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A Neural Basis of Facial Action Recognition in Humans

Ramprakash Srinivasan, Julie D. Golomb, and “Aleix M. Martinez
Ohio State University, Columbus, Ohio 43210

By combining different facial muscle actions, called action units, humans can produce an extraordinarily large number of facial expres-
sions. Computational models and studies in cognitive science and social psychology have long hypothesized that the brain needs to
visually interpret these action units to understand other people’s actions and intentions. Surprisingly, no studies have identified the
neural basis of the visual recognition of these action units. Here, using functional magnetic resonance imaging and an innovative machine
learning analysis approach, we identify a consistent and differential coding of action units in the brain. Crucially, in a brain region thought
to be responsible for the processing of changeable aspects of the face, multivoxel pattern analysis could decode the presence of specific
action units in an image. This coding was found to be consistent across people, facilitating the estimation of the perceived action units on
participants not used to train the multivoxel decoder. Furthermore, this coding of action units was identified when participants attended
to the emotion category of the facial expression, suggesting an interaction between the visual analysis of action units and emotion
categorization as predicted by the computational models mentioned above. These results provide the first evidence for a representation
of action units in the brain and suggest a mechanism for the analysis of large numbers of facial actions and a loss of this capacity in

psychopathologies.
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ignificance Statement

alternative to hyperalignment.

Computational models and studies in cognitive and social psychology propound that visual recognition of facial expressions
requires an intermediate step to identify visible facial changes caused by the movement of specific facial muscles. Because facial
expressions are indeed created by moving one’s facial muscles, it is logical to assume that our visual system solves this inverse
problem. Here, using an innovative machine learning method and neuroimaging data, we identify for the first time a brain region
responsible for the recognition of actions associated with specific facial muscles. Furthermore, this representation is preserved
across subjects. Our machine learning analysis does not require mapping the data to a standard brain and may serve as an
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Introduction

Faces are used to express action and intent and, thus, visual anal-
ysis of facial behavior is of fundamental importance to us (Dar-
win, 1965; Ekman et al., 1969; Bruce and Young, 2012; Emmorey
and Lane, 2013). This is achieved seemingly effortlessly, typically
without conscious awareness. This visual recognition is also
highly accurate, although the number of facial expressions we
encounter in daily life is very large (Ekman and Friesen, 1977;

Received May 1, 2015; revised Jan. 29, 2016; accepted Feb. 4, 2016.

Author contributions: A.M.M. designed research; R.S. performed research; R.S.,).D.G., and A.M.M. analyzed data;
R.S.,).D.G., and A.M.M. wrote the paper.

This research was supported by the National Institutes of Health Grants RO1-EY-020834, R01-DC-014498
(A.M.M.), and R01-EY-025648, and an Alfred P. Sloan Foundation Grant BR-2014-098 (J.D.G.). We thank S. Du and P.
Pallett for help with data collection and data pre-processing.

The authors declare no competing financial interests.

Correspondence should be addressed to Aleix M. Martinez, 205 Dreese Laboratories, 2015 Neil Avenue, Ohio State
University, Columbus, OH 43210. E-mail: Martinez.158@osu.edu.

DOI:10.1523/JNEUR0SCI.1704-15.2016
Copyright © 2016 the authors  0270-6474/16/364434-09%15.00/0

Russell and Ferndndez-Dols, 1997; Emmorey and Lane, 2013; Du
etal., 2014). This large variety of facial expressions is achieved
by differentially moving our facial muscles (Duchenne, 1862).
Muscle articulations resulting in distinctive visible featural
changes are called action units (AUs; Ekman and Friesen,
1977). For example, AU 1 defines a medial contraction of the
frontalis muscle, resulting in the raising of the inner section of
the eyebrows (Fig. 1a). Computational models (Martinez and
Du, 2012; Cohn and De la Torre, 2014) and studies in cogni-
tive and social psychology (Oosterhof and Todorov, 2009)
posit that visual recognition of these AUs is essential to inter-
pret facial behavior and a necessary intermediate step to
achieve categorization of emotions. Surprisingly, neuroimag-
ing studies to identify the neural basis of the recognition of
AUs are missing. A major reason for the lack of these studies is
the difficulty of identifying patterns of neural responses asso-
ciated with the small image changes observed when only a few
facial muscles move, e.g., AU 1 results in a small visible image
change (Fig. 1a).
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a, AUs. Sample images with AUs 2 and 12 and AUs Tand 20 present. We study the hypothesis that visual recognition of AUs is performed in pSTS. To study this hypothesis, participants

saw blocks ofimages with these AUs present or not present. b, Sample block. Each block starts with a4 s blank screen and a 6 s fixation cross. This is followed by six sample images of a facial expression
of emotion with the same AUs present in each image but expressed by different individuals. Each sample image is shown for 1.5 s and followed by a random noise mask that is shown for 0.5 5. The
block concludes with a categorization task. Participants are given 2 s to indicate which of two alternative semantic categories (e.g., disqusted/happily disqusted) best describes the emotion of the

images in the block. Participants watch a total of 168 blocks.

