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Abstract

Motivation: Protein contact prediction is important for protein structure and functional study. Both

evolutionary coupling (EC) analysis and supervised machine learning methods have been de-

veloped, making use of different information sources. However, contact prediction is still challeng-

ing especially for proteins without a large number of sequence homologs.

Results: This article presents a group graphical lasso (GGL) method for contact prediction that inte-

grates joint multi-family EC analysis and supervised learning to improve accuracy on proteins with-

out many sequence homologs. Different from existing single-family EC analysis that uses residue

coevolution information in only the target protein family, our joint EC analysis uses residue coevo-

lution in both the target family and its related families, which may have divergent sequences but

similar folds. To implement this, we model a set of related protein families using Gaussian graph-

ical models and then coestimate their parameters by maximum-likelihood, subject to the constraint

that these parameters shall be similar to some degree. Our GGL method can also integrate super-

vised learning methods to further improve accuracy. Experiments show that our method outper-

forms existing methods on proteins without thousands of sequence homologs, and that our

method performs better on both conserved and family-specific contacts.

Availability and implementation: See http://raptorx.uchicago.edu/ContactMap/ for a web server

implementing the method.

Contact: j3xu@ttic.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein contacts contain important information for protein folding

and recent works indicate that one correct long-range contact for

every 12 residues may allow accurate topology-level modeling (Kim

et al., 2014). Thanks to high-throughput sequencing and better statis-

tical and optimization techniques, evolutionary coupling (EC) analysis

for contact prediction has made good progress, which makes de novo

prediction of some large proteins possible (Hopf et al., 2012; Marks

et al., 2011; Nugent and Jones, 2012; Skwark et al., 2013). For ex-

ample, the Baker group successfully predicted the fold of a CASP11

target T0806 with 256 amino acids using predicted contacts.

Nevertheless, contact prediction accuracy is still low even if only the

top L/10 (L is the sequence length) predicted contacts are evaluated.

Existing contact prediction methods belong to roughly two cate-

gories: (i) EC analysis methods, such as (Burger and van Nimwegen,

2010; Di Lena et al., 2011; Marks et al., 2011), that make use of

multiple sequence alignment; and (ii) supervised machine learning

methods, such as SVMSEQ (Wu and Zhang, 2008), NNcon (Tegge

et al., 2009), SVMcon (Cheng and Baldi, 2007), CMAPpro (Di Lena

et al., 2012), that predict contacts from a variety of information
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including mutual information and sequence profiles. In addition, a

couple of methods also use physical constraints, such as PhyCMAP

(Wang and Xu, 2013) and Astro-Fold (Klepeis and Floudas, 2003).

MetaPSICOV (Jones et al., 2015) is a recent supervised learning

method that predicts contacts by integrating four EC analysis meth-

ods and lots of non-coevolutionary information.

Residue EC analysis is a pure sequence-based, unsupervised

method that predicts contacts by detecting coevolved residues from

the multiple sequence alignment (MSA) of a single protein family.

This is based upon an observation that a pair of coevolved residues

is often found to be spatially close in the three-dimensional struc-

ture. Mutual information (MI) is a local statistical method used to

measure residue coevolution strength, but it cannot tell apart direct

and indirect residue interaction and thus, has low prediction accur-

acy. Along with many more sequences are available, global statis-

tical methods such as maximum entropy and probabilistic graphical

models are developed to infer residue coevolution from MSA

(Balakrishnan et al., 2011; Cocco et al., 2013; Jones et al., 2012;

Lapedes et al., 1999, 2012; Marks et al., 2011; Thomas et al., 2008,

2009; Weigt et al., 2009). These global methods can differentiate

direct from indirect residue couplings and thus, are more accurate

than MI. See (de Juan et al., 2013) for an excellent review of EC

analysis. Representative tools of EC analysis include Evfold (Marks

et al., 2011), PSICOV (Jones et al., 2012), GREMLIN (Kamisetty

et al., 2013), and plmDCA (Ekeberg et al., 2013).

Supervised machine learning methods (Cheng and Baldi, 2007;

Shackelford and Karplus, 2007; Wang and Xu, 2013) make use of

MI, sequence profile and other protein features, as opposed to EC

analysis that makes use of only residue co-evolution. Experiments

show that due to use of more information, supervised learning may

outperform EC methods for proteins with few sequence homologs

(Wang and Xu, 2013). Recently, a few groups such as DNcon

(Eickholt and Cheng, 2012), CMAPpro (Di Lena et al., 2012) and

PConsC2 (Skwark et al., 2014) have applied deep learning to con-

tact prediction and reported performance improvement.

