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Abstract

Motivation: The position-weight matrix (PWM) is a useful representation of a transcription factor

binding site (TFBS) sequence pattern because the PWM can be estimated from a small number of

representative TFBS sequences. However, because the PWM probability model assumes inde-

pendence between individual nucleotide positions, the PWMs for some TFs poorly discriminate

binding sites from non-binding-sites that have similar sequence content. Since the local three-

dimensional DNA structure (‘shape’) is a determinant of TF binding specificity and since DNA

shape has a significant sequence-dependence, we combined DNA shape-derived features into a

TF-generalized regulatory score and tested whether the score could improve PWM-based discrim-

ination of TFBS from non-binding-sites.

Results: We compared a traditional PWM model to a model that combines the PWM with a DNA

shape feature-based regulatory potential score, for accuracy in detecting binding sites for 75 verte-

brate transcription factors. The PWM þ shape model was more accurate than the PWM-only model,

for 45% of TFs tested, with no significant loss of accuracy for the remaining TFs.

Availability and implementation: The shape-based model is available as an open-source R pack-

age at that is archived on the GitHub software repository at https://github.com/ramseylab/

regshape/.

Contact: stephen.ramsey@oregonstate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Binding of a transcription factor (TF) to its cognate binding site in

DNA is a fundamental mechanism in gene regulation.

Computational recognition of TF binding sites (TFBSs) within the

noncoding genome is both a powerful source of mechanistic insights

from gene expression data (Roth et al., 1998) and a central problem

in bioinformatics. Experimentally, the binding sites for a TF can be

mapped genome-wide using a ChIP-seq assay (Johnson et al., 2007),

but applying ChIP-seq for each of the �2000 mammalian TFs or

starting from rare cell populations is infeasible due to the need for

high-affinity antibodies and/or due to the significant amount of

chromatin required (Park, 2009). In comparison, in silico TFBS rec-

ognition is unmatched in terms of the breadth of potential TF regu-

lators that can be simultaneously considered.

A cornerstone of computational strategies for TFBS recognition

is the encoding of a TF’s binding site sequence pattern (learned from

representative TFBS sequences) in a position-weight matrix (PWM)

(Stormo et al., 1982; Staden, 1984). Uncharacterized noncoding

DNA sequence is then scanned to identify high-scoring matches to

the PWM, which are taken as probable TFBSs. The PWM is efficient

for scanning, but as a standalone predictor it has high false-positive

rates (Wasserman and Sandelin, 2004) because of the cell type- or
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condition-dependent local epigenetic state (Cuellar-Partida et al.,

2012), limited representative binding sites for PWM estimation

(Cartharius et al., 2005) and the fact that TF–TFBS affinity can de-

pend on combinations of nucleotides within the site (Bulyk et al.,

2002). Frameworks that are used to integrate such correlates include

logistic regression (de Hoon et al., 2004), the support vector ma-

chine (Holloway et al., 2005), Bayesian networks (Chen et al.,

2007), data fusion (Lähdesmäki et al., 2008), linear threshold model

(Ramsey et al., 2010), hidden Markov model (Won et al., 2010) and

Random Forest (Hooghe et al., 2012).

Extensions of PWM-based methods have been proposed that in-

corporate features that correlate with the probability that a basepair

(bp) position coincides with a regulatory element (Ernst et al., 2010).

Such correlates include phylogenetic conservation, (Elnitski et al.,

2003), TFBS co-localization (Sinha et al., 2006), nucleosome position-

ing (Segal et al., 2006), histone acetylation (Vettese-Dadey et al.,

1996), motif conservation and TFBS co-localization (Xie et al., 2008)

and chromatin signatures (Pique-Regi et al., 2011). Methods that dir-

ectly incorporate a PWM are valuable because for many TFs, a PWM

is available but representative binding site sequences in the genome

are not, such as for PWMs obtained from protein-binding arrays

(Berger et al., 2006) or from structural modeling of the protein–DNA

complex (Contreras-Moreira, 2010).