Here, using functional magnetic resonance imaging (fMRI)
and an innovative analysis using machine learning algorithms, we
identify for the first time a neural basis for visual recognition of
AUs. In particular, we hypothesize that these computations are
housed in the posterior superior temporal sulcus (pSTS), a brain
region thought to play a crucial role in the analysis of changeable
aspects of the face (Allison et al., 2000; Haxby et al., 2000). Single-
cell recordings in nonhuman primates and fMRI studies with
humans show strong activation of the pSTS when observing some
facial movements, such as eye direction (Adolphs, 2003; Fox et
al., 2009; Vytal and Hamann, 2010; Harris et al., 2012; Johnston et
al., 2013).

We define a multivoxel analysis approach to identify neural
patterns consistent when observing images with the same AU
present but differential between AUs. To do this, we first define a
machine learning approach to learn to detect when subjects in the
scanner are looking at images of a specific AU. Then, we test this
decoder with a set of independent subjects (i.e., subjects not used
to train the decoder). The results show that we can decode the
presence of AUs in an image even across subjects. To be able to
work across subjects, the pattern of neural activity of each subject
is defined in a feature space given by a small number of linear
combinations of all voxels. That is, the d voxels of each subject’s
brain [or region of interest (ROI)] are described by the p linear
combinations of voxels that best describe the original neural ac-
tivity in the least-squares sense. Although d is generally different
in each subject, p can be kept constant, allowing for easy compar-
ison of data across subjects. This approach eliminates the need to
map the data to a standard brain and may offer a less data-
intensive alternative to “hyperalignment” (Haxby et al., 2011) by
defining a common subject-independent feature representation
instead.

We use this approach to first test our hypothesis that visual
recognition of AUs is processed by a set of voxels in pSTS. Then,
we apply a discovery-search analysis to the whole brain to identify

the most discriminant cluster of voxels for classifying AUs. This
information-based approach yields consistent results, identifying
a small number of voxels in the pSTS as the most discriminant in
the brain. In conjunction, these results provide the first evidence
for a specialized region in the brain dedicated to the visual recog-
nition of AUs.

Materials and Methods

Stimuli. One thousand eight images of facial expressions were selected
from the database of Du et al. (2014). Images corresponded to one of
seven emotion categories: (1) disgusted; (2) happily surprised; (3) hap-
pily disgusted; (4) angrily surprised; (5) fearfully surprised; (6) sadly
fearful; or (7) fearfully disgusted. Thus, there were 144 images for each
emotion category as expressed by different people. These are color im-
ages downsized to 472 X 429 pixels, yielding a visual angle of 7.86° X
7.17°. The images were normalized for intensity and contrast. The fixa-
tion cross had a visual angle of 1.2° X 1.2°. All images were shown
centrally. Stimulus presentation was controlled using MATLAB running
on a desktop personal computer and projected onto a rear-projection
screen located at the back of the scanner bore, viewed through a mirror
mounted on the head coil.

Experimental design. The experiment design and protocol were ap-
proved by the Office of Responsible Research Practices at Ohio State
University (OSU). Ten right-handed subjects (eight women; mean age,
25.3 years) with normal or corrected-to-normal vision participated in
the present experiment. The experiment lasted ~1.5 h. Anatomical and
functional data were captured in the same session. To collect functional
data, we used a block design. The experiment was divided into 12 runs.
Each run included 14 blocks. In each block, six images of a facial expres-
sion of emotion were shown (Fig. 1b). Images showed expressions with
one, two, or three of the selected AUs present (i.e., AU 1, AU 2, AU 12,
and AU 20; Fig. 1a). The six images in a block showed the same expres-
sion of emotion and had the same AUs present. At the end of the block,
subjects saw two semantic labels on the screen (left and right of center)
and were asked to quickly indicate which label best described the category
of the six facial expressions in that block by key press. The correct cate-
gory name was on the left or right with 50% probability. Subjects re-
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Subjects observed images of facial expressions with AU 1, AU 2, AU 12, and AU 20 either present or not present. Images were shown in blocks of six images each. Subjects saw a total

of 168 blocks. The fMRI BOLD responses (see Materials and Methods) for each of these blocks are shown on the left column. The 168 responses of each subject are used to compute the covariance
matrix (2.,) of the data, from which the PCs are obtained (middle column). This yields a common PCA feature representation for all subjects. Classification of each AU (present versus not present) is
computed in this common PCA space. LDA is used as a classifier. Each LDA (i.e., to determine the presence of each AU) is a hyperplane dividing the PCA space into two regions: one region corresponds
to the samples with that specific AU present and the other region to samples of this AU not present (right-most column). This figure illustrates the approach as it applies to a whole-brain analysis.
When studying the hypothesis that the computations of visual recognition of AUs is in the pSTS, only those voxels in the pSTS region were used.

sponded with a hand-held button box and were given 2 s to respond.
Then, the screen was blank for 4 s, followed by a fixation cross, which was
shown for 6 additional seconds, for a total of 12 s between blocks (Fig.
1b). At the end of each run, subjects saw two face images (left and right of
center) and were instructed to indicate which image had been seen in that
run by a key press. The position of the previously seen image was chosen
randomly (50% chance of being left or right of center).

