
Genome-wide expression for diagnosis of pulmonary 
tuberculosis: a multicohort analysis

Timothy E Sweeney, Lindsay Braviak, Cristina M Tato, and Purvesh Khatri
Stanford Institute for Immunity, Transplantation and Infection (T E Sweeney MD, L Braviak, C M 
Tato PhD, P Khatri PhD) and Division of Biomedical Informatics Research, Department of 
Medicine, Stanford University School of Medicine (T E Sweeney, P Khatri) Stanford, CA, USA

Summary

Background—Active pulmonary tuberculosis is difficult to diagnose and treatment response is 

difficult to effectively monitor. A WHO consensus statement has called for new non-sputum 

diagnostics. The aim of this study was to use an integrated multicohort analysis of samples from 

publically available datasets to derive a diagnostic gene set in the peripheral blood of patients with 

active tuberculosis.

Methods—We searched two public gene expression microarray repositories and retained datasets 

that examined clinical cohorts of active pulmonary tuberculosis infection in whole blood. We 

compared gene expression in patients with either latent tuberculosis or other diseases versus 

patients with active tuberculosis using our validated multicohort analysis framework. Three 

datasets were used as discovery datasets and meta-analytical methods were used to assess gene 

effects in these cohorts. We then validated the diagnostic capacity of the three gene set in the 

remaining 11 datasets.

Findings—A total of 14 datasets containing 2572 samples from 10 countries from both adult and 

paediatric patients were included in the analysis. Of these, three datasets (N=1023) were used to 

discover a set of three genes (GBP5, DUSP3, and KLF2) that are highly diagnostic for active 

tuberculosis. We validated the diagnostic power of the three gene set to separate active 

tuberculosis from healthy controls (global area under the ROC curve (AUC) 0·90 [95% CI 0·85–

0·95]), latent tuberculosis (0·88 [0·84–0·92]), and other diseases (0·84 [0·80–0·95]) in eight 

independent datasets composed of both children and adults from ten countries. Expression of the 

three-gene set was not confounded by HIV infection status, bacterial drug resistance, or BCG 

vaccination. Furthermore, in four additional cohorts, we showed that the tuberculosis score 

declined during treatment of patients with active tuberculosis.
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Interpretation—Overall, our integrated multicohort analysis yielded a three-gene set in whole 

blood that is robustly diagnostic for active tuberculosis, that was validated in multiple independent 

cohorts, and that has potential clinical application for diagnosis and monitoring treatment 

response. Prospective laboratory validation will be required before it can be used in a clinical 

setting.

Funding—National Institute of Allergy and Infectious Diseases, National Library of Medicine, 

the Stanford Child Health Research Institute, the Society for University Surgeons, and the Bill and 

Melinda Gates Foundation.

Introduction

Tuberculosis is a worldwide public health issue, with 9·6 million new infections and 1·5 

million deaths in 2014.1 Despite advances in diagnosis and treatment, there is still a large 

burden of disease, and accurate diagnosis of tuberculosis remains difficult. Traditional 

methods such as tuberculin skin testing and interferon γ release assays are unable to 

distinguish between latent tuberculosis and active tuberculosis, and have reduced sensitivity 

in HIV-positive patients.2 The more recently developed Xpert MTB/RIF assay has greatly 

improved diagnostic power, but is associated with reduced accuracy in HIV-positive patients 

and is not useful for monitoring treatment response.3,4 Further, Xpert MTB/RIF relies on 

induced sputum, which is difficult to obtain from adults after symptomatic improvement and 

from paediatric patients at any time.

In addressing the need for better diagnostics, WHO recently released a consensus target 

product profile defining the ideal features that a new diagnostic should have.5 The WHO 

target product profile highlighted a strong need for a new diagnostic with excellent 

sensitivity that (1) uses non-sputum samples (such as blood), (2) maintains an overall 

sensitivity of greater than 80% in patients with HIV co-infection, (3) attains a sensitivity of 

greater than 66% in children with culture-positive tuberculosis, and (4) is relatively simple to 

run.

Several studies have investigated the host response to pulmonary tuberculosis infection with 

microarray-based whole genome expression profiles in peripheral blood. However, the 

results from these studies have not translated into clinical practice so far, because of poor 

generalisability. For instance, seven different studies have proposed ten different gene 

signatures (with small amounts of overlap) to distinguish active tuberculosis from other 

diseases or latent tuberculosis in children and adults.6–12 Many of these studies have now 

been deposited in publically accessible databases such as the National Institutes of Health 

Gene Expression Omnibus (NIH GEO), allowing their re-use for further analysis.