A new potential correlate, local DNA ‘shape,’ is suggested by the

demonstration that TF binding site specificity depends on the se-

quence-dependent, three-dimensional shape of DNA (Rohs et al.,

2009). Improvements in Monte Carlo-based modeling and in molecu-

lar dynamics-based modeling of DNA structure have enabled the de-

velopment of DNAShape, a model that predicts local structural shape

parameters for the DNA double helix (in a standardized reference

frame and coordinate system; Lavery and Sklenar, 1988) from sliding

pentamer DNA subsequences (Zhou et al., 2013).

Here, we report the development of a classifier (‘DNA shape

classifier’) for predicting whether a short (8–32 bp) DNA sequence

from the noncoding genome is a TFBS for any TF, or whether it is a

non-binding-site sequence. This generic classifier is based on a novel

procedure—described herein—for extracting sequence length-

independent features from bp-level DNA shape parameters within

the binding site. We then combined the DNA shape classifier score

with the TF-specific PWM log-likelihood score (Claverie and Audic,

1996) into an integrated model for TFBS prediction. Importantly,

beyond the dependence of the PWM on representative binding site

sequences, the model does not require any TF-specific training or

parameter estimation. We compared the accuracy of the

PWMþshape model versus a PWM-only model for discriminating

TF-specific binding sites within noncoding promoter model se-

quences, and we found that the shape classifier improved the posi-

tive predictive value (PPV) for TFBS recognition, for 34 out of the

75 TFs that we tested; for the remaining TFs, the PPV of the

PWMþshape model was not significantly lower than that of

the PWM model.

2 Methods

2.1 TFBS and noncoding sequences
Representative binding site sequences St for each vertebrate TF t 2
{1,...,75} (jStj � 45, 8t, and jStjt ¼ 11 200) were obtained from the

JASPAR (release 5.0) and TFBSShape (Yang et al., 2014) databases.

For identifying non-regulatory genomic regions within 5 kb of tran-

scription start sites, PeakSeq-processed (Rozowsky et al., 2009)

peak files in UCSC BED format for 457 human ChIP-seq experi-

ments (spanning 119 TFs and 77 cell types) were obtained from the

January 2011 data release of the ENCODE Project (Gerstein et al.,

2012). A BED feature file of all regions of noncoding DNA in the

human genome within 65 kb of transcription start sites (TSSs) of all

RefSeq NM transcripts was constructed from exon, transcript, and

UTR features obtained from Ensembl release 74 (GRCh37 assem-

bly). All TFBS peaks were combined (basepair-level union) into a

single feature file that was used to mask the noncoding regions to

obtain a feature file of all noncoding, TFBS-depleted, TSS-proximal

(‘NCTDTP’) regions. DNA sequence was obtained for the NCTDTP

feature file (‘NCTDTP sequences’) using the UCSC Genome

Browser (GRCh37.p10). Unknown (i.e. ‘N’) basepairs were treated

as sequence gaps. For TFBS recognition for a TF with a PWM of

length l (which ranged from 8 to 32 bp over the set of 75 TFs), the

length l sequences from the core of the multiply aligned set of repre-

sentative binding sites for the TF was used as the positive set of cases

and as negative cases we used length-l subsequences from the

NCTDTP sequences (sampled as described in Section 2.3).

2.2 Quantification of local DNA shape of TFBS
Non-gap-spanning pentamer subsequences were obtained for each

TFBS or NCTDTP sequence (for the latter, pentamers were sampled,

see Section 2.3). Using the DNAShape model, absolute shape param-

eters were obtained for the central bp of each pentamer (propeller

twist ¼ ProT, minor groove width ¼ MGW) and for the shape

changes between central basepairs of two pentamer sequences that

are shifted by one bp (helix twist ¼ HelT, roll; ‘stepped’ param-

eters). Because binding site PWMs for different TFs have different

bp lengths, bp-level shape parameter values for each TFBS sequence

were reduced to length-independent summary statistics. Specifically,

from the l – 3 values for a ‘stepped’ shape parameter for a sequence

of length l (or l – 4 values for an ‘absolute’ shape parameter), five

l-independent features were extracted, as shown in Figure 1A: (‘max

value’, ‘min value’, ‘max width’, ‘max height’ and ‘average’).

