BMP4, Wnt, Shh, 

and FGF signaling (187–190), which could be a promising source of cells for a 

bioengineered thymus. Finally, an innovative alternate approach was taken to generate TECs 

by direct reprogramming of mouse embryonic fibroblasts (MEFs) through the forced 

expression of FOXN1 (191). These FOXN1-induced TECs (iTECs) promote T cell 

development in vitro and in vivo when transplanted into nude mice and could be used to 

seed an artificial bioengineered thymus.

Another technique that may hold potential to generate organs in vitro is based on tissue 

decellularization methods. In this technique, all cells are removed from the organ, leaving 

the extracellular matrix intact. It has been reported that decellularization of the thymus, 

followed by reconstitution with thymic stromal cells and lineage negative BM progenitors, 

led to formation a functional thymus when transplanted into the kidney capsule of nude mice 

(192).

Conclusions and future directions

The thymus is an outlier, which behaves out of keeping with many other organs. Extremely 

sensitive to acute damage, it can rapidly involute, but it initially has immense ability to 

recover from such insults. However, with age, this ability to regenerate is lost, and in fact 

aging of the thymus proceeds at a faster rate than other tissues. A greater understanding of 

these processes, in close collaboration with other branches of regenerative medicine and 

immunology, will pave the way to new therapeutic options. Indeed, such work has already 

led to the establishment of clinical trials examining cytokines, growth factors and hormonal 
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therapy (Table 1). The challenge for the future is to continue development of new strategies, 

and to ensure that those with potential undergo rigorous evaluation in the clinical 

environment.
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Figure 1. Targets of acute thymic damage and pathways of endogenous regeneration
The thymus is extremely sensitive to damage, typically in the form of irradiation, 

cytoreductive chemotherapy or stress-induced (or administered) corticosteroids. While most 

of these insults target the T cell progenitors (most prominently CD4+CD8+ DP thymocytes), 

TECs are also notably targeted by both irradiation and cytoreductive chemotherapy. 

Corticosteroids specifically target thymocytes and so other cell populations including TECs, 

dendritic cells (DCs), fibroblasts (FC), innate lymphoid cells (ILCs) and endothelial cells 

(ECs) are relatively untouched initially (although due to crosstalk there is a decline in the 

numbers of cTECs and mTECs after the thymocyte depletion). ILCs and ECs, and to a lesser 

extent FC and DC, are remarkably resistant to acute damage. After injury the thymus has a 

remarkable capacity to regenerate itself. While the mechanisms underlying this regeneration 

remain poorly understood, in the past few years several pathways have been revealed. These 

include the IL-23/IL-22 and KGF pathways, which targets TECs; IL-7, which can be 

produced by both TECs and FCs and target early T cell progenitors; and VEGF, which can 

be produced by TECs and some thymocytes and targets ECs to induce angiogenesis, a 

crucial step during organ regeneration.

Chaudhry et al. Page 27

Immunol Rev. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chaudhry et al. Page 28

Table 1

Strategy Regenerative Targets Stage of Development References

IL-7 BM HSPCs
Thymocytes In trials (136, 138, 141, 193–197)

IL-12 Thymocytes Pre-clinical (198, 199)

IL-21 Thymocytes Pre-clinical (200)

IL-22 TECs In trials (19)

Flt3L BM HSPCs
Thymocytes Pre-clinical (201–205)

IGF-1 TECs Pre-clinical (158, 206)

GH/Ghrelin Thymocytes In trials (207, 208)

KGF TECs In trials (68, 69, 126–129)

SCF Thymocytes Pre-clinical (209)

Sex steroid inhibition
TECs

BM HSPCs
Thymocytes

In trials (6, 36–38, 76, 164–166, 210)

Precursor T Thymocytes IND pending (174, 176, 211)

HSPCs Thymocytes Pre-clinical (212)

ex-vivo TECs TECs
Thymocytes Pre-clinical (187, 190, 191, 213, 214)

Thymus bioengineering Mature T cells Pre-clinical (192, 215)
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