We hypothesised that integration of gene expression data from heterogeneous patient 

populations with active tuberculosis across a wide variety of ages, countries, and inclusion 

criteria would yield a set of conserved genes that are indicative of active tuberculosis and 

could be generalised across cohorts. Therefore the aim of this study was to use an integrated 

multicohort analysis of samples from publically available datasets to derive a diagnostic 

gene set in the peripheral blood of patients with active tuberculosis.
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Methods

Systematic search and multicohort analysis

We searched two public gene expression microarray repositories (NIH GEO and 

ArrayExpress) for all human gene expression datasets that matched any of the following 

search terms: tuberculosis, TB, and mycobact[wildcard]. We retained datasets that examined 

clinical cohorts of active pulmonary tuberculosis infection in whole blood for further study, 

and excluded datasets that examined only vaccine response, were done only in cell culture, 

used on-chip two-sample arrays, or were done in tissues or were obtained from sample types 

other than whole blood. The remaining 14 datasets contained 2572 samples from 10 

countries from both adult and paediatric patients (table). All latent tuberculosis and other 

diseases samples were Mycobacterium tuberculosis smear-negative and culture-negative; 

culture status of patients with active tuberculosis are defined per dataset.

Two gene expression datasets in the GEO (GSE19491 and GSE42834) contained multiple 

subcohorts. For these datasets, we removed the non-whole-blood samples, normalised the 

remaining samples, and then treated them as single cohorts. One pair of datasets (GSE31348 

and GSE36238) is a single clinical cohort from Cliff and colleagues.13 For this cohort, we 

downloaded the raw Affymetrix files and co-normalised them using gcRMA14 (R package 

‘affy’) to make a single cohort, which we refer to as the Cliff Combined in this report. When 

comparing between datasets, it is important to ensure similar normalisation methods. Thus, 

all Affymetrix datasets were gcRMA renormalised from raw data. For all non-Affymetrix 

arrays, we downloaded data in non-normalised form, background corrected using the 

normal-exponential method, and then quantile normalised (R package ‘limma’).15 We log2 

transformed all data before use. We downloaded all probe-to-gene mappings from the GEO 

from the most current SOFT fi les on Jan 9, 2015.

We compared gene expression in patients with either latent tuberculosis or other diseases 

versus patients with active tuberculosis using our validated multicohort analysis framework, 

as previously described.16–19 We used three datasets (GSE19491, GSE37250, and 

GSE42834) as the discovery datasets, and removed genes not present in all three datasets. 

These datasets were chosen because they were the largest datasets comparing the groups of 

interest; the remaining datasets were left out specifically to allow for independent validation 

of results. We applied two meta-analytical methods: (1) combining gene expression effect 

sizes (Hedges’ g) using a DerSimonian-Laird random-effects model (using R package 

‘rmeta’) and (2) combining p values with Fisher’s sum of logs method (figure 1); both were 

then corrected to false discovery rate (FDR) via Benjamini-Hochberg method. We set 

significance thresholds for differential expression at FDR less than 1% and an effect size 

greater than 1·5 fold (in non-log space).

TB score

We did a forward search as previously described,17 with the slight modification to the way 

the tuberculosis score is calculated. Briefly, the algorithm starts with the single gene with the 

best discriminatory power, and then at each subsequent step adds the gene with the best 

possible increase in weighted AUC (area under the curve; the sum of the AUC for each 
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dataset times the number of samples in that dataset) to the set of genes, until no further 

additions can increase the weighted AUC more than some threshold amount (here 0·005 × 

the total number of samples). At each iteration of the greedy forward search, when adding a 

new gene, we defined a tuberculosis score as follows: for each sample, the mean expression 

of the down-regulated genes is subtracted from the mean expression of the up-regulated 

genes to yield a tuberculosis score. The forward search always optimises only the discovery 

datasets, so that the validation datasets are truly independent tests. The final tuberculosis 

score is thus calculated as: (GBP5 + DUSP3) / 2 – KLF2. This tuberculosis score was then 

directly tested for diagnostic power using receiver operating characteristic (ROC) curves.

For validation, violin plots show the tuberculosis score for a given dataset across all subsets 

of patient samples. Violin plot error bars show IQR because they cannot be assumed to have 

normal distributions within subsets. All ROC curves show comparison to active tuberculosis 

patients within a given dataset.

Validation of TB score

We validated the three-gene set in 11 independent clinical tuberculosis gene expression 

datasets, comparing its ability to differentiate between four types of comparisons: (1) 

healthy controls versus active tuberculosis, (2) latent tuberculosis versus active tuberculosis, 

(3) other diseases versus active tuberculosis, and (4) response to treatment in longitudinal 

cohorts of active tuberculosis patients. Seven of the validation datasets include multiple 

patient classes (ie, healthy controls, latent tuberculosis, and active tuberculosis); in such 

cases, we compared each patient class separately against the active tuberculosis group in the 

same dataset, wherein active tuberculosis was always defined as culture-positive or smear-

positive cases.