[Features are defined as follows: ‘max value’ indicates the maximum

value for the shape parameter over all bp in the sequence, ‘min

Fig. 1. Outline of DNA shape-based features, TF-general binding site classifier

performance, and structure of PWMþshape model. (A) The five DNA shape

parameter-based features. (B) Performance comparison for three classifiers

for discriminating TFBS sequences (in general, not specific to a particular TF)

from non-binding-site, noncoding sequences (see Section 2.3). SVM, support

vector machine (Vapnik et al., 1996); AUC, area under the sensitivity versus

False-positive error rate curve (i.e. ‘ROC curve’); ADA, additive logistic regres-

sion (Friedman et al., 2000). AUC of an unbiased random classifier would be

0.5. (C) Data integration strategy
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value’ indicates the minimum value, ‘max width’ is the maximum

number of base pairs covered by one peak. ‘max length’ is a feature

describing the maximum difference between peak and bottom,

‘average’ is the average parameter value for this sequence.] Thus,

each sequence was reduced to 20 shape summary values.

2.3 DNA shape-based regulatory sequence classifier
A local DNA shape-based classifier was developed for discriminat-

ing short (8–32 bp) TFBS sequences (of any kind) from short

non-TFBS, noncoding, TSS-proximal sequences. A set of 10 000 rep-

resentative binding site sequences across all 75 TFs was used as the

universal set of positive cases, and a universal set of 10 000 negative

cases was obtained from sequences (non-gapped, and with equal

length distribution to the positive cases) that were sampled from

random locations and strand orientations from the NCTDTP se-

quence file. For each case, 20 sequence length-independent, local

DNA shape-based feature values were obtained (see Section 2.2).

The positive and negative cases were each randomly divided into

training (1/2) and test (1/2) sets. An ensemble decision tree classifier

[Random Forest (Breiman, 2001), with 500 trees and four features/

tree] was trained on the training case features. The ensemble classi-

fier’s voting fraction f(s) was used as a DNA shape-based regulatory

score (‘shape score’) for each sequence s. Random Forest was se-

lected because it outperformed (by area under the sensitivity versus

false-positive rate curve) the other supervised classifiers (support

vector machine with radial basis kernel; additive boosted logistic re-

gression) tested on this dataset (Fig. 1B). For performance evalu-

ation of the TF-specific, integrated (PWM þ shape) TFBS

recognition model (Section 2.5), the shape-based classifier was

trained for each TF while excluding all representative binding site

sequences for that TF from the training dataset. The test cases were

used for evaluating the TF-specific, PWM-based TFBS recognition

models (Section 3), and the twofold cross-validation procedure was

repeated 20 times to obtain samples of method performance. The

source code for the shape score classifier, including the trained

Random Forest decision trees on which it is based, are available as

an open-source R software package entitled regshape, that can be

downloaded and installed within an interactive R session as shown:

> install.packages(“devtools”)

> library(devtools)

> install_github(“ramseylab/regshape”, local¼TRUE,
build_vignettes¼TRUE)

Complete installation instructions and usage instructions are pro-

vided in the online supplementary material.

