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Schizophrenia is a clinically heterogeneous disorder that 
is perhaps more accurately characterized as “the schizo-
phrenia syndrome.” This clinical heterogeneity is reflected 
in the heterogeneous neurobiological presentations associ-
ated with the illness. Moreover, even highly specific neural 
aberrations that are associated with distinct symptoms of 
schizophrenia are linked to a wide range of risk factors. 
As such, any individual with schizophrenia likely has a 
particular set of risk factors that interact and converge to 
cross the disease threshold, forming a particular etiology 
that ultimately generates a core pathophysiology. This core 
pathophysiology may then produce 1 or more symptoms of 
schizophrenia, leading to common symptoms across indi-
viduals in spite of disparate etiologies. As such, the schizo-
phrenia syndrome can be considered as an equifinal entity: a 
state of dysfunction that can arise from different upstream 
etiologies. Moreover, schizophrenia etiologies are multi-
factorial and can involve the interactive effects of a broad 
range of genetic, environmental, and developmental risk 
factors. Through a consideration of how disparate etiolo-
gies, caused by different sets of risk factors, converge on 
the same net dysfunction, this paper aims to model the equi-
final nature of schizophrenia symptoms. To demonstrate 
the equifinal model, we discuss how maternal infection and 
adolescent cannabis use, 2 recognized schizophrenia risk 
factors, may interact with other genetic, environmental, 
and/or developmental risk factors to cause the conserved 
clinical presentation of impaired working memory.
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Introduction

Schizophrenia is a neurodevelopmental syndrome associ-
ated with functional impairments extending across social, 

emotional, perceptive, and cognitive domains.1,2 The 
complex clinical presentation of schizophrenia is accom-
panied by an equally complex etiology and pathology, 
thought to involve genetic susceptibility that provides a 
vulnerable substrate upon which environmental insults 
can act.3,4 Many identified gene × environment interac-
tions emerge during particular developmental periods. 
Thus, the etiologies that produce symptoms of schizo-
phrenia may be thought of as the convergence of gene 
× environment × development (G × E × D) risk factors, 
which may need to be present in particular combina-
tions to produce clinically relevant pathology. Such com-
binations of risk factors are likely necessary to initiate 
the pathogenic cascade that ultimately produces clinical 
symptoms.5 As there are likely many sets of G × E × D 
risk factors capable of ultimately producing an individual 
clinical symptom of schizophrenia, any given symptom 
of schizophrenia can represent an equifinal outcome: one 
that can emerge from different upstream etiologies (fig-
ure 1). One research strategy to mitigate this etiological 
complexity is to focus studies on symptoms that are asso-
ciated with defined neuronal circuitry pathways, as even 
different etiologies will likely arrive at a common patho-
logical entity.6 Impaired cognitive ability, namely working 
memory, is a candidate symptom to study through this 
type of approach.

Working memory, the ability to transiently hold infor-
mation in mind to guide future thoughts or behaviors,7 is 
a fundamental cognitive function consistently impaired 
across individuals with schizophrenia.6,8 Indeed, work-
ing memory deficits are present before the emergence of 
positive symptoms,9 are pervasive and persistent,8,10 and 
may underlie deficits seen in other cognitive domains 
in schizophrenia.11 Further, cognitive ability, including 
working memory, is the best predictor of important func-
tional outcomes, such as employment, reintegration into 
society, and relapse.12,13 Working memory ability depends 
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upon proper activation of circuitry in the prefrontal cor-
tex (PFC).14,15 One process thought to be essential for 
working memory ability is synchronized neuronal activ-
ity in the gamma frequency (30–80 Hz).16–19 Accordingly, 
individuals diagnosed with schizophrenia show altered 
PFC activation, including lower power of gamma oscilla-
tions, during tasks that recruit working memory.18,20 Thus, 
alterations in PFC circuitry may contribute to the cogni-
tive impairment seen in individuals with schizophrenia.