To assess the performance of the tuberculosis score in a so-called real-world manner, we 

constructed global expression matrices, in which all datasets for each type of comparison 

were merged into a single matrix, and then x tested the tuberculosis score for a single global 

cutoff across all datasets. However, because cohorts were profiled on a variety of microarray 

technologies with different processing methods, the background levels of gene expression 

between the cohorts varied substantially. Thus, we re-scaled the datasets to make baseline 

gene expression levels match. To do this, we computed the mean for each gene across all 

samples (the global mean), and then subtracted from the mean within each dataset, such that 

each gene within each dataset had the same mean as all other datasets. This method 

preserves the relative differences of a gene between samples within a dataset. We calculated 

two sets of global cutoffs: one used the Youden method20 to jointly maximise sensitivity and 

specificity, the other was set at a sensitivity of 95% to test resulting specificity. To show 

violin plots and gene levels on the same background, the expression values of the target 

genes were mean centered. This was only for visualisation and does not affect the 

tuberculosis score, as the subtraction of a common value falls out of the equation.

Comparison with previous gene sets

In testing diagnostic gene or transcript sets of other groups, transcripts were always 

summarised to genes. In every case, the gene set was tested according to its original 
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described model, reconstructed by us using the entire discovery dataset. In the case of the 

three-gene set of Laux da Costa and colleagues11 (who used targeted PCR instead of 

microarrays), they validated their model by building a random forest classifier in GSE42834 

(Bloom and colleagues9); we thus re-built their model in GSE42834 and tested in the 

remaining datasets. In reports that provided multiple gene sets, the gene sets with the best 

original diagnostic power were tested (for instance, Kaforou and colleagues7 provide five 

gene sets for testing active tuberculosis against other diseases, latent tuberculosis, or both; 

we only used the best signatures for other diseases and latent tuberculosis). Summary ROCs 

for the previous gene sets were calculated including both discovery and validation datasets.

Summary ROC curves

We constructed summary ROC curves according to the method of Kester and Buntinx,21 

which incorporates information from the entirety of an ROC curve, rather than relying on a 

single summary point (Q*). Briefly, each ROC curve is modelled as a logistic function of its 

sensitivity and specificity at each cutoff point; the parameters for the ROC curve (α and β) 

are estimated with weighted linear regression, with errors estimated with a bootstrap of 10 

000 repetitions with replacement. The summary α and β parameters are combined using a 

random-effects model, with errors carried through from the bootstrap. The summary α and β 

are then re-transformed to construct a summary ROC curve (appendix p 1). We constructed 

upper and lower summary ROC CIs with the upper and lower bounds on α and β, 

respectively, reflecting uncertainty for curve skewness. AUCs of the summary curves are 

calculated with the trapezoidal method with 1000 points.

Briefly, to test gene signatures in gene expression patterns from known sorted cells, we 

aggregated public gene expression data from several immune cell types and then calculated 

the relevant tuberculosis score in each cell type genome, as described previously.17

Between-groups tuberculosis score comparisons were done with the Wilcoxon rank sum test. 

Significance levels were set at two-tailed p<0·05, unless specified otherwise. All 

computation and calculations were done in the R language for statistical computing (version 

3.0.2).

Role of the funding source

The funders had no role in the study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all of the 

data and the final responsibility to submit for publication.

Results

We identified 14 publically available datasets composed of 2572 patient samples that 

matched the inclusion criteria (table).6–10,12,13,22–29 We applied our multicohort analysis 

framework16–18 to three of these datasets (GSE19491, adults;8 GSE37250, adults,7 and 

GSE42834, adults9), composed of 1023 whole blood samples (236 patients with latent 

tuberculosis, 491 patients with other diseases, and 296 patients with active tuberculosis) to 

compare patients with latent tuberculosis or other diseases to patients with active 
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tuberculosis (figure 1). ‘Other diseases’ in the samples included patients with sarcoidosis, 

pulmonary and non-pulmonary infections, autoimmune diseases, and lung cancer.

We identified 266 genes that were significantly differentially expressed (158 over-expressed 

and 108 under-expressed) in active tuberculosis compared with latent tuberculosis and other 

diseases at FDR of 1% or less and effect size greater than 1·5 fold (appendix p 2). We 

applied a greedy forward search17 to obtain a set of genes optimised for diagnostic power, 

resulting in a three-gene set (GBP5, DUSP3, and KLF2; figure 2).