2.4 PWM scoring and threshold determination
For each TF, the multiple alignment for the positive test cases (repre-

sentative binding site sequences) corresponding to that TF (Section

2.3) were compiled into a l � 4 position probability matrix (PPM)

W (of ‘length’ l), for which each element wk;i denotes the probability

of observing nucleotide i 2 f1;2; 3; 4g (representing {A,C,G,T}) in

position k 2 f1; . . . ; lg of a binding site for the TF, estimated from

positional nucleotide counts with a pseudocount of 0.8. By defin-

ition,
X 4

i¼1
wk;i ¼ 1. ‘Background’ nucleotide frequencies fpig were

compiled from the NCTDTP sequences. Following (Claverie and

Audic, 1996), the PWM score S(W,s) for a string s of length l given

PPM W is defined by SðW; sÞ ¼
Xl

k¼1
lnðwk;sk

=psk
Þ, where sk is the

kth base of s. The 0.9998 quantile value [denoted by h(W)] of the

PWM score distribution on negative-case sequences (each of length

l) from the training set, was used as the score threshold. Thus, a

threshold-exceeding PWM score would be encountered on average

once per 2.5 kb in sliding-window, double-stranded PWM scanning

of the NCTDTP sequences.

2.5 Integrated predictions; performance evaluation
For a given TF with PPM W of length l and a given sequence s of

length l, two models were used to predict whether s is a binding site

for the TF or not: in the ‘PWM-only’ model, the sequence s is pre-

dicted to be a binding site if and only if its PWM score S(W,s) exceeds

the threshold h(W) that was estimated from the distribution of PWM

scores from a set of sequences of length l from the NCTDTP (Section

2.4). In the ‘PWMþshape’ model, which does not require training, the

voting fraction f(s) for the sequence is obtained from the regulatory

score classifier (Section 2.3), and the sequence s is predicted to be a

binding site if and only if both S(W,s)> h(W) and f(s)>0.5 (Fig. 1C).

As a negative control, a random model was used in which the DNA

shape score was sampled from the uniform distribution on [0,1].

To enable exploration of the models’ TFBS recognition perform-

ances on sets of positive and negative cases (l-mer sequences) with

varying degrees of overlap of their PWM score distributions, the

negative case sequences were composed of two sets—a ‘low’ set of l-

mer subsequences selected at random NCTDTP sequence locations,

and a ‘high’ set of l-mer subsequences of NCTDTP with high PWM

scores (exceeding h(W)). The ratio r of the size of the ‘low’ set to the

size of the ‘high’ set was varied between r ¼ 4 (meaning 20% of

negative cases had ‘high’ PWM scores) and r ¼ 10 000 (meaning

�0.01% of negative cases had ‘high’ PWM scores). The negative

case set composition approach is diagrammed in. Figure 2.

For the model promoter analysis, 100 bp subsequences of the

NCTDTP were sampled at random locations and in random orienta-

tions (without replacement), and concatenated to produce Nt se-

quences, each of length 1 kb. For each TF t, Nt of the 1 kb sequences

were selected [where Nt¼min(jStj, 450)] and Nt representative

TFBS sequences were sampled from the test set (without replace-

ment) and overwritten (one TFBS per sequence) into the Nt one-

kilobase sequences at random positions.

3 Results

For each of the TFs, representative binding site sequences were ob-

tained (from databases compiled from high-throughput studies;

Section 2.1) and partitioned into equal-sized training and test sets.

Fig. 2. Procedure for constructing sets of positive and negative cases for per-

formance evaluation in Experiment 1 (see Section 3.1). Here, cases corres-

pond to PWM-length oligonucleotide sequences sampled from

representative binding sites and from non-binding-site, noncoding sequence

(see Section 2.1)
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From the training-set TFBS sequences, a PWM was estimated for

each TF (Section 2.4). For each l � 4 PWM W, a score threshold

h(W) was obtained from the distribution of PWM match scores

S(W,s) of a training set of 10 000 l-mer subsequences of noncoding,

non-TFBS, TSS-proximal DNA (NCTDTP; Section 2.4). For each

sequence s, a score f(s) 2 [0, 1] representing the TF-generic, DNA

shape-based regulatory score, was obtained using a random forest

classifier; the classifier was trained on features extracted from local

DNA shape parameters corresponding to test-case DNA sequences

(Section 2.2). The PWMþ shape model was then compared to the

PWM-only model for TFBS recognition (Section 2.5) on both PWM-

length sequences (Experiment 1) and on in silico promoter sequences

into which test-set representative TFBS sequences were overwritten

at random locations (Experiment 2).