Gamma oscillations depend upon the coordinated 
inhibition of pyramidal cells by perisomatic-targeting 
GABAergic basket cells that express the calcium-binding 
protein parvalbumin (PV).18,21 PV basket cells are thought 
to be critical for the precise, rapid pace of gamma oscil-
lations, and direct stimulation of PV basket cells can gen-
erate gamma oscillations.22,23 Gamma oscillatory activity 
can be modulated by a second population of GABAergic 

basket cells that express the neuropeptide cholecystokinin 
(CCK).24 CCK basket cells are thought to be critical for 
fine-tuning gamma oscillations and PV basket cell activ-
ity,21,24 and they also express the cannabinoid 1 receptor 
(CB1R).25 In addition to distinct molecular and electro-
physiological profiles, these 2 basket cell populations also 
have distinct developmental trajectories from birth to 
adulthood.26 Interestingly, molecular alterations that may 
impair the ability of PV and CCK basket cells to regulate 
gamma oscillations have been identified in studies of post-
mortem human PFC tissue of individuals with the schizo-
phrenia syndrome.27 In PV basket cell axonal boutons, 
protein levels of PV and the cardinal GABA-synthesizing 
enzyme, GAD67, are lower.28,29 In CCK basket cells, 
mRNA levels of CCK and the CB1R are lower.30

The distinct molecular and developmental profiles 
of PV and CCK basket cells render them sensitive to 

Fig. 1.  Model of the equifinal nature of impaired working memory in schizophrenia. (A) Genetic (G), environmental (E), and develop-
mental (D) risk factors are not potent enough to cross the disease threshold. (B) In specific combinations, these risk factors can cross the 
disease threshold to produce a multifactorial etiology. These distinct etiologies can then initiate pathogenesis to produce a pathological 
entity, which leads to the core pathophysiology that underlies the clinical symptom. Distinct etiologies can lead to the same pathological 
entity, and distinct pathological entities can lead to a common pathophysiology. This framework identifies how different, multifactorial 
etiologies can ultimately lead to a common clinical symptom.
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different risk factors. However, as each population can 
influence gamma oscillations, disparate factors acting on 
either cell type may produce a core pathophysiology of 
dysfunctional gamma oscillations (figure 1). This paper 
considers the equifinal nature of working memory deficits 
in the schizophrenia syndrome by discussing how differ-
ent multifactorial etiologies, through different neurobio-
logical mechanisms and active at different developmental 
periods, could give rise to the core pathophysiology of 
impaired gamma oscillations and the common clinical 
symptom of impaired working memory.

Maternal Infection-Associated Risk Factors and PV 
Basket Cell Dysfunction

One ExD risk factor associated with increased risk of 
schizophrenia is maternal infection.31–33 For example, 1 
review of epidemiological studies calculates that approxi-
mately 30% fewer individuals would develop schizo-
phrenia if  the 3 most common maternal infections were 
completely prevented.34 However, maternal infection 
alone is not sufficient to cause schizophrenia. For exam-
ple, while up to 50% of the general population is infected 
during influenza pandemics,35 the relative risk of schizo-
phrenia increases 1- to 3-fold after such an outbreak.34,36 
As such, most offspring exposed to maternal infection 
will not go on to develop schizophrenia. Thus, the vulner-
ability induced by maternal infection must interact with 
other genetic, environmental, and/or developmental fac-
tors to cross the disease threshold.37–40

Experimental animal models of maternal immune 
activation have provided insights into these multifactor 
relationships. For example, mice exposed to immune acti-
vation in utero show schizophrenia syndrome-relevant 
behavioral abnormalities in adulthood, such as impaired 
sensorimotor gating41–43 and cognitive ability,41,43–47 includ-
ing working memory.48,49 Maternal immune activation 
models also show molecular changes that are identified 
in the PFC of individuals with schizophrenia,50 including 
lower expression of PV,43 GAD67,51 and GAD67 in PV 
axonal boutons.52

As diverse infectious agents can cause similar molecu-
lar and behavioral alterations, some shared mechanism of 
immune activation likely underlies this effect. One likely 
candidate is the maternal and/or fetal immune response. 
Maternal infection significantly increases the levels of 
immune-associated agents in the fetal brain, namely pro-
inflammatory cytokines.53,54 Proinflammatory cytokines 
increase the production of reactive oxygen and reactive 
nitrogen species, which can lead to a state of oxidative 
stress. While a short period of oxidative stress can be 
tolerated in the stable adult cortex, the developing fetal 
brain may be particularly vulnerable given its lower anti-
oxidant capacity, high rate of oxygen metabolism, and 
significant population of immature cells.55,56 PV basket 
cells appear to be particularly sensitive to the damaging 

effects of proinflammatory cytokine release and oxidative 
stress given their protracted development and the espe-
cially high energetic demands their electrophysiological 
and circuit properties afford.57–59