In this article, we present a new method CoinDCA (coestimation

of inverse matrices for direct-coupling analysis) for contact predic-

tion that conducts joint multifamily EC analysis through group

graphical lasso (GGL) (Danaher et al., 2014), which is an extension

of the graphical lasso formulation employed by PSICOV (Jones

et al., 2012). The underlying intuition for joint EC analysis is that

distantly related families with divergent sequences may share similar

contact maps and we can leverage this by enforcing contact map

consistency to improve accuracy. Supervised learning uses different

information sources than EC analysis, so their combination should

also lead to better prediction accuracy.

The experiments presented here show that our method outperforms

existing EC or supervised machine learning methods regardless of the

number of non-redundant sequence homologs available for a target

protein under prediction, and that our method not only performs better

on conserved contacts, but also on family-specific contacts. We also

find out that contact prediction may be worsened by merging multiple

related families into a single one followed by single-family EC analysis,

or by consensus of single-family EC analysis results.

2 Methods

Overview. Our joint multifamily EC analysis predicts contacts of a

target family not only using its own residue co-evolution informa-

tion, but also those in its related families, which may share similar

contact maps. It may not be the best to model all these related fami-

lies using a single Gaussian graphical model (GGM) since their

sequences may not be very similar. In contrast, we employ group

graphical lasso (GGL) to estimate their joint probability distribu-

tion, in which each family is modeled by a separate but correlated

GGM. The correlation of two GGMs depends on the evolutionary

distance of their corresponding families. We use Random Forests, a

popular supervised learning method, to predict the probability of

two residues forming a contact from a variety of protein features.

Then we integrate the predicted probability as a prior into our GGL

to further improve the accuracy of joint EC analysis.

2.1 Probabilistic model of a single protein family
Modeling a single protein family using a probabilistic graphical

model has been described in a few papers (Balakrishnan et al., 2011;

Jones et al., 2012; Ma et al., 2014; Marks et al., 2011). Here, we

briefly introduce GGM used by PSICOV since it is needed to under-

stand our joint graphical model. In this article, we use k to index

one protein family under study and K the total number of related

protein families, respectively. Given a protein family k and the MSA

(MSA) of its sequences, let X denote this MSA where Xk
ir is a 21-

dimension binary vector indicating the amino acid type (or gap) at

row r (of this MSA) and column i and Xk
irðaÞ is equal to 1 if the

amino acid at row r (of this MSA) and column i is a. Let X
k

i denote

the mean vector of Xk
ir across all the rows (i.e. proteins). Let L de-

note the sequence length of this family and Nk the number of se-

quences. Assuming this MSA has a Gaussian distribution Nðlk;RkÞ
where lk is the mean vector with 21 L elements and Rk the covari-

ance matrix of size 21 L�21 L. The covariance matrix consists of L2

submatrices, each having size 21�21 and corresponding to two col-

umns in the MSA. Let Rk
ij denote the submatrix for columns i and j.

For any two amino acids (or gap) a and b, their corresponding entry

Rk
ijða; bÞ can be calculated as follows.

Rk
ijða;bÞ ¼

1

Nk

XNk

r¼1
ðXk

irðaÞ �X
k

i ðaÞÞðXk
jrðbÞ �X

k

j ðbÞÞ (1)

The Rkcalculated by (1) is an empirical covariance matrix, which

can be treated as an estimation of the true covariance matrix. Let

Xk ¼ ðRkÞ�1denote the inverse covariance matrix (also called preci-

sion matrix), which indicates the residue or column interaction (or

co-evolution) pattern in this protein family. The precision submatrix

Xk
ij indicates the interaction strength (or inter-dependency) between

two columns i and j, which are totally independent (given all the

other columns) if and only if Xk
ij is zero.

Due to matrix singularity, we cannot directly calculate Xk as the

inverse of Rk. Instead, Xk can be estimated by maximum-likelihood

with a regularization factor k1 as follows.

maxXk logPðXkjXkÞ � k1jjXkjj1

Where jjXkjj1is the L1 norm of Xk, which is used to make Xksparse

and avoid overfitting. Since we assume P to be Gaussian, the above

optimization problem is equivalent to the following.

maxXk ðlogjXkj � trðXkR̂kÞÞ � k1jjXkjj1

Where R̂k is the empirical covariance matrix calculated from the

MSA.