MRI parameters. The fMRI experiment was conducted at the Center
for Cognitive and Behavioral Brain Imaging at OSU. A Siemens 3 T Trio
MRI total imaging matrix system was used to obtain the structural and
functional imaging data. A 32-channel phase array receiver head coil was
used. For the anatomical scan, a T1-weighted scan was obtained with the
following: TR, 1950 ms; TE, 4.44 ms; field of view, 176 X 232 mm; slice
thickness, 1 mm, yielding 256 axial slices. For functional data, the follow-
ing were used: TR, 2 s; TE, 28 ms; field of view, 222 X 222 mm; flip angle,
72°% 3 X 3 X 3.3 mm voxels scanned. This yielded a total of 37 contiguous
axial slices.

Data preprocessing. The functional data were registered to the T1 ana-
tomical scan for each subject. Motion correction to align acquisitions and
temporal high-pass filtering (cutoff, 0.0128 Hz) to eliminate scanner
noise were used. Acquisitions were shifted two positions to account for
the delay of the hemodynamic function. Intensity normalization was
done by dividing the value of each voxel at each time point by its maxi-
mum value in the run; this normalizes changes of magnitude typically
seen between runs. This was followed by a baseline adjustment by sub-
tracting the average normalized value of the two TRs preceding the block,
which normalizes changes attributable to the short interblock delay (i.e.,
by subtracting the value of the TRs preceding the block, we obtained a
better representation of the pattern of changes within the block regard-
less of small changes of neural activation at the beginning of each block).
We also analyzed our data using another standard normalization ap-
proach in which first the mean is subtracted and the resulting vectors
divided by the SD, yielding zero-mean, unit-variance feature vectors. The
results reported in the present study were statistically identical when
using either of these two normalizing methods. Finally, we averaged the
resulting fMRI blood oxygenation level-dependent (BOLD) responses of

all acquisitions in the block, which yielded one response sample per voxel
per block for each subject.

The bilateral pSTS was defined anatomically using the Harvard—
Oxford atlas (Desikan et al., 2006). This was done by mapping the atlas
from MNI to each subject’s anatomical scan. The early visual cortex
(EVC) was functionally defined based on the BOLD contrast comparing
all images > fixation. For each subject, this contrast was used to identify
the most visually responsive areas, and then anatomical landmarks were
used to guide selection of bilateral ROIs covering approximately V1-V3.

Data analysis (multivoxel pattern analysis). Let d be the number of
voxels of a subject. (For the whole-brain scan, d varied from a low of
~40,000 to a maximum of ~60,000. For pSTS, d was between 682 and
927.) Each normalized sample feature vector X; (one per block) is defined
in a d-dimensional feature space, X; € RY. We have 168 feature vectors
(samples) per subject (i.e., 14 blocks X 12 runs). This can be written in
matrix formas X = (&, ..., Xs)- Principal component analysis (PCA;
Jolliffe, 2002) was applied to reduce the dimensionality of these vectors to
keep >95% of the data variance (~100 PCs). Formally, VIS,V = A,
where 2y = Z:igl (%, — fv)7, puis the sample mean, V = (v, ...,v,) isa
matrix whose columns are the eigenvectors of %y and A = diag
(A, ..., Ay) are the corresponding eigenvalues, A, = ... = A; = 0. The
feature vectors projected onto the PCA space are defined by the matrix
X' = VIR, with V = (v, ..., ), and p is the number of PCs. The
dimensions of this space define the linear combination of all voxels that
keep most of the variance of the BOLD signal and thus maintain most of
the original data structure in the least-squares sense. Applying this di-
mensionality reduction procedure to the block-averaged data of each
subject allowed us to define these feature vectors in a common
p-dimensional feature space (Fig. 2). In this space, the first PC (v,) de-
fines the linear combination of voxels that accounts for the largest vari-
ance of each subject’s neural responses; the ith PC defines the linear
combination of voxels with ith largest variance.

Linear discriminant analysis (LDA; Fisher, 1938) was then used to
classify samples of AU present versus samples of AU not present in this
PCA space (Fig. 2). LDA computes the between-conditions scatter ma-



Srinivasan et al. e A Neural Basis of Facial Action Recognition

trix S, which is the covariance matrix of the class means, and the within-
class scatter matrix S,,, which is the covariance matrix of the samples in
each condition. The unit vector w that maximizes the ratio of these two
matrices [w 'S ;w|/|w 'S, wl, provides the Bayes optimal hyperplane sep-
arating the sample feature vectors of the two conditions (i.e., AU present
versus not present; Hamsici and Martinez, 2008). We defined four such
classifiers, one for each of the conditions (AU 1, AU 2, AU 12, and AU 20
present/not present; Fig. 2). The hyperplanes in this figure are defined by
the norm vector w.