As expected, in the discovery datasets, the three-gene set distinguished active tuberculosis 

from healthy controls (AUCs of 0·96 [95% CI 0·94–0·98] and 1·0 [95% CI 1–1], mean 

sensitivity 0·93, mean specificity 0·97), latent tuberculosis (AUCs of 0·93 [95% CI 0·91–

0·95] and 0·93 [95% CI 0·91–0·94], mean sensitivity 0·88, mean specificity 0·85), and other 

diseases (mean AUC of 0·88 [range 0·84–0·92]; mean sensitivity 0·82, mean specificity 0·79; 

figure 3A–C; appendix p 3). Individual dataset test characteristics (sensitivity, specificity, 

negative predictive value, positive predictive value, and accuracy) are shown in the appendix 

(p 4). A breakdown of the other disease category by disease class is shown in the appendix 

(p 5). The tuberculosis score did well across all classes of other diseases (AUC≥0·85) except 

sarcoidosis (AUC=0·79), which might be the result of the interferon response common to 

these two diseases.24

There were four independent datasets comparing healthy controls with active tuberculosis 

patients: GSE28623 (Maertzdorf and colleagues, adults),22 GSE34608 (Maertzdorf and 

colleagues, adults),24 GSE41055 (Verhagen and colleagues, children),10 and GSE56153 

(Ottenhoff and colleagues, adults);23 these datasets contained a total of 82 healthy controls 

and 74 patients with active tuberculosis (table). Despite substantial clinical heterogeneity in 

these datasets, including age, country of origin, and inclusion criteria, patients with active 

tuberculosis had a significantly higher score than healthy controls (Wilcoxon p values: 

GSE28623, p=2·41 e-13; GSE34608: p=1·28 e-6; GSE41055, p=0·036; GSE56153, 

p=0·012) in all datasets, with a mean AUC of 0·92 (range 0·75–1·0, mean sensitivity 0·86, 

mean specificity 0·81; figure 3D; appendix p 6; individual dataset test characteristics in 

appendix p 7). The cause of the relatively low AUC in GSE56153 could be either clinical or 

technical factors. A fifth dataset, GSE74092 (Maertzdorf and colleagues, adults)12, a 

targeted RT-PCR study of 189 adults from India, included two of the three genes (GBP5 and 

DUSP3); these two genes alone had an AUC of 0·94, but were left out of calculation of 

mean AUC because of the missing third gene (appendix p 8). A sixth dataset, GSE25534 

(Maertzdorf and colleagues, adults),30 which used a two-channel array design, the three-

gene set perfectly classified healthy versus active tuberculosis samples, although no ROC 

curve could be constructed because each sample has a control on-chip, rather than a separate 

group of healthy controls (N=25; appendix p 9).

There were four independent datasets comparing patients with latent tuberculosis and those 

with active tuberculosis patients (GSE28623,22 GSE39939 [Anderson and colleagues, 

children],6 GSE39940 [Anderson and colleagues, children]),6 and GSE41055;10 102 patients 

with latent tuberculosis, 194 patients with active tuberculosis; table). Patients with active 

tuberculosis had significantly higher tuberculosis scores than those with latent tuberculosis 
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(Wilcoxon p<0·05) in all datasets. The four cohorts had a mean AUC of 0·93 (range 0·84–

0·97; mean sensitivity 0·87, mean specificity 0·85; figure 3E; appendix p 6; individual 

dataset test characteristics in the appendix (p 7). Furthermore, in GSE25534 (which had a 

two-channel array), the three-gene set classified latent tuberculosis versus active tuberculosis 

samples with 97% accuracy (N=38 samples, appendix p 9). These results provide strong 

evidence that the three-gene set separates active tuberculosis from latent tuberculosis.

There were three independent datasets comparing patients with other diseases versus those 

with active tuberculosis (GSE34608,24 GSE39939,6 GSE39940;6 251 patients with other 

diseases, 154 patients with active tuberculosis; table). In these cohorts, the other disease 

category included mainly patients with pneumonia, but also patients with chronic lung 

diseases (such as sarcoidosis), non-pulmonary infections, or malignancies. Patients with 

active tuberculosis had higher tuberculosis scores than those with other diseases (Wilcoxon 

p<0·05) in all datasets. The three cohorts had a mean AUC of 0·83 (range 0·75–0·91; mean 

sensitivity 0·65, mean specificity 0·74; figure 3F; appendix p 6; individual dataset test 

characteristics in appendix p 7). Even in the difficult case of separating active tuberculosis 

from other diseases, the three-gene set performs well.

The test characteristics reported for each of the comparisons above used different 

tuberculosis score thresholds for each dataset to maximise joint specificity and sensitivity 

within a given dataset. However, a real-world clinical application would require a single 

threshold that can be applied universally across all patients (instead of using different 

thresholds for different cohorts). We thus combined and re-scaled the available validation 

datasets into single so-called global matrices for each comparison type, from which we were 

able to evaluate a single global ROC AUC for each comparison, and estimate test 

characteristics from optimal cutoffs. The AUCs using a global cutoff across all datasets are 

0·90 (95% CI 0·85–0·95, sensitivity 0·85, specificity 0·93) for healthy controls versus active 

tuberculosis, 0·88 (95% CI 0·84–0·92 sensitivity 0·80, specificity 0·86) for latent 

tuberculosis versus active tuberculosis, and 0·84 (95% CI 0·80–0·88, sensitivity 0·81, 

specificity 0·74) for other diseases versus active tuberculosis, across all validation datasets 