2.2 Probabilistic model of multiple related protein

families by GGL
Above we have introduced how to model a single protein family

using a GGM. Here we present our probabilistic model for a set of
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K related protein families using a set of correlated GGMs. We still

assume that each protein family has a Gaussian distribution with

a precision matrix Xk(k¼1, 2, . . . ,K). Let X denote the set

{X1, X2, . . . , Xk}, and X¼ {X1, X2, . . . , Xk} denote the set of MSAs. If

we assume that the K families are independent of each other, we can

estimate their precision matrices by maximizing their joint log-likeli-

hood as follows.

maxXlogPðXjXÞ ¼ log
YK

k¼1
PðXkjXkÞ � k1

XK

k¼1
jjXkjj1

¼
XK

k¼1
ðlogjXkj � trðXkR̂kÞÞ � k1

XK

k¼1
jjXkjj1

(2)

We model the correlation of these families through their precision

matrices. The correlation of the precision matrices is estimated

through the alignment of the related protein families. We build a

MSA of these K protein families using a sequence alignment method.

Each column in this MSA may consist of columns from several

families. If column pair (j1, j3) in family k1 is aligned to column pair

(j2, j4), the interaction strength between two columns j1 and j3 in

family k1 shall be similar to that between columns j2 and j4 in family

k2. That is, if there is one contact between two columns j1 and j3,

then it is very likely there is also a contact between two columns j2
and j4.

Accordingly, the precision submatrix Xk1

j1 ;j3
for the two columns

j1 and j3 in the family k1 shall be related to the submatrix for the

two columns j2 and j4 in the family k2 (i.e. Xk2

j2 ;j4
). The correlation

strength between Xk1

j1 ;j3
and Xk2

j2 ;j4
depends on the conservation level of

these two column pairs. That is, if these two column pairs are highly

conserved, Xk1

j1 ;j3
and Xk2

j2 ;j4
shall also be highly correlated. Otherwise,

they may be only weakly related.

Based upon this observation, we divide all the column pairs into

groups so that any two aligned column pairs belong to the same

group, as shown in Figure 1. Therefore, if a target family has L col-

umns aligned to at least one auxiliary family, then there are in total

L(L�1)/2 groups.

Let G denote the number of groups and K the number of

involved families. We estimate the K precision matrices by taking

into account their correlation using GGL as follows.

max
XK

k¼1
ðlogjXkj � trðXkR̂kÞÞ � k1

XK

k¼1
jjXkjj1 �

XG

g¼1
kgjjXgjj2

(3)

Where g represents one group and jjXgjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ði;j;kÞ2gjjXk

i;jjj
2
F

q
.

Meanwhile, jjXk
i;jjj

2
F is the square of the entry-wise L2 norm of the

precision submatrix Xk
i;j. By using this penalty item, we ensure that

the column pairs in the same group have similar interaction strength.

That is, if one column pair in a particular group has a relatively

strong interaction (i.e. jjXk
i;jjj

2
F is large), the other column pairs in

this group shall also have a larger interaction strength. Conversely,

if one column pair in a particular group has a relatively weak inter-

action (i.e. jjXk
i;jjj

2
F is small), the other column pairs in this group

shall also have a smaller interaction strength.

The parameter kg is used to enforce residue co-evolution consist-

ency in the same group. It is proportional to the conservation level

in group g. We measure the conservation level using both the square

root of the number of aligned families in a group and also the align-

ment quality. In particular, kg is defined as follows.

kg ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN�1

n¼1
Pn

N�1

r
(4)

Where a is a constant (¼0.001), N is the number of column pairs in

group g and Pn is the alignment score (or probability) between the tar-

get family and the nth related family at the two aligned columns belong-

ing to group g. Meanwhile, Pn is calculated as Pn¼PiPj where Pi and

Pj are the marginal alignment probabilities at the two aligned columns.

That is, when the two aligned column pairs are conserved, both Pi and

Pj are large, so is Pn. Consequently, kg is large and thus the interaction

strength consistency among the column pairs in group g is strongly

enforced. In the opposite, if the marginal alignment probability is rela-

tively small, kg is small. In this case, we shall not strongly enforce the

interaction strength consistency among column pairs in this group. By

using the conservation level (or alignment quality) to control the con-

sistency of interaction strength, our method is robust to bad alignments

and thus, can deal with protein families similar at different levels.

Note that our formulation (3) differs from PSICOV only in the

last term, which is used to enforce co-evolution pattern consistency

among multiple families. Without this term, our formulation is

exactly the same as PSICOV when the same k1 is used. We use an

ADMM (Hestenes, 1969) algorithm to solve formulation (3), which

is described in the Supplementary Material.

2.3 Including supervised prediction as

prior information
Compared to single-family EC analysis, our joint EC analysis uses

residue coevolution information from auxiliary families to improve

contact prediction. In addition to coevolution information, sequence

profile and some non-evolutionary information are also useful for

contact prediction. To make use of them, we first use a supervised

machine learning method Random Forests to predict the probability

of two residues forming a contact and then integrate this predicted

probability as prior into our GGL framework. In particular, our

Random Forests model predicts the probability of two residues

forming a contact using the following information.