Advantages of the PCA-alignment approach. The data analysis method
defined in the preceding paragraph is innovative because it does not
require anatomical alignment of the voxels across subjects. To clarify
this, note that voxels from different subjects cannot be compared directly
in native space because a one-to-one matching does not exist (i.e., the
brain of each subject is defined by a different number of voxels d). The
classical solution to circumvent this problem is to map each subject’s data
to a standard brain (e.g., MNI) using a linear or nonlinear anatomical
mapping. However, mapping each subject’s brain to a standard brain still
does not guarantee that corresponding voxels exhibit the same functional
response in the same voxels. For example, imagine that we map the data
of two subjects to MNI and assume that the functional pattern of activa-
tion in these two subjects is identical. However, after mapping, the pat-
tern of BOLD activation of the first subject is shifted a few voxels to the
left of the pattern of BOLD activation of the second subject. Thus, these
two representations are not identical in MNI, and a between-subject
classifier would fail in this standard brain space. Nonetheless, if the two
patterns of neural activation are indeed functionally the same, they also
share the same data variance. This directly suggests a representation
based on a linear combination of voxels that maximizes the data variance
of all acquisitions. PCA is a technique used to achieve this, and certain
existing decoding techniques have taken advantage of it by including a
PCA step after MNI transformation (O’ Toole et al., 2005; Misaki et al.,
2010; Coutanche and Thompson-Schill, 2012). This PCA step aligns
the data of different subjects functionally, facilitating across-subject
classification.

Our key methodological contribution is to note that, if the PCA func-
tionally aligns the data in MNI space, then it also aligns the data in the
subject’s space. This means that the data variance (PCA) approach can be
applied directly to the data in the original subject’s space, and, hence, the
mapping to a standard brain is redundant and unnecessary.

Recall that the reason one generally maps the data to a standard brain
is to test whether the neural activation across subjects is the same. Our
PCA-alignment method also tests whether the neural activation is similar
across people, but we do not require the signal to be located physically in
the exact same voxels. If the neural responses in each subject are func-
tionally the same, their variance will also be the same and the p PCs used
to define the feature representation will be common across subjects,
resulting in successful decoding. Note that the ordering of the PCs needs
not be identical across subjects because we apply a subsequent LDA step;
as long as the transformation between subject representations is linear,
the PCA-LDA analysis will be able to decode across subjects (Martinez
and Zhu, 2005). If the neural computations responsible for the visual
recognition of AUs are not the same across subjects, then our approach
will fail to find a common PCA representation, and we will not be able to
decode AUs across subjects. This is the hypothesis we test in the current
experiments.

We compare our PCA-alignment approach to the one in which we
first map all acquisitions of every subject to MNI and then apply PCA
and LDA to this anatomically aligned data. The same PCA and LDA
approach and the same ROIs defined above were used. As shown in
Results, this anatomical alignment and our PCA alignment yield the
same decoding results, further demonstrating the unnecessary ana-
tomical alignment step.

Because our approach is less data intensive than hyperalignment tech-
niques, we suggest that it can also provide practical advantages over these
techniques and may be worth attempting before considering hyperalign-
ment. However, if the data transformation between subjects is nonlinear,
our approach will not uncover a common between-subject representa-
tion, and nonlinear methods such as hyperalignment will need to be
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used. Note that kernel PCA could also be used to attempt to solve this
nonlinear mapping, but this would only work if the kernel function
that provides the between-subject functional correspondences was
known or could be estimated from independent data, as is the case in
hyperalignment.

Downsampling to avoid classification biases. When working with clas-
sifiers, such as LDA, the number of samples per condition must be iden-
tical; otherwise, the classifier generally learns to always select the
condition (AU present/not present) with the largest number of samples,
yielding high classification accuracies and giving the false impression that
it learned the underlying distribution of the data. To address this prob-
lem, we use the following downsampling approach. Let n, be the number
of samples in condition 1 (AU present) and 7, the number of samples in
condition 2 (AU not present). If n; > n;, we reduce the number of samples
in condition i by randomly selecting n; samples from the pool of n;
samples. Care is taken to select the same number of samples from each
emotion category, to prevent classification biases attributable to emotion
rather than AUs. This process is repeated m times, each time yielding a
slightly different LDA classifier. We then compute the average classifica-
tion accuracy (and SE) on the data of the subject left out using these m
classifiers. We used m = 1000.

Between-subject data analysis. For testing, we used the leave-one-
subject-out cross-validation procedure. This means that the feature vec-
tors of nine subjects were used to train the LDA classifiers, whereas the
feature vectors of the remaining subject were used for testing it. There
were 10 subjects, so we iterated across all 10 combinations of leaving one
subject out and computed the average classification accuracies and SEs.
To compute statistical significance, we first estimated the distribution of
the test statistics (i.e., classification accuracy) under the null hypothesis
(i.e., classification is at chance). This null hypothesis states that the labels
of the samples (i.e., which AUs are present in each image) can be ran-
domized without affecting the classification accuracy. To estimate this
underlying but unknown distribution, we sampled 1000 values by ran-
domly permuting the labels of the images in each block. These accuracies
plus that obtained using the true labels were rank ordered. The rank
order of the correctly labeled sample was divided by the number of per-
mutation tests (i.e., 1000) to yield the p value (Kriegeskorte et al., 2006).
Wealso collapsed the data of all AUs and ran a ¢ test to check for statistical
significance of the overall decoding of AUs (with chance at 50%).