(figure 4). To more closely match the desired sensitivity of the WHO consensus target 

product profile, we also tested thresholds set at a minimum sensitivity of 0·95 (rather than 

maximising the sum of sensitivity and specificity as above). Maximised for sensitivity, the 

global threshold test characteristics across all validation datasets were: sensitivity 0·96 and 

specificity 0·56 for healthy controls versus active tuberculosis; sensitivity 0·95 and 

specificity 0·51 for latent tuberculosis versus active tuberculosis; and sensitivity 0·95 and 

specificity 0·47 for other diseases versus active tuberculosis. We note that an NPV calculated 

at 95% sensitivity and 50% specificity for a disease with a 10% prevalence is 99%. The 

effects of the re-scaling, and the effects of including the discovery datasets in the global 

expression matrices, are shown in the appendix (pp 10–12). Notably, no major prescaling 

differences occured between datasets run on the same microarray type (eg, GSE37250, 

GSE39939, GSE39940, and GSE42834, all run on GPL10558 [Illumina HumanHT-12 V4; 

Illumina Inc, San Diego, CA, USA]). These results show that even when we enforce a global 

threshold, our gene signature was able to maintain accurate partitioning of patients with 

active tuberculosis from the healthy controls, latent tuberculosis, and other diseases cohorts.
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Next we investigated the effect of several confounding factors (HIV co-infection, 

tuberculosis drug resistance, and culture status, disease severity, and BCG vaccination) on 

the three-gene set. In three datasets (GSE37250, GSE39939, and GSE39940) that included 

patients with active tuberculosis with or without HIV co-infection, no difference was noted 

in the tuberculosis score AUCs for other diseases versus active tuberculosis with or without 

HIV co-infection (figure 5A – C). In GSE37250, we noted a decrease in tuberculosis score 

AUC for latent tuberculosis versus active tuberculosis with HIV co-infection, although the 

AUC remained high for both groups (HIV-negative AUC 0·97 (95% CI 0·95–0·98); HIV-

positive AUC 0·89 (0·87–0·91). Additionally, one dataset, GSE50834, examined peripheral 

blood mononuclear cells from HIV-positive patients with and without tuberculosis co-

infection; here, the tuberculosis score had an AUC of 0·85 (95% CI 0·82–0·88), although no 

non-HIV infected cohorts were included (appendix p 13).

We then examined confounders other than HIV co-infection. In GSE19491 the tuberculosis 

score did not differ due to BCG vaccination status or M tuberculosis drug resistance. 

Additionally, the tuberculosis score was positively correlated with disease severity 

(Jonckheere– Terpstra test; p<0·001) as defined by chest radiography (appendix p 14). The 

effects of culture status were pronounced in children. Two paediatric datasets, GSE39939 

and GSE41055 (of which GSE41055 is underpowered), included cohorts of patients with 

culture-negative active tuberculosis. In these datasets, the tuberculosis scores in such patients 

were significantly lower than those in culture-positive active tuberculosis (p<0·05; appendix 

p 6). However, in GSE19491, in adults with culture-positive active tuberculosis the degree of 

smear positivity or a negative culture from either sputa or bronchoalveolar lavage when the 

other is positive did not affect tuberculosis score (appendix p 15). These results suggest that 

a positive active tuberculosis classification via tuberculosis score in children would be 

highly specific for active tuberculosis, although might not be sensitive to children with 

culture-negative active tuberculosis.

Next, we examined the four datasets that profiled patients with active tuberculosis 

longitudinally during treatment (the Cliff Combined dataset,13 GSE40553,25 GSE56153,23 

and GSE62147;29 table). Each of the four datasets followed patients with active tuberculosis 

for up to 6 months or 12 months. In each dataset, the tuberculosis score showed a significant 

decreasing trend as treatment progressed (figure 6; regression models in the appendix p 16). 

Furthermore, most patients showed individual trends of a decreasing score over time 

(appendix p 17). In GSE56153, the tuberculosis scores of patients at recovery (treatment 

week 28) were not different from those of healthy controls (Wilcoxon p>0·05). In 

GSE62147, patients with active tuberculosis due to Mycobacterium africanum were also 

examined; here, too, the tuberculosis score fell with treatment. These results suggest that the 

tuberculosis score could be a useful biomarker for clinical response to treatment, and could 

potentially identify treatment non-responders, although no non-responders were available for 

study here.