1. PSI-BLAST sequence profile. To predict the contact probability

of two residues, we use their position-specific mutation scores

and those of the sequentially adjacent residues.

2. MI and its power series. When residue A has strong interaction

with B and B has strong interaction with residue C, it is likely

that residue A also has interaction with C. We use the MI power

series to account for this kind of chaining effect. In particular,

we use MIk where k ranges from 2 to 11 where MI is the mutual

information matrix.

Fig. 1. Illustration of column pair and precision submatrix grouping. Columns

5 and 14 in the first family are aligned to columns 5 and 11 in the second fam-

ily, respectively, so column pair (5,14) in the first family and the pair (5,11) in

the second family are assigned to the same group. Accordingly, the two pre-

cision submatrices X1
5;14 and X2

5;11 belong to the same group
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When there are many sequence homologs, the MI power series

are very helpful for medium- and long-range contact prediction.

3. Non-evolutionary information such as residue contact potential

described in (Tan et al., 2006).

4. EPAD: a context-specific distance-dependent statistical potential

(Zhao and Xu, 2012), derived from protein evolutionary informa-

tion. The Ca and Cb atomic interaction potentials at all the dis-

tance bins are used. The atomic distance is discretized into bins by

1Å and all the distance>15Å is grouped into a single bin.

5. Homologous pairwise contact score. This score quantify the

probability of a residue pair forming a contact between two sec-

ondary structure types. See paper (Wang and Xu, 2013) for

more details.

6. Amino acid physic-chemical properties.

Some features are calculated on the residues in a local window of

size 5 centered at the residues under consideration. In total there are

�300 features for each residue pair. We trained and selected the

model parameters of our Random Forests model by 5-fold cross valid-

ation. In total we used about 850 training proteins, all of which have

<25% sequence identity with our test proteins. All of these proteins

were selected before CASP10 started in May 2012. See article (Wang

and Xu, 2013) for the description of the training proteins.

Finally, our GGL formulation with predicted contact probability

as prior is as follows.

max
XK

k¼1
ðlogjXkj � trðXkR̂kÞÞ � k1

XK

k¼1
jjXkjj1 �

XG

g¼1
kgjjXgjj2

� k2

XK

k¼1

jjXk
ijjj1

maxðPk
ij;0:3Þ

(5)

Where Pk
ij is the predicted contact probability by Random Forests

and maxfPk
ij; 0:3g is used to reduce the impact of very small pre-

dicted probability. Meanwhile, the last term in (5) can be interpreted

as the prior probability of X, which is used to promote the similarity

between the precision matrix and the predicted contact probability.

Formulations (3) and (5) differ only in the last term. From computa-

tional perspective, the last term of (5) is similar to
XK

k¼1
jjXkjj1, so

we can use almost the same computational method to optimize both

formulations.

2.4 Computational complexity
When no auxiliary family is found, our method becomes a graphical

lasso problem with prior and has exactly the same theoretical com-

putational complexity as PSICOV. When multiple auxiliary families

are available, theoretically our method is slower than PSICOV. We

have parallelized our method using OpenMP to speed up, so empir-

ically the running time of our method depends on the number of

available CPUs and the number of related families and their lengths.

Overall, it may still take our server (4–5 CPUs) a few hours to pre-

dict the contact map of one protein. We are still optimizing our algo-

rithm and code to further reduce the running time. For example, we

are implementing a GPU-based version of our algorithm.

2.5 Alignment of multiple protein families
To build the alignment of multiple protein families, we employ a

probabilistic consistency method in (Doet al., 2006; Peng and Xu,

2011). To employ this consistency method, we need to calculate the

probabilistic alignment matrix between any two protein families.

Each matrix entry is the marginal alignment probability (MAP) of

two columns, each in one family. By using this consistency method,

we ensure that when column i in family 1 is aligned to both column j

in family 2 and column k in family 3 with a large probability,

then column j and k will also be aligned with a good probability.

The consistent alignment among the related families is important for

our method to enforce contact map consistency. In addition to this

probability method, we also tested MCoffee (Wallace et al., 2006)

for generating alignment of multiple related families, which does not

show explicit advantage over the probabilistic consistency method.