The above procedure was first applied to the pSTS to determine
whether the presence of AUs could be decoded in this a priori hypothe-
sized ROI. Then, the same procedure was applied to the whole brain, with
the goal to identify which voxels were most discriminant. One advantage
of using PCA plus LDA to derive our classifiers is that the process can be
reversed to determine how much each voxel contributed to the classifi-
cation of each AU. These values are given by the coefficient vectors of
PCA and LDA described above. As shown in Figure 3, we can map the
coefficients of LDA into each of the subjects’ brains using the inverse
projection of the PCs obtained previously, V. This yielded five maps,
showing the most significant voxels for all AUs for each subject. Only the
voxels with the 2% largest coefficients were kept. These results were
mapped into MNI and smoothed with a 6 mm Gaussian, from which the
average discriminant map across subjects was computed. The cluster
with the highest discriminant coefficient was then identified (Fig. 3).

Within-subject data analysis. We also used the same methodology de-
fined above—PCA alignment plus LDA—to measure how well AUs
could be decoded within individual subjects. Here, we used a leave-one-
run out cross-validation approach. This means that, for each subject, we
used the data of 11 runs for training the classifier and the data of the
left-out run to test the decoding of AUs. Because there are 12 ways of
leaving one run out, we tested each possibility. This yields 10 sets of
decoding accuracies (one per subject) for each of the four AUs. We then
calculated the mean and SE of these 10 values for each of the AUs and
computed statistical significance using the permutation test described
earlier. We also collapsed the data of all AUs and ran a t test to check for
an overall statistical significance of these results (with chance at 50%).
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Finding the most discriminant voxels. The four LDA spaces are defined by the coefficients of the basis vector w. This vector can be mapped to the d-dimensional space defining each

subject’s brain using the inverse transform given by PCA. These results are then mapped into MNI and the average across subjects is computed. The voxels with the top 2% weights are kept (middle

image). The cluster with the largest weights is then selected (right image).

Results
To test our hypothesis, we used the selected 1008 images of facial
expressions of Du et al. (2014). These images include typically
observed AUs. These were AU 1, AU 2, AU 12, and AU 20 (Fig.
la). Whereas AU 1 corresponds to facial muscle actions that raise
the inner corners of the eyebrows, AU 2 defines facial muscle
activation yielding an upper movement of their outer corners.
These two AUs are thus part of the upper face. AU 12 and AU 20
are in the lower face instead, with AU 12 defining the upper—
outer pulling of the corners of the mouth and AU 20 the lateral
stretching of the lips. Each of these AUs was present in only some
of the selected images. Specifically, AU 1 was present in 55.5%,
AU 2 in 42.3%, AU 12 in 38.5%, and AU 20 in 39.7% of the
images. As a result, each image had either none of these AUs or
had one, two, or three of them present. All four were never pres-
ent at the same time because no facial expression of emotion is
produced with all four of these AUs. For example, when showing
a facial expression of disgust, none of these AUs is present,
whereas when showing a facial expression of happily surprised,
AU 1, AU 2, and AU 12 are present. It is important to note here
that the same AU is present in several facial expressions. For
instance, AU 1 is present when expressing happily surprised, fear-
fully surprised, sadly fearful, and fearfully disgusted. Thus, our
goal is to decode AU regardless of emotion category.
Participants saw the 1008 facial expressions in blocks of six
images while in the MRI scanner. Each block started with a blank
screen (4 s), followed by a fixation cross (6 s). The six images were
then presented for 1.5 s each and masked (0.5 s each), for a total of
12 s (Fig. 1b). The images in each block were of different individ-
uals but displayed the exact same AUs.

Does the pSTS code for AUs?

Pattern analysis was used to define a multivoxel decoder for each
of the AUs. That is, we defined a classifier to detect the presence or
absence of AU 1 in the image, another classifier to detect AU 2,
another for AU 12, and a final one for AU 20. To test whether AU
representations are consistent across subjects, we used an across-
subject decoding method that tests whether the neural activation
pattern is functionally similar across people, without requiring
the signal to be physically located in the exact same voxels (as
described in detail in Materials and Methods). We did this by first
anatomically segmenting the pSTS region in each subject’s brain
using an atlas (Desikan et al., 2006). Only the voxels in this seg-
mented region were subsequently used. The neural response for
each block was computed as the average neural signal across the
12 s stimulation period (time shifted by 4 s) for each pSTS voxel
for each subject. The neural response for each block was then
projected onto a common feature space using PCA. Each sub-
ject’s data were written in matrix form (voxels X blocks), which
allowed us to compute the PCs of this data matrix that kept most
of its variance (>95%). Keeping the number of PCs identical in
each subject yielded a common (subject-independent) feature
space (Fig. 2), within which the four AU classifiers were com-
puted with LDA (Martinez and Kak, 2001). This approach tests
the hypothesis that the neural responses in each subject are func-
tionally the same (in which case, their variance will also be the
same and the PCs used to define the feature space will be common
across subjects, resulting in successful decoding).