3.1 Experiment 1: PWM-length sequences
For each 4 � l PWM, the performance of the PWMþ shape model

was compared to the PWM-only model using test-set l-mer se-

quences (i.e. sequences that were not included in the classifier train-

ing; Section 2.3). The test-set sequences comprised (1) half the

representative binding sites for the TF (positive cases) and (2) 10

000 l-mer subsequences of noncoding, non-TFBS, TSS-proximal

DNA (NCTDTP, negative cases) of which 8 000 were sampled at

random locations in the NCTDTP sequence, and 2 000 were ‘chance

occurrences of PWM matches’ selected from among l-mer subse-

quences of the NCTDTP that had PWM scores exceeding h(W). The

performance of the two models for discriminating positive and nega-

tive test-set cases was assessed using a per-sequence positive predict-

ive value statistic (PPV ¼ TP/(TPþFP); TP ¼ true-positive cases,

FPs ¼ false-positive cases). Because the more discriminating model

(PWMþ shape) is expected to have a lower FP rate than the PWM-

only model, the PWM-only model was also compared to a combined

model using random scores from the DNA shape classifier

(‘PWMþ random’; Section 2.5).

For 53 out of 73 (i.e. 72%) of TFs tested, the PWMþ shape

model had a higher average PPV than the PWM-only model (Fig. 3;

Welch’s t-test with a¼0.05), whereas there was negligible difference

in PPV between the PWMþ random model and the PWM-only

model. As expected, the per-sequence PPVs of the PWMþ shape

model and the PWM-only model were indistinguishable when the

negative-case set of test sequences was entirely selected at random

from the NCTDTP (i.e. when chance high-scoring matches occurred

at their empirical background frequency; Supplementary Fig. S1);

for the case of high-scoring matches occurring at their background

frequency, a per-promoter PPV is a more useful measure of TFBS

recognition performance, as described in Section 3.2.

3.2 Experiment 2: in silico promoter analysis
To assess the relative performance of the PWMþ shape and PWM-

only models for TFBS recognition on a promoter-wide basis, Nt

noncoding sequences, each 1 kb in length, were sampled from

NCTDTP sequences (Section 2.5). For each TF t (whose PWM

length is denoted by l), 45�Nt�450 representative sequences were

randomly selected from the test set of TFBS and were overwritten

into an equal number of the one-kilobase sequences at random pos-

itions and orientations (one TFBS per kb sequence; Section 2.5;

Fig. 4A). In this manner, sets of Nt ‘TFBS-containing’ (positive) and

Nt NCTDTP (negative) in silico promoter sequences were obtained,

each containing 2(1000 – lþ1) subsequences for which PWM scores

and DNA shape classifier scores were obtained (Section 2.3, 2.4).

For each in silico promoter sequence pj (where j 2 {1, . . . , 2 Nt} iden-

tifies the in silico promoter), the promoter-level PPV, denoted

PPV(pj), was computed across all 2(1000 – lþ1) subsequences

(including the reverse complement), where each subsequence was

treated as an individual classification case.

Fig. 3. Combined PWMþshape model improves PPV for discriminating TFBS

from non-binding-site sequences, over the PWM-only model, for 53 out of 73

TFs. Bars, standard error (SE, N ¼ 20). Asterisk denotes rejection of null hy-

pothesis of equal means, with a ¼ 0.05 (Welch’s t-test)

Fig. 4. (A) Diagram of the in silico promoter model for TFBS recognition. (B)

Combined PWMþshape model improves average PPV for detection of TFBS

within 1 kb in silico promoters, versus a PWM-only model, for 34 out of the 75

TFs that were tested. Bars, SE (90�N � 900 for each). Asterisk denotes rejec-

tion of null hypothesis of equal means, with a ¼ 0.05 (Welch’s t-test). (C) The

difference in error rates between the PWMþshape model and the PWM-only

model shows that filtering by DNA shape decreases type I error more than it

increases type II error, for sequence-based recognition of TFBS. (Inset: scatter

plot of same data show on the bar-plot)
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For each TF, the overall performance of each model

(PWMþ shape and PWM-only) was computed by averaging across

the in silico promoters, i.e. by computing <PPVðpjÞ>j. The

PWMþ shape model had a higher average PPV than the PWM-only

model (at P<0.05, Welch’s t-test), for 34 out of the 75 TFs that

were analyzed (Fig. 4B); in no case did the PPV have a statistically

significant reduction in the PWMþ shape versus PWM-only model.