2.6 Majority voting method for contact prediction
Majority voting is a simple way of utilizing auxiliary protein fami-

lies for contact prediction. Here, we implemented this method sim-

ply for comparison. We first build an alignment of multiple protein

families using the methods mentioned above. Then we use PSICOV

to predict contact map for each of the related protein families. To

determine if there is a contact between any two columns i and j in

the target protein family, we use a majority voting based upon the

predicted contacts for all the column pairs aligned to the pair (i, j).

In addition, we also assign a weight to each family proportional to

the number of non-redundant sequence homologs in it. The more se-

quence homologs, the more weight this family carries since usually

such a family has higher contact prediction accuracy. In this experi-

ment, we use PSICOV to predict contacts for each related family

separately.

2.7 Pre-processing and Post-processing
We employ the same pre- and post-processing procedures as

PSICOV to ensure our comparison with PSICOV is fair. Briefly, to

reduce the impact of redundant sequences, we apply the same se-

quence weighting method as PSICOV. In particular, duplicate se-

quences are removed and columns containing more than 90% of

gaps are also deleted. The sequence is weighted using a threshold of

62% sequence identity. We add a small constant (¼0.1) to the diag-

onal of the empirical covariance matrix to ensure it is not singular.

Similar to PSICOV and plmDCA (Ekeberg et al., 2013), average-

product correction (APC) (Dunn et al., 2008) is applied to post-pro-

cess predicted contacts.

3 Results

We use three datasets to evaluate the performance of our method.

One is a subset of the benchmark used in the PSICOV paper, consist-

ing of 98 Pfam families, each of which has at least one auxiliary

family. As shown in (4), when no auxiliary families are available,

our method becomes normal graphical lasso with supervised predic-

tion as prior. By considering only the Pfam families with auxiliary

families, we can evaluate the impact of auxiliary families. The

CASP10 and CASP11 targets form another two test sets, but many

targets have no auxiliary families. See the Supplementary Material

for more results.

3.1 PSICOV dataset
It is selected from the 150 Pfam (Bateman et al., 2004; Finn et al.,

2014) families used by PSICOV as benchmark, all of which have

solved structures in PDB. To make a fair comparison, we use the

same solved structures as PSICOV to calculate native contacts. Only

Ca contact prediction results are presented. Similar performance

trend is observed for Cb contacts. We denote these Pfam families,

for which we would like to predict contacts, as the target families.

For each target family, we find its related families in Pfam, also

called auxiliary families, using HHpred (Söding, 2005) with

E-value¼10�6 as cutoff. As a result, 98 families have at least one
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auxiliary family and are used as our test data. We can also relax the

E-value cutoff to obtain more distantly-related auxiliary families,

but this does not lead to significant accuracy improvement. Among

the 98 target families, the average TM-score (Zhang and Skolnick,

2005) between the representative solved structures of a target family

and of its auxiliary families is �0.7. That is, the target and auxiliary

families are not very close, although they may have similar folds.

Even using E-value�10�17 as cutoff, some target and auxiliary fam-

ilies are only similar at the SCOP fold level.

To ensure that the Pfam database does not miss important se-

quence homologs, we generate an MSA for each target family by

PSI-BLAST (five iterations and E-value¼0.001) and then apply

PSICOV to this MSA. Such a method is denoted as PSICOV_b.

Since HHblits (Remmert et al., 2012) sometimes may detect se-

quence homologs of higher quality than PSI-BLAST, we also run

HHblits to build an MSA for a target sequence and then examine if

this MSA can lead to better prediction or not.

3.2 Methods to be compared
We compare our method with a few popular EC methods such as

PSICOV, Evfold, plmDCA and GREMLIN and a few supervised

learning methods such that NNcon and CMAPpro. We chose their

parameter settings suggested in their respective papers (Di Lena et al.,

2012; Ekeberg et al., 2013; Jones et al., 2012; Kamisetty et al., 2013;

Marks et al., 2011; Tegge et al., 2009). Since both plmDCA and

GREMLIN use the pseudo-likelihood methods, we run Evfold with

the mean field solution instead of the pseudo-likelihood solution to di-

versify the set of methods to be compared. The parameters of Evfold

are set as indicated in (Marks et al., 2011). We tested both the old

and new version of PSICOV, but did not see much difference. We also

tested different parameter settings of PSICOV and Evfold, but could

not systematically improve their accuracy.

There are two alternative strategies to use information in auxil-

iary families. One is that we can merge a target and its auxiliary

families into a single MSA and then apply single-family EC analysis.

To test this strategy, we align and merge a target and its auxiliary

families into a single MSA using a probabilistic consistency method

and MCoffee, respectively, and denote them as Merge_p and

Merge_m. The other strategy, denoted as Voting, is that we apply

the single-family EC method PSICOV to each of the target and aux-

iliary families and then apply a majority voting method to predict

the contacts in the target family.