All datasets examined so far in this report examined pulmonary active tuberculosis; one 

question is whether the three-gene set might also be useful for diagnosis of extrapulmonary 

tuberculosis. One dataset, GSE63548, compared tuberculosis-infected lymph node tissue to 

lymph nodes from healthy controls;31 here, the tuberculosis score had an ROC AUC of 0·98 
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(appendix p 18). However, because this study was conducted in actual lymph node tissue, 

not peripheral blood, further work will be needed to assess the use of the tuberculosis score 

in extrapulmonary tuberculosis.

Several of the studies used in our analysis have previously identified transcripts or gene sets 

for diagnosing patients with active tuberculosis.6–12 However, these gene sets either contain 

large number of genes or are not generalisable, or both. We tested nine previously published 

diagnostic gene sets from five studies for their ability to discriminate other diseases and 

latent tuberculosis from active tuberculosis in all datasets examined here (appendix pp 19–

25). Each gene set was tested across all datasets using the method described in its original 

paper; for methods that require models, such as k-nearest neighbours (Berry and 

colleagues8), support vector machines (Bloom and colleagues9), or random forest (Verhagen 

and colleagues10, Laux da Costa and colleagues11), the model was constructed using the 

entire original discovery cohort, and then tested in the other independent cohorts. The four-

gene set by Maertzdorf and colleagues12 was not included here because its original 

parameterisation in PCR data (given as –Ct) does not allow its reapplication in microarray 

data without re-estimating parameters in each new dataset. All but one gene set (Kaforou 

and colleagues7) show a significant drop in discriminatory power in independent validation 

datasets. The three-gene random forest model of Laux da Costa and colleagues (GBP5, 
CD64 [also known as FCGR1A]) and GZMA) did not generalise well. Only the two gene 

sets from Kaforou and colleagues did as well as our three-gene set when comparing basic 

diagnostic power. While the two gene sets from Kaforou and colleagues did as well as our 

three-gene set when comparing basic diagnostic power, they contain 71 genes (including 

only one of our genes DUSP3), precluding their clinical application in resource-limited 

environments.

Finally, we investigated the expression of both the entire set of 266 significant genes and the 

diagnostic three-gene set in publicly available whole genome expression profiles from 25 

different types of immune cells. Both gene sets showed a statistically significant enrichment 

in M1 macrophages (p<0·05; appendix p 26), the workhorses of the interferon γ-mediated 

host response to active tuberculosis.

Discussion

A crucial requirement to reduce the global burden of tuberculosis disease is better 

instruments for diagnosis and for monitoring treatment response.32 Here, we used a 

multicohort analysis of three public tuberculosis gene expression datasets composed of 1023 

whole blood patient samples across a range of ages, countries and inclusion criteria to find 

genes that are statistically differentially expressed in active tuberculosis compared with 

latent tuberculosis and other diseases. We identified a three-gene set, and validated it in 11 

additional independent whole blood datasets composed of 1345 samples. The results showed 

that it is robustly diagnostic for active tuberculosis versus healthy controls, latent 

tuberculosis, and other diseases, that its diagnostic capability is not affected by HIV status 

and BCG vaccination status, and is significantly correlated with severity of active 

tuberculosis.
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Our results provide strong evidence that the three-gene set could be used to address some of 

the major challenges in the diagnosis of active tuberculosis as defined by the recent WHO 

consensus target product profile.5 First, the three-gene set is based on peripheral blood rather 

than sputum samples. Second, our three-gene set performed well in the diagnosis of latent 

tuberculosis versus culture-positive active tuberculosis in children, with a mean sensitivity of 

0·86 and mean specificity of 0·86 (appendix p 7); substantially higher than the target 

sensitivity of 0·66 in the consensus target product profile. Third, HIV status did not change 

the diagnostic power of the three-gene set for comparisons of other diseases versus active 

tuberculosis, and although HIV-positive patients had a lower AUC for latent tuberculosis 

versus active tuberculosis, it was still high (0·97 HIV-negative, 0·89 HIV-positive). Finally, 

the high parsimony and internal normalisation of the three-gene set could allow for a point-

of-care application, because it might be possible to assay three genes with solar-powered 

PCR instruments.33 Although the three-gene set does not meet all needs of the consensus 

target product profile (eg, overall sensitivity >0·95 can only be achieved with specificity in 

the range of 0·50), it is able to fulfill several of the requirements of the consensus target 

product profile.

Several tuberculosis diagnostic gene sets have been proposed by others; five of the datasets 

used here were used to derive diagnostic gene sets in their original manuscripts. These gene 

sets were all derived using statistical techniques that are designed to optimise a set of genes 

within the discovery cohorts; because different discovery cohorts were used, naturally 

different gene sets were identified. However, single-study discovery analyses that rely on 

machine learning models are prone to overfitting, and thus suffer from an absence of 

generalisability (appendix pp 19–25). Furthermore, when comparing these published gene 

signatures, there is surprisingly little overlap between them. Here, we tested each gene set 

using its original described model against all available validation data to reasonably estimate 

their performance in real-world application settings, in which biological and technological 

confounding factors can have a substantial impact. Notably, although the three-gene set of 

Laux da Costa and colleagues11 is also parsimonious, their model does not generalise well, 

with poor AUCs in independent test sets. Their selection process was essentially a vote-

counting method of previous gene sets; thus, their three genes are not specifically selected to 

act together, as our forward search does. Similarly, Maertzdorf and colleagues12 published a 

four-gene diagnostic set (all four of which were noted to be significant in the meta-analysis 

here). However, the microarray validations done by this group required re-estimation of 

model parameters in each dataset, meaning their validation AUCs carry a high positive bias. 