To quantify the trade-off between sensitivity and specificity in the

PWMþ shape versus PWM-only model, for each TF (PWM

length¼ l), the sensitivity and false-positive error rate for TFBS clas-

sification was computed across all l-subsequences of all of the in sil-

ico promoters. For the median over all 75 TFs, the false-positive

error rate for the PWMþ shape method was 12.1% lower than for

the PWM-only method, while the sensitivity of the PWMþ shape

method was only 5.8% less than the PWM-only method (Fig. 4C,

Supplementary Fig. S2; Table S1).

3.3 Example of DNA shape association with TFBS
A fundamental limitation of the PWM model is that the nucleotide

probabilities at each nucleotide position within the PWM are inde-

pendent of those in the other nucleotide positions. Thus, the PWM

cannot accurately model TF-DNA binding that depends on specific

nucleotide combinations at two or more positions within the bind-

ing site. In contrast to the PWM, local DNA shape in general de-

pends on combinations of nucleotides at nearby positions. Thus, the

DNA shape score can capture multi-base dependencies within a

binding site sequence that can affect physical proximity to DNA-

contacting residues of a TF. For example, the PWM of TF Znf263

has a purine-rich 30 region (positions 19–21; Fig. 5A). The frequency

at which sequence ‘AAA’ appears in the flanking positions 19–21

within a set of 15 235 representative binding site sequences (com-

piled from a ChIP-seq experiment; Frietze et al., 2010) is 1.42-fold

lower than would be expected based on the PWM constructed from

the representative sequences (Fig. 5B), indicating that Znf263 has

lower affinity for binding to sites that have flanking ‘AAA,’ than to

sites containing other combinations of purines. While the PWM for

Znf263 is unable to detect the lower affinity for binding to se-

quences containing the flanking ‘AAA’ despite being trained on the

same set of binding site sequences (Fig. 5C; Supplementary Fig. S3),

the TF-general DNA shape classifier assigns lower voting fraction

scores (by an average 13%) to sequences containing the flanking

‘AAA’versus representative binding site sequences (P<10�15,

Welch’s t-test), despite the fact that it was not trained using repre-

sentative binding site sequences for Znf263 (Fig. 5D).

4 Discussion

We report the first implementation of a TF-generalized classifier

based on local DNA shape parameters that improves PWM-based

TFBS prediction. For both short sequences and in silico promoters,

the proposed approach significantly improved the PPV for most TFs

versus the traditional PWM method. This improvement was ob-

tained with a simple shape score-based filtering criterion that did

not require any training. Overall, filtering on DNA shape score

decreased type I error by more than it increased type II error. It

seems likely that TFBS recognition performance could be further im-

proved by varying the voting fraction cutoff or by considering more

sophisticated methods of combining features. General TFBS recogni-

tion performance by the shape-based classifier will likely be further

improved as more TF ChIP-seq datasets are added to the training

dataset, both by providing a more complete set of positive TFBS

cases and by further eliminating false-negative cases from the

NCTDTP sequences used in training the classifier. The use of TF-ag-

nostic regulatory correlates, such as the novel shape score reported

here, complement approaches that require TF-specific training using

representative TFBS sequences (Hooghe et al., 2012), with the two

approaches addressing different problem domains—TFBS enrich-

ment screening using the broadest collection of PWMs available,

versus TF-specific TFBS recognition using a substantial set of repre-

sentative training cases.
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