We evaluate the top L/10, L/5 and L/2 predicted contacts where

L is the sequence length of a protein (family) under prediction. The

prediction accuracy is defined as the percentage of native contacts

among the top predicted contacts. Contacts are short-, medium- and

long-range when the sequence distance between the two residues in

a contact falls into three intervals [6, 12], (12, 24], and >24, respect-

ively. Generally speaking, medium- and long-range contacts are

more important, but more challenging to predict.

3.3 Overall performance on the PSICOV testset
As shown in Table 1, tested on all the 98 Pfam families with auxil-

iary families, our method CoinDCA outperforms the others when

the top L/10, L/5 and L/2 predicted contacts are evaluated, no mat-

ter whether the contacts are short, medium and long range. When

neither auxiliary families nor supervised learning is used, CoinDCA

is exactly the same as PSICOV. Therefore, the results in Table 1 in-

dicate that combining joint EC analysis and supervised learning in-

deed can improve contact prediction accuracy over single-family EC

analysis. We have the following observations.

1. In terms of contact prediction, the MSAs generated by

PSIBLAST or HHblits are not better than those in Pfam.

2. A simple majority voting scheme performs worse than the sin-

gle-family EC methods. This may be due to a couple of reasons.

When a single family is considered, PSICOV may wrongly pre-

dict contacts in each family in very different ways, so consensus

of single-family results can only identify those highly conserved

contacts, but not those specific to one or few families. In add-

ition, majority voting may suffer from alignment errors.

3. It does not work well by merging the target and auxiliary fami-

lies together into a single MSA and then applying single-family

EC analysis. There are two possible reasons. One is that the re-

sultant MSA may contain alignment errors, especially when the

auxiliary families are not very close to the target family. The

other is that we cannot use a single Gaussian distribution to

Table 1. Contact prediction accuracy on all the 98 test Pfam families. plmDCA and GREMLIN use the MSAs in the Pfam database while

plmDCA_h and GREMLIN_h use the MSAs generated by HHblits

Short range Medium range Long range

L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2

CoinDCA 0.528 0.446 0.316 0.496 0.435 0.312 0.561 0.502 0.391

PSICOV 0.369 0.299 0.205 0.375 0.312 0.213 0.446 0.400 0.311

PISCOV_h 0.382 0.306 0.204 0.418 0.334 0.218 0.466 0.421 0.310

PSICOV_b 0.356 0.286 0.199 0.388 0.306 0.199 0.462 0.400 0.294

Merge_p 0.316 0.265 0.183 0.303 0.246 0.178 0.370 0.328 0.253

Merge_m 0.298 0.237 0.172 0.276 0.223 0.169 0.355 0.309 0.232

Voting 0.343 0.232 0.184 0.405 0.280 0.168 0.337 0.353 0.275

plmDCA 0.422 0.327 0.203 0.433 0.354 0.233 0.484 0.443 0.343

plmDCA_h 0.387 0.300 0.186 0.433 0.339 0.211 0.480 0.413 0.292

plmDCA_b 0.381 0.301 0.184 0.431 0.338 0.210 0.478 0.421 0.289

GREMLIN 0.410 0.312 0.220 0.401 0.332 0.225 0.447 0.423 0.329

GREMLIN_h 0.387 0.291 0.188 0.391 0.316 0.204 0.428 0.400 0.301

GREMLIN_b 0.379 0.289 0.187 0.390 0.314 0.203 0.426 0.398 0.303

Evfold 0.340 0.274 0.191 0.364 0.298 0.209 0.400 0.361 0.281

Evfold_h 0.326 0.250 0.171 0.345 0.279 0.189 0.381 0.333 0.262

Evfold_b 0.324 0.252 0.169 0.344 0.275 0.190 0.382 0.332 0.261

See the Supplementary Material for statistical significance (i.e. P value).

3510 J.Ma et al.

&leq;
-
5
&equals;
,
,
,
,
,
,
,
,
-,
-
-
2) 
-
3) 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv472/-/DC1


model the related but different families due to sequence diver-

gence (at some positions). Since Merge_p performs better than

Merge_m, we will consider only Merge_p in the following

sections.

PSICOV models the MSA of a protein family using a multivari-

ate Gaussian distribution. This Gaussian assumption holds only

when the family contains a large number of sequence homologs.

plmDCA and GREMLIN do not use the Gaussian assumption and

are reported to outperform PSICOV on some Pfam families. Our

method CoinDCA still uses the Gaussian assumption. This test re-

sult indicates that when EC information in multiple related families

is used, even with Gaussian assumption, we can still outperform the

single-family EC methods without using Gaussian assumption.