To determine the AU decoding efficacy of these voxels in the
pSTS, we used a leave-one-subject-out cross-validation test. This
means that the fMRI data of all but one of the subjects were used
to train the four AU classifiers described above, whereas the data
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Decoding results. Classification accuracy for an MVPA decoding the presence of AU 1, AU 2, AU 12, and AU 20 in images of facial expression. a, Classification accuracy in the pSTS, an

anatomically defined region thought to process changeable and dynamic aspects of the face. Results are shown for the between-subjects PCA approach, between-subjects MNI approach, and
within-subjects approach. Decoding accuracies are based on leave-one-out cross-validation tests computed using LDA. Error bars are SE. p values are calculated based on a permutation test
comparing classification with chance (dotted line). All AUs could be decoded significantly above chance in all cases, and the results were not statistically different across methods. b, Classification
accuracy across the whole brain, using the between-subjects PCA approach. All AUs could be decoded significantly above chance, and whole-brain decoding was not statistically better than pSTS
alone. ¢, Classification accuracy in the EVC, using the between-subjects PCA approach. The EVC was functionally defined by finding the voxels in anatomical regions of the EVC that had a larger BOLD
signal in all images compared with fixation. Classification in the EVC was not significantly greater than chance.

of the subject left out was used for testing them. Because there
were 10 subjects that could be left out, we tested each option and
computed the average classification accuracy and SE (Fig. 4a).

The results revealed significant decoding across subjects in
the pSTS for each of the four AUs (Fig. 4a). Notably, the image
changes in the stimuli were extremely small. For example, AU 2
corresponds to the upper movement of the outer corners of the
eyebrows and AU 20 specifies the lateral stretching of the lips
(Fig. 1a). Furthermore, univariate analysis did not uncover sig-
nificant differences in mean activation responses across AUs.
However, our results indicate that the pSTS response pattern
[multivoxel pattern analysis (MVPA)] is sensitive to these small
image changes. Also note the small SE in the plot. These small
differences indicate that the results are similar regardless of which
subjectis left out for testing, further demonstrating the consistent
representation of AUs in the pSTS across subjects. Moreover,
collapsing these classification accuracies over all AUs yielded a
statistically significant (¢ = 7.349, p = 0.002) average decoding of
59.52%.

Computational models of the perception of facial expressions
have long speculated that high-level categorizations (e.g., emo-
tions) are based on the recognition of AUs (Martinez and Du,
2012; Cohn and De la Torre, 2014). Studies in cognitive science
and social psychology also support this view (Oosterhof and
Todorov, 2009; Bartlett et al., 2014 ). However, to our knowledge,
until now, no studies had yet confirmed or identified the neural
basis of the visual recognition of AUs.

Decoding in MNI

The above decoding results were compared with those obtained
by a more classical approach—mapping the data of each subject’s
brain to a standard brain (MNI) and performing between-
subjects classification with PCA plus LDA in this standard-brain
space. As can be seen in Figure 4a, this approach also revealed
significant decoding for each AU. These results are statistically
identical (r = 0.4840, p = 0.6615) to those obtained with our
proposed PCA-aligned approach.

Within-subject decoding

The above between-subjects decoding results were comparable
with those obtained when doing a within-subject analysis (Fig.
4a). For our within-subject analysis, we used a leave-one-run-out
cross-validation approach within each subject independently and
then computed the mean classification accuracy and SE for each

AU across subjects. Collapsing the results over all AUs also yields
a statistically significant (t = 6.3424, p = 0.004) average decoding
0f60.44%. There was no significant decoding change when going
from a within-subject to a between-subject analysis (¢ = 1.577,
p = 0.212). This suggests that, not only does the pSTS contain
information about AUs, but the coding of AUs in the pSTS is
consistent across people; otherwise, a within-subject analysis
would yield significantly better decoding than the between-
subjects analysis described above.

Whole-brain analysis

To further investigate whether the pSTS is indeed the main brain
region in which this visual analysis occurs or whether other brain
areas might be as or more discriminant, we repeated the MVPA
used above but applied it to the whole brain (Fig. 4b). These
results can be thought of as the maximum neural decoding accu-
racies for these data, because they include contributions from the
whole brain. These whole-brain accuracies are statistically com-
parable with those obtained in the pSTS alone (+ = 0.957, p =
0.515), suggesting that the discriminant information is indeed
coded in that brain region. Moreover, when the same MVPA was
performed in the EVC, the AU classifiers were at chance (Fig. 4¢),
suggesting that the pSTS decoding was not driven by low-level
visual differences in the images but rather a higher-level visual
analysis of facial AUs. A qualitative analysis of the results in
Figure 4 also shows a distinctive pattern of decoding in the
pSTS versus EVC, and these patterns were statistically differ-
ent (t = 4.135, p < 0.02).

Is the pSTS the primary brain region coding AUs?

Finally, to more explicitly test our hypothesis, we inverted the
whole-brain classification process to identify the most discrimi-
nant voxels in the brain. Note that both the PCA + LDA trans-
formations are linear. This means that we can invert the
procedure described above (i.e., compute the inverse linear trans-
formation) to see which voxels are most discriminative for the
classification of these four AUs in the brain. Because the PCA
projection is subject specific, we mapped the coefficients (i.e.,
discriminant coefficients) of LDA to each of the subjects by in-
verting the PCA projection (see Materials and Methods; Fig. 3).
This approach identified the most discriminant cluster of voxels.
This corresponded to a cluster in the right pSTS (MNI coordi-
nates, x = 50, y = —39, z = 4; Fig. 5). Hence, an information-
based search yielded the same conclusion as the hypothesis-based
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Figure5.
with the largest LDA coefficients.