Finally, the gene set of Kaforou and colleagues7 requires measurement of 71 genes in adults, 

which is possible with high-powered expensive laboratory equipment (eg, Fluidigm Biomark 

[South San Francisco, CA, USA], Nanostring Technologies nCounter [Seattle, WA, USA]), 

but not in remote and resource-poor settings where tuberculosis is prevalent. By contrast, our 

three-gene set could be optimised to a low-cost PCR-based assay, which is a standard used 

for many other infectious disease applications. Overall, compared with all other published 

gene sets for tuberculosis, ours is parsimonious (only three genes), can distinguish both 

other diseases and latent tuberculosis from active tuberculosis with one test in multiple 

clinical groups, and performs well in independent external datasets. The multiple gene 
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expression diagnostics that have been derived all suggest that host-response gene expression 

assays are likely to eventually play an important role in tuberculosis diagnostics.

Another crucial and unmet need is the ability to undertake quantitative monitoring of 

tuberculosis treatment response. The current standard in clinical trials for new drugs for 

tuberculosis treatment requires waiting for 2 years after treatment to observe relapse rates. 

Improved monitoring techniques might allow non-responders to be identified earlier. The 

three-gene set increases with disease severity and decreases with time of treatment 

(returning to the same level as healthy controls at the end of treatment) with remarkably 

similar coefficients across datasets (the tuberculosis score fell by 0·02 to 0·05 per week). 

This consistency across multiple datasets suggests the potential to detect deviations from the 

standard treatment response using our three-gene set, and identify treatment non-responders 

substantially earlier. The correlation of the tuberculosis score with disease severity also 

suggests that it might be possible to leverage the test for a predictive enrichment strategy for 

new drug trials.34 Using the three-gene set to improve tuberculosis drug trials is thus an 

interesting possibility that requires further study.

The small size of the three-gene set will be important in its ultimate clinical application, 

reducing costs and complexity relative to larger gene sets. A small number of PCR targets 

can be run in parallel using low-power, low-cost equipment. For instance, Cepheid’s 

GeneXpert MTB/RIF assay measures the expression of five loci, and costs between US$10–

$20 per cartridge.35 Using this assay as an approximate benchmark, an assay to measure the 

three-gene set could probably be provided at similar cost after commercial optimisation.

Finally, the importance of the innate immune response and lung-resident macrophages in the 

establishment of tuberculosis infection is well known.36 However, understanding of the 

specific cellular mechanisms enlisted during a host response to mycobacteria is lacking. We 

have identified host response genes to active tuberculosis that are strongly associated with 

innate immune cells, in particular M1 macrophages. The relation of interferon γ to active 

tuberculosis has been previously shown by Berry and colleagues8 and Cliff and 

colleagues;13 however, interferon γ activation causes several downstream events. Thus, the 

three-gene set might give insight into which interferon γ related pathways are crucial and 

specific to the host response to active pulmonary tuberculosis. The three genes are known to 

have roles in immune regulation and infection response. GBP5 promotes assembly of both 

the AIM2 and NLRP3 inflammasome assembly in response to pathogenic bacteria.37,38 

DUSP3 is a known regulator of both JNK and ERK signalling.39,40 KLF2 has been shown to 

be down-regulated in macrophages in response to bacterial stimulation; further, knockdown 

and knockout studies have shown that decreased KLF2 leads to a pro-inflammatory 

phenotype.41–43 Further hypothesis-driven studies of these three genes could provide better 

insight into both the global and the local immune response during tuberculosis infection and 

might help to design more effective therapeutics and vaccines.

One limitation of our study is that the global ROCs required a re-centering of means to 

accommodate for changes in baseline gene expression measurement by different 

technologies. However, such a centering is justified because in a real-world application of 

the three-gene set, the same technology with a global mean will be used across all cohorts. 
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Furthermore, when the three-gene set is reduced to a targeted assay, the available public data 

can be mapped to the background gene expression levels of the final clinical platform to use 

the publically available data to set optimal cutoffs for future diagnosis. Thus, although the 

optimal cutoffs could change in the final commercial form, our results show that the three-

gene set could be developed as a clinical test with a single cut-off for diagnosis of active 

tuberculosis. A second limitation of our study is that, because of the enormous possible 

search space for potential gene sets, we used a greedy algorithm to identify the three-gene 

set. It thus remains possible that a different gene set with similar diagnostic power could still 

be identified. A third weakness is that the measure of AUC is a relatively blunt measure of 

diagnostic power, because we are interested here mainly in the portion of the curve 

corresponding to high sensitivity; however, sensitivity and specificity have been provided for 

all ROC curves. Additionally, the datasets used here do not publicly provide enough 

standard diagnostic criteria to allow the calculation of a net reclassification index. Thus, the 

question of diagnostic net benefit of a molecular diagnostic test will have to wait for a large 

prospective trial.