3.4 Dependency on the number of sequence homologs
Our method outperforms the others regardless of the size of a pro-

tein family. Similar to (Marks et al., 2011; Wang and Xu, 2013), we

calculate the number of non-redundant sequence homologs in a fam-

ily (or MSA) by Meff ¼
P

i1=
P

jsi;j where i and j are sequence

indexes and si,j is a binary variable indicating if two sequences are

similar or not. It is equal to 1 if the normalized hamming distance

between two sequences is less than 0.3; otherwise, 0. The reason

why we use Meff instead of the number of sequences to quantify the

information content in an MSA is that there may exist many highly

similar homologs in the MSA. Highly similar homologs do not pro-

vide more information for coevolution detection than a single one,

so we can only count the number of non-redundant sequence homo-

logs. We divide the 98 test families into five groups by lnMeff : [4,5),

[5,6), [6,7), [7,8), [8,10), and calculate the average L/10 prediction

accuracy in each group. Figure 2 shows that our method outper-

forms the others regardless of lnMeff. In particular, the advantage of

our method over the others is even larger when lnMeff is small. In

the Supplementary Figures S1 and S2, we also show the relationship

between accuracy and relatively large Meff (>300).

3.5 Performance and contact conservation level
For a native contact in the target family, we measure its conserva-

tion level by the number of auxiliary families with a contact aligna-

ble to this target contact. The 98 test families have conservation

levels ranging from 0 to 8, corresponding to non-conserved and

highly conserved, respectively. In particular, a native contact with a

conservation level of 0 is target family-specific since it has no

support from any auxiliary families. Correct prediction of family-

specific contacts is important since they may be very useful to the re-

finement of a template-based protein model.

Supplementary Figure S3 shows the distribution of the contact

conservation level in our test set and that a large number of native

contacts are not conserved. Figure 3(A) and (B) shows the ratio of

medium- and long-range native contacts ranked among top L/10

predictions with respect to contact conservation level. Our method

CoinDCA ranks many more native long-range contacts among top

L/10 than the single-family EC methods PSICOV, plmDCA and

GREMLIN regardless of conservation level. CoinDCA has similar

performance as the family merging method Merge_p for long-range

contacts with conservation level �5, but significantly outperforms

Merge_p for family-specific contacts. This may be because when the

target and auxiliary families are merged together, the signal for

highly conserved contacts is reinforced but that for family-specific

contacts is diluted. By contrast, our joint EC analysis method can re-

inforce the signal for highly conserved contacts without losing fam-

ily-specific information.

3.6 Performance on the CASP10 targets
In this test we run NNcon, PSICOV, plmDCA, GREMLIN and

EVfold locally with default parameters, and CMAPpro through its

web server. Again, we run HHpred to search the Pfam database for

auxiliary families for each test target. Meanwhile, 75 of 123 targets

have at least one auxiliary family. For those targets without any

auxiliary families, our method actually becomes the combination of

single-family EC analysis and supervised learning. As shown in

Table 2, on the whole CASP10 set, our method CoinDCA again out-

performs the others in terms of the accuracy of the top L/10, L/5

and L/2 predicted contacts.

We also divide the 123 CASP10 targets into five groups according

to lnMeff : (0,2), (2,4), (4,6), (6,8), (8,10), which contain 19, 17, 25,

36 and 26 targets, respectively. Meanwhile, Meff measures the number

of non-redundant sequence homologs available for a target protein

under prediction. We then calculate the average medium- and long-

range contact prediction accuracy in each group. Figure 4 clearly

shows that the prediction accuracy increases with respect to lnMeff

and that our method outperforms the others on all the five intervals of

lnMeff. In particular, our method works much better than the single-

family EC analysis methods when lnMeff<8.

We also show the results of our method on the CASP10 hard tar-

gets and the CASP11 targets in the Supplementary Material. Our

method outperforms the others on these datasets in terms of both

medium- and long-range accuracy. On the hard targets, all the tested

methods have low long-range accuracy because these targets have

very few sequence homologs, so it is unclear if the predicted long-

range contacts will be useful or not. However, our method has rea-

sonable medium-range accuracy (�0.4 for top L/10 predictions),

which may be useful to ab initio folding and other applications.