analysis reported previously, reinforcing

Most discriminant region. Sagittal, axial, and coronal views of the most discriminant region of the MVPA for AU decoding from the whole-brain analysis. This cluster s given by the voxels

the significant and specific role of the e .Qr::t?z:ii"efo din
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Our results strongly suggest that pSTS o p=-001
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also codes emotion categories. Using the L ., =l
approach described previously in this pa- ‘E I I
per, we asked whether emotion categories 8 321 I
could be decoded in the pSTS and the O, ,. .- 8 ____&BB ___B ___=B
whole brain (Fig. 6). As seen in this figure,
although we can consistently decode AUs 48 1 v e ) v e

pSTS - between pSTS - within whole brain - between whole brain - within

across subjects, decoding of emotion cat-
egories was much less reliable. Collapsing
across emotion categories, between-
subject decoding was significantly above
chance (t = 2.622, p = 0.04 in the pSTS
and r = 2.164, p = 0.07 in the whole
brain), but the effect size was very small. Furthermore, attempt-
ing to decode specific emotion categories yielded null results, i.e.,
our algorithm was unable to decode any of the seven emotion
categories in the PCA-aligned space or in MNI.

We also performed a within-subject analysis for emotion cat-
egory (Fig. 6). Here, we were able to decode emotion category
overall (p = 0.00003 in the pSTS, p = 0.001 in the whole brain),
although the effect size was once more very small. Additionally,
the decoding results of specific emotion categories were much
less reliable than those of AUs; using our MVPA approach, we
were only able to decode three of the seven emotions with a
p < 0.05 in the whole brain and only one of seven in the pSTS.
Our limited ability to decode emotion categories in pSTS could
be attributable to the low spatiotemporal resolution of fMRI; it is
possible that emotion categories are simply coded at a finer scale.
Moreover, recall that our method is specifically designed to detect
consistent neural representations that vary linearly between subjects.
Therefore, our inability to find a consistent common representation
across subjects does not mean that such a representation of emotion
categories does not exist in the pSTS, but rather that there is possibly
greater variability across participants in how emotions are encoded
by pSTS patterns than in how AUs are encoded.

Figure 6.

Discussion
A longstanding debate has endured on how facial expressions of
emotion are recognized by our visual system. The debate has

Decoding emotion categories. Decoding results (average and SE) of AU and emotion categories in the pSTS and whole
brain with a between-subject and within-subject analysis. Average results over all AUs and all emotion categories. Here, p values
are given by the corresponding ¢ test computed after collapsing the results over all AUs or emotion categories.

typically focused on whether neural representations of facial ex-
pression are categorical or continuous. The categorical model
propounds the existence of neurons tuned to fire exclusively
when a single emotion category is recognized in a facial expres-
sion (Darwin, 1965; Ekman et al., 1969). The continuous model
argues for a group of cells to respond to continuous features of
the expression, such as valance and arousal (Woodworth and
Schlosberg, 1954; Russell, 1980). Computational models have
suggested the coexistence of both representations (Dailey et al.,
2002; Martinez and Du, 2012), and case studies and fMRI studies
and single-cell recordings in humans have found evidence for
these two representations in the brain (Harris et al., 2012; Sieger
et al., 2015). However, computational models also suggest the
existence of a third type of representation based on AU analysis,
which is thought to precede the other representations (Cohn and
De la Torre, 2014; Du et al., 2014). However, this AU level repre-
sentation had not been identified previously in the brain.

Using fMRI, we identified a brain region responsible for the
recognition of these facial actions. First, a hypothesis-based anal-
ysis showed that we could decode AUs in the pSTS, both within
and across subjects. Then, a whole-brain exploratory analysis
showed that the most discriminant voxels to decode AUs are in
factlocated in the pSTS. Furthermore, these results were different
from decoding in the EVC, suggesting that this classification is
not based on low-level image features. Critically, this coding was
found to be consistent across people, such that we could decode
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the perceived facial action in participants not used to train the
decoder. These results thus support the coexistence of this third
AU-based representation for the visual analysis of facial expres-
sions in humans.

The existence of these three distinct types of representation
demonstrates the complexity and importance of emotion pro-
cessing for human behavior. They further suggest that atypical
processing of facial expressions of emotion may be attributable to
a variety of causes, potentially explaining the variety of distinct
behavioral changes seen in psychopathologies. The coexistence of
these three representations of emotion should not be taken to
mean that one is more important than the others or that they are
independent. It is most likely that the three representations inter-
act with one another. It is also believed that the recognition of
AUs is a necessary step for the categorization of emotion and the
decoding of valance and arousal in faces (Cohn and De la Torre,
2014; Du et al., 2014). However, although these are reasonable
hypotheses, additional research is needed to define the specific
mechanisms of recognition of emotion in the brain. It is also
possible that the pSTS encodes information at an even finer scale
than AUs as, for example, configural (i.e., second-order) features,
which are known to play a major role in the visual recognition of
emotion (Neth and Martinez, 2009).