Importantly, maternal infection alone is unlikely 
to initiate a pathogenic cascade significant enough to 
cross the disease threshold. However, once PV basket 
cells are impaired by prenatal immune activation, addi-
tional insults acting upon these vulnerable cells may 
more readily tip the system over the disease threshold. 
Indeed, recent animal studies investigating the effects of 
combinatorial E × D risk factors support just such an 
interpretation. Studies that induce maternal immune acti-
vation followed by peripubertal stress show an additive 
effect on both behavioral and molecular measures. This 
combination produces more robust deficits in cognition 
and sensorimotor gating60 and GAD67 mRNA and pro-
tein levels61 than either challenge alone. Moreover, mice 
exposed to maternal immune activation show greater 
proinflammatory cytokine release during peripuber-
tal stress.60 Together, these results suggest that maternal 
immune activation is a risk factor that renders the devel-
oping cortex, and especially PV basket cells, more vulner-
able to the proinflammatory cytokine release initiated by 
peripubertal stress. The lower PV and GAD67 expression 
caused by these upstream insults is predicted to impair 
gamma oscillations,62 and subsequently working memory 
ability.27

Experimental animal studies have also investigated G 
× E × D interactions in the context of maternal immune 
activation. Mutations in the DISC1 gene have been linked 
to schizophrenia and other severe mental illnesses,63 and 
DISC1 mutations in mice can cause reductions in PV and 
GAD6764–67, as well as deficits in gamma oscillations68 
and working memory ability.69 Combining maternal 
immune activation with a DISC1 genetic mutation (G × 
E × D risk factors) produces greater deficits in PV in the 
PFC70 and measures of cognitive ability and sensorimo-
tor gating70–73 than the gene mutation alone. Thus, DISC1 
mutations appear to render animals, and putatively 
humans, more susceptible to in utero immune activation. 
Accordingly, an epidemiological study demonstrated that 
in utero exposure to infection combined with genetic 
liability (ie, a family history of schizophrenia) conferred 
a significantly increased risk for developing schizophre-
nia.38 As such, other genetic and environmental risk fac-
tors present in an individual may determine the impact of 
maternal infection on cognitive function, with clinically 
relevant pathology emerging only when specific risk fac-
tors co-occur.

Adolescent Cannabis Use-Associated Risk Factors and 
CCK Basket Cell Dysfunction

Sustained cannabis use during early adolescence has 
repeatedly been shown to increase risk for developing 
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schizophrenia.74 It may also potentiate schizophrenia 
onset: in a large meta-analysis, cannabis users developed 
psychotic symptoms an average of 3  years earlier than 
individuals who developed psychotic symptoms but did 
not use cannabis.75 Further, the link between heavy can-
nabis use during adolescence and schizophrenia is not 
readily explained as “self-medication,” as cannabis use 
almost always precedes emergence of psychotic symp-
toms in these individuals.74

Cannabis use during adolescence is associated with 
persistent impairments in cognitive ability, including 
working memory, which can extend for years after absti-
nence.74,76–80 For example, studies in rats found that when 
∆9-tetrahydrocannabinol (THC), the principal psychoac-
tive chemical in cannabis,81 is chronically administered 
during adolescence, it can produce spatial working mem-
ory deficits in adulthood.82 Given this lasting relationship, 
cannabis may exert its effects by altering the circuitry 
involved in regulating gamma oscillations and working 
memory processes. Studies in both humans and animal 
models support this interpretation: the power of evoked 
gamma oscillations is significantly reduced in chronic 
cannabis users,83 in human subjects acutely administered 
THC,84 and in adult mice that were administered THC 
during the pubertal period.85

CCK basket cells may be especially affected by the 
presence of THC in the brain. THC exerts its actions 
by activating the CB1R,86 a Gi/o-protein coupled recep-
tor.87 CB1Rs are highly expressed in the PFC,88 and in 
primate PFC, CB1Rs are almost exclusively expressed on 
CCK basket cells.25 The unique sensitivity of prefrontal 
CCK basket cells to exogenous cannabinoids suggests 
that they may be a key anatomical substrate mediating 
the long-term effect of cannabis on both gamma oscilla-
tions and working memory performance. Indeed, during 
the intense pyramidal cell firing characteristic of gamma 
oscillations, endogenous cannabinoids (known as endo-
cannabinoids) are retrogradely released from these pyra-
midal cells and bind to the CB1Rs located on CCK basket 
cells.89 Activation of CB1Rs suppresses GABA release 
from CCK basket cells,89–91 leading to reduced inhibition 
of pyramidal cells92,93 in a process termed depolarization-
induced suppression of inhibition. Chronic activation of 
CB1Rs via exogenous cannabinoids during prefrontal 
cortical development may disrupt this usually carefully 
regulated system and cause persistent impairments in the 
ability of CCK basket cells to properly regulate gamma 
oscillations.94