3.7 More Results in the Supplementary Material
Results in the Supplementary Material. (i) performance on all the

150 Pfam families in the PSICOV test set; (ii) performance on the

CASP10 hard targets; (iii) performance on the whole CASP11 set

Fig. 2. (A) Medium-range and (B) Long-range L/10 prediction accuracy with

respect to lnMeff

Fig. 3. The ratio (Y-axis) of native contacts ranked by a prediction method

among top L/10 with respect to contact conservation level (X-axis) for (A) me-

dium range and (B) long range
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and the CASP11 hard targets; (iv) P values between our method and

the others on the PSICOV, CASP10 and CASP11 sets; (v) perform-

ance on the 98 test Pfam families with respect to the number of non-

redundant sequence homologs divided into 11 intervals; (vi) distri-

bution of contact conservation level and (vii) comparison with

MetaPSICOV.

4 Discussion

This article has presented a GGL method to predict contacts by

exploring joint multi-family EC analysis and supervised machine

learning. EC analysis and supervised learning are currently two

major methods for contact prediction, but they use different infor-

mation sources. Our joint EC analysis predicts contacts in a target

family by analyzing residue co-evolution information in a set of

related protein families which may share similar contact maps. In

order to effectively integrate information across multiple families,

we use GGL to estimate the joint probability distribution of multiple

related families by a set of correlated Gaussian models. Experiments

show that the combination of joint EC analysis with supervised ma-

chine learning can significantly improve contact prediction, and that

our method even outperforms single-family EC analysis on protein

families with a large number of sequence homologs. We have also

shown that contact prediction cannot be improved by a simple

method, such as family merging and majority voting of single-family

EC analysis results. These simple methods may improve prediction

for highly conserved contacts at the cost of family-specific contacts.

Our method can be further improved. For example, similar to

GREMLIN and plmDCA, we may relax the Gaussian assumption to

improve prediction accuracy. This article uses an entry-wise L2

norm to penalize contact map inconsistency among related protein

families. There may be other penalty functions that can more accur-

ately quantify contact map similarity between two families as a

function of sequence similarity and thus, further improve contact

prediction. It may further improve contact prediction by integrating

other supervised learning methods such as CMAPpro, NNcon and

DNcon or even other EC methods into our GGL framework.

In this paper we use Pfam to define a protein family because it is

manually curated and very accurate. There are also other criteria to

define a protein family. For example, SCOP defines a protein family

based upon structure information and thus, classifies protein do-

mains into much fewer families than Pfam. In our experiment, the

average structure similarity, measured by TMscore (Zhang and

Skolnick, 2004), between a target (Pfam) family and its auxiliary

(Pfam) families is only around 0.7. That is, many auxiliary families

are not highly similar to its target families even by the SCOP defin-

ition. Indeed, some auxiliary families are only similar to the target

family at the SCOP fold level. That is, even a remotely-related pro-

tein family may provide information useful for contact prediction.

We can further extend our method to predict contacts of all the

protein families simultaneously, instead of one-by-one, by joint EC

analysis across the whole protein family universe. First we can use a

graph to model the whole Pfam database, each vertex representing

one Pfam family and an edge indicating that two families may be

related. Then we can use a graph of correlated GGMs to model the

whole Pfam graph, each GGM for one vertex. The GGMs of two ver-

tices in an edge are correlated together through the alignment of their

respective protein families. By this way, the residue co-evolution infor-

mation in one family can be passed onto any family that is connected

through a path. As such, we may predict the contacts of one family by

making use of information in all the path-connected families. By

enforcing this global consistency, we should be able to further im-

prove EC analysis for contact prediction. However, to simultaneously

estimate the parameters of all the GGMs, a large amount of computa-

tional power will be needed. Such an idea is similar (in spirit) to the

global trace graph method described by (Heger et al., 2007).
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Table 2. Contact prediction accuracy on all the 123 CASP10 targets

Short range Medium range Long range

L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2

CoinDCA 0.517 0.435 0.311 0.500 0.440 0.340 0.412 0.351 0.279

PSICOV 0.234 0.191 0.140 0.310 0.259 0.192 0.276 0.225 0.168

plmDCA 0.264 0.218 0.152 0.344 0.289 0.214 0.326 0.280 0.213

NNcon 0.499 0.399 0.275 0.393 0.334 0.226 0.239 0.188 0.001

GREMLIN 0.256 0.212 0.161 0.343 0.280 0.229 0.320 0.278 0.159

CMAPpro 0.437 0.368 0.253 0.414 0.363 0.276 0.336 0.297 0.227

EVfold 0.193 0.165 0.130 0.294 0.249 0.188 0.257 0.225 0.171

See the Supplementary Material for statistical significance (i.e. P value).

Fig. 4. The relationship between prediction accuracy and lnMeff. X-axis is the

lnMeff value and Y-axis is the mean accuracy of top L/10 predicted contacts in

the corresponding CASP10 target group. Only medium- and long-range con-

tacts are considered
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