Previous studies had shown that the pSTS is active when ob-
serving changes of eye gaze and other biologically salient features
(Allison et al., 2000; Haxby et al., 2000; Harris et al., 2012). Cog-
nitive studies of facial expressions of emotion also suggest that the
pSTS is involved in the analysis of changeable aspects of the face
(Adolphs, 2002, 2003). However, these studies did not address
the question of which changeable aspects are represented in the
pSTS. The present study provides evidence for the hypothesis that
the pSTS is involved in the recognition of AUs in a facial expres-
sion. This neural mechanism suggests that the pSTS is involved in
the recognition of faces at an intermediate level of abstraction,
i.e., higher level of abstraction than similarity based on image
features, but less abstract than a high-level semantic description
of the whole image (e.g., emotion category). A neural mechanism
for the representation of AUs has been theorized (but never lo-
calized), because it provides a highly efficient way to interpret a
large number of facial expressions of emotion (Du et al., 2014) by
reducing later categorization tasks to a simple check of present
(active) AUs rather than having to categorize each emotion inde-
pendently. This system is also consistent with computational
models of the visual system (Riesenhuber and Poggio, 1999; Serre
etal., 2007) and image categorization (Grill-Spector and Weiner,
2014), which assume a hierarchy of specialized areas with de-
scriptors at several levels of abstraction.

Importantly, we found that we could decode AU activation in
the pSTS but could not decode emotion category reliably across
subjects in this ROI. Although this may seem surprising given
that AU information could technically be used to classify emo-
tions, it is notable that the pSTS does not seem to be performing
this computation in a consistent way across subjects at the spatio-
resolution scanned. Previous attempts to decode emotion cate-
gories from fMRI have yet to yield robust findings, with no
positive results for between-subject decoding (Lindquist et al.,
2012). Two studies have been able to decode a small number of
emotion categories in a within-subject analysis in the pSTS (Said
et al., 2010; Wegrzyn et al., 2015), and Peelen et al. (2010) and
Skerry and Saxe (2014) found emotion-specific activation in
other areas of the STS. We also found some weak within-subject
emotion decoding in the pSTS, but emotion decoding was
stronger in the whole-brain analysis, suggesting that decoding
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of emotional categories may be performed in combination
with other ROIs as suggested by computational models (Mar-
tinez and Du, 2012) and fMRI studies (Harris et al., 2012;
Lindquist et al., 2012).

To obtain the results described above, we defined an innova-
tive machine learning analysis approach. Many MVPA methods
used in fMRI studies use a within-subject analysis (Cox and Sa-
voy, 2003; Nestor et al., 2011; Huth et al., 2012). This means that
a percentage of the acquisitions of a specific subject are used to
train the classifier, whereas the other acquisitions of the same
subject are used to test it. Thus, each subject provides training
and testing data. When decoding is achieved, the results suggest
we have identified a consistent and differential pattern of activa-
tion within each subject. However, we do not know whether these
results generalize to other subjects, i.e., would we be able to de-
code from data of additional subjects? This is problematic, be-
cause, if an ROl is believed to specifically code for AUs, decoding
should be achieved even in subjects not used to train the decoder.
The present study shows that this is indeed the case by training
the decoder with data of nine subjects and testing it with the data
of an independent subject.

The use of our new approach applying classifiers in subject-
aligned feature space enables us to access a common functional
space across subjects without having to rely on anatomical nor-
malization. It is important to note here that the innovation of the
present approach is in the definition of the PCA-alignment ap-
proach, not in the use of PCA and LDA themselves, which have
been used previously in within-subject analyses and in anatomi-
cally aligned data before (O’Toole et al., 2005; Misaki et al., 2010;
Coutanche and Thompson-Schill, 2012). Our approach also pro-
vides an alternative way of functionally aligning data across sub-
jects without requiring separate hyperalignment steps (Haxby et
al., 2011) and does not require the ranking of the PCs of each
subject’s normalized BOLD response to be identical. Because our
approach does not require independent datasets for estimating
the mapping across subjects and for classification, the method
can be applied to smaller amounts of data than hyperalignment.
However, our method will only work when the linear combina-
tion of all voxels given by PCA is functionally the same across
subjects (i.e., the PCs are aligned across subjects up to a linear
transformation). If between-subject functional correspondences
require nonlinear transformations, then our method would not
be able to find it, and in these cases hyperalignment would be
more applicable.

As a final note, it is worth mentioning the relevance of our
theoretical findings in the abnormal perception of faces. Specifi-
cally, the seemingly effortless, nonconscious recognition of facial
expressions is believed to be disrupted in certain psychopatholo-
gies. For example, in autism spectrum disorders, there is a lack of
neural activation in the pSTS compared with neurotypicals
(Harms et al., 2010). This difficulty interpreting faces and facial
actions may be attributable, in part, to a lack of the AU decoding
in the pSTS defined in the present study. Atypical functioning of
this neural system for AU decoding could explain these individ-
uals’ difficulties analyzing other facial actions and intentions, e.g.,
speech and social cues (Redcay et al., 2013).

In summary, the results reported herein support the view of a
specialized, dedicated neural mechanism for the analysis of facial
actions. This would explain how humans can recognize a large
number of facial expressions seemingly effortlessly and interpret
other people’s actions and intentions. A loss or disruption of
this system or its connections to other processing areas may un-
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derlie the difficulty that some people have in interpreting facial
constructs.
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