Overall, these data show that our three-gene set is robustly diagnostic for active tuberculosis 

across 14 datasets containing 2572 clinical samples. The three-gene set could improve 

clinical diagnosis and treatment response monitoring, although this needs to be confirmed by 

prospective validation with a targeted assay. The gene set is based on whole blood and is 

robust to multiple clinical confounders. The parsimony of the three-gene set should ease 

translation to clinical practice and might prove cost effective in the resource-poor 

environments in which tuberculosis is prevalent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

Several studies have been published so far describing gene signatures for the diagnosis of 

active pulmonary tuberculosis. However, almost all of these studies have been based on 

single dataset analysis. In a few cases in which the studies analysed samples from 

multiple countries, they exclusively focused on a certain age group (eg, children or 

adults). The derived gene sets often contain dozens of transcripts, and show diminished 

diagnostic power in external independent cohorts. A 2014 WHO target product profile for 

new tuberculosis diagnostics described a strong need for a new diagnostic with excellent 

sensitivity that uses non-sputum samples (such as blood), with good diagnostic 

performance in both HIV-positive patients and in children, and that is relatively simple to 

run.

Added value of this study

We have derived a 3-gene signature (GBP5, DUSP3, and KLF2) in whole blood that is 

robustly diagnostic for active tuberculosis across multiple validation datasets irrespective 

of age.

Implications of all the available evidence

Multiple diagnostic host gene signatures for tuberculosis have been published. We show 

here that our signature is either smaller, or has better test characteristics, or both, when 

compared to prior diagnostics. The increasing interest in using host gene expression 

signatures to diagnose tuberculosis suggests that these methods may become part of the 

clinical toolkit in the near future.
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Figure 1. Multicohort analysis
Schematic of the multicohort analysis workflow
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Figure 2. Forest plots for each of the three genes derived in the forward search
Forest plots for each of the three genes derived in the forward search. The x axis represent 

standardised mean difference between latent tuberculosis and other diseases versus active 

tuberculosis. The size of the blue rectangles is inversely proportional to the SE of mean in 

the study. Whiskers represent the 95% CI. The orange diamonds represent overall, combined 

mean difference for a given gene. Width of the diamonds represents the 95% CI of overall 

combined mean difference. FDR=false discovery rate.
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Figure 3. Performance of the three-gene set in the discovery datasets
ROC curves in discovery cohorts showing healthy controls (A), patients with latent 

tuberculosis (B), and patients with other diseases (C) versus patients with active 

tuberculosis. Healthy patients were not included in the multicohort analysis but are shown 

here. ROC curves in four validation cohorts comparing healthy controls with active 

tuberculosis (D), patients with latent tuberculosis with patients with active tuberculosis, and 

ROC curves in three validation cohorts comparing patients with other diseases with active 

tuberculosis (E). Violin plots with patient-level data are shown in figure 6 and appendix pp 

3, 5, 6. ROC=receiver operating characteristic. AUC=area under the curve.
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Figure 4. Establishment of a single global test cutoff in the validation datasets
Sample-level normalised gene scores and group tuberculosis score distributions. Cohorts are 

shown. Bars within violin plots show IQR; white dashes show medians. By centering the 

genes within each dataset to their global mean, a single cutoff across multiple datasets can 

be established.
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Figure 5. Effect of HIV co-infection on the diagnostic power of the tuberculosis score
In GSE37250, GSE39939, and GSE39940, no significant difference was noted in the 

diagnostic power for other diseases versus active tuberculosis based on HIV status. In 

GSE37250, there was a decrease in ROC AUC from 0·96 to 0·89 in latent tuberculosis 

versus active tuberculosis in HIV-positive patients. ROC=receiver operating characteristic. 

AUC=area under the curve.
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Figure 6. Violin plots showing the performance of the three-gene set in longitudinal validation 
datasets
Four validation datasets examined active tuberculosis patients during treatment and recovery. 

All four datasets took samples before and during treatment. The tuberculosis score falls over 

time of treatment. GSE56153 also included healthy controls; the tuberculosis score returned 

to normal after treatment (Wilcoxon p=not significant between cured cases and healthy 

controls; C). GSE62147 also examined active Mycobacterium africanum infections (D).
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