However, despite a significant interaction with both 
schizophrenia onset74 and working memory impairment,95 
and the existence of a plausible biological mechanism for 
its effects, adolescent cannabis use appears to be neither 
necessary nor sufficient to cause schizophrenia onset. 
Indeed, only a minority of adolescents who smoke can-
nabis develop any kind of psychosis, and not all individu-
als who develop schizophrenia smoke cannabis during 

adolescence.74 Thus, as in the case of maternal immune 
activation, adolescent cannabis use may represent an 
E × D interactive risk factor, promoting schizophrenia 
symptomology only in individuals specifically vulnerable 
due to the presence of other risk factors. Indeed, studies 
suggest that genetic variation may play a significant role 
in determining an individual’s susceptibility to the dam-
aging effects of adolescent THC exposure. For example, 
carriers of the AKT1 rs2494732 C/C single nucleotide 
polymorphism who also used cannabis were at a 2 times 
greater risk of developing a psychotic disorder, compared 
with T/T carriers.96,97 Moreover, the influence of the C/C 
genotype scaled with frequency of use: C/C allele carri-
ers who used cannabis daily had a 7-fold greater risk of 
developing a psychotic disorder than T/T allele carriers 
with equivalent cannabis use.97 Further, heavy cannabis 
users with the C/C genotype perform worse on cognitive 
tasks, even after a year of cannabis abstinence.98 As such, 
the AKT1 rs2494732 C/C genotype may render individ-
uals especially sensitive to the effects of chronic CB1R 
stimulation during adolescence.

Finally, like maternal immune activation, sustained 
adolescent cannabis use may interact with other E × D 
risk factors to compound schizophrenia risk. Childhood 
trauma is an E × D risk factor99 shown to act in con-
junction with adolescent cannabis use to compound 
risk for schizophrenia onset.100 For example, a national 
comorbidity study demonstrated that individuals who 
experienced childhood sexual trauma and used cannabis 
before 16 years of age were nearly 12 times more likely to 
develop a psychotic disorder than individuals who only 
experienced 1 risk factor.101 As such, adolescent canna-
bis use may represents a single contributory E × D “hit” 
that may produce the net outcome of schizophrenia only 
in conjunction with other genetic, environmental, and/or 
developmental risk factors.

Conclusions

Maternal immune activation and adolescent cannabis use 
represent just 2 examples, selected from a pool of schizo-
phrenia syndrome risk factors, which can interact with 
other genetic, environmental, and developmental risk 
factors to create a schizophrenia etiology102–104 (figure 1). 
Throughout their lifetimes, individuals are invariably 
exposed to a wide range of schizophrenia-related risk 
factors. The studies discussed in this article suggest that 
these risk factors must occur in particular combinations 
to cross the disease threshold. It is important to recognize 
that while these examples outline a useful model of the 
disease progression, the precise neurobiological under-
pinnings of disease are invariably more complex. Indeed, 
impaired PFC gamma oscillations are neither the only 
mechanism through which the risk factors discussed in 
this article may confer symptomatology nor the only neu-
robiological substrate of impaired working memory.
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However, a consideration of how particular symptoms 
can emerge from different etiologies105,106 may be valuable 
for producing effective and potent treatments for indi-
viduals with a mental illness, and preventative measures 
for individuals at risk for a mental illness.5 The efficacy 
of such a personalized approach has already been dem-
onstrated in medical conditions ranging from breast can-
cer107 to cystic fibrosis,108 and identification of individual 
etiological routes may inform psychiatric treatment as 
well.109,110 For example, drugs that target CCK basket cell 
functioning may be uniquely effective in individuals with 
schizophrenia who have a particular genotype and had 
heavy use of cannabis during adolescence. Such a tech-
nique is highly individualized, with treatments targeting 
individuals who have experienced specific risk factors, and 
preventative measures targeting individuals with a high 
likelihood of experiencing specific risk factors. Indeed, 
with such an approach, the equifinality of schizophrenia 
symptoms, and the multifactorial nature of schizophre-
nia etiologies, may become a useful facet of treatment 
and prevention, rather than an obstacle in its path.
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