
Preprocessing and Analysis of LC-MS-Based Proteomic Data

Tsung-Heng Tsai, Minkun Wang, and Habtom W. Ressom

Abstract

Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for 

profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is 

a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, 

highlight associated challenges, and present a step-by-step example for analysis of data from LC-

MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the 

subsequent analysis by multiple reaction monitoring (MRM) are discussed.
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1 Introduction

With recent advances of mass spectrometry and separation methods, liquid chromatography 

coupled with mass spectrometry (LC-MS) has become an essential analytical tool in 

biomedical research. LC-MS provides qualitative and quantitative analyses of a variety of 

biomolecules in a high-throughput fashion, and there has been significant progress in 

systems biology research and biomarker discovery using LC-MS based proteomics [1–3].

LC-MS methods can be used for extraction of quantitative information and detection of 

differential abundance [4–6]. This requires that a rigorous analysis workflow be 

implemented. In addition to analytical considerations, crucial steps include: (1) experimental 

design that avoids introducing bias during data acquisition and enables effective utilization 

of available resource [7], (2) data preprocessing pipeline that extracts meaningful features 

[8], and (3) statistical test that identifies significant changes based on the experimental 

design [9]. Conducting these three steps in a coherent manner is key to a successful LC-MS 

based proteomic analysis. Good experimental design helps effectively identify true 

differences in the presence of variability from various sources. This benefit can diminish if 

the data analysts fail to appropriately analyze the LC-MS data and conduct the subsequent 

statistical tests in accordance with the experimental design. This chapter introduces data 

preprocessing pipelines for LC-MS based proteomics, with a focus on untargeted and label-

free proteomic analysis. We provide a high-level overview of LC-MS data preprocessing and 

highlight associated challenges. Furthermore, we present a step-by-step example for analysis 

of LC-MS data from untargeted proteomic study, and how this could be utilized in 

subsequent evaluation using targeted quantitative approaches such as multiple reaction 

monitoring (MRM).
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2 LC-MS Data Preprocessing

In a typical untargeted proteomic analysis, proteins are first enzymatically digested into 

smaller peptides, and these thousands of peptides can be profiled in a single LC-MS run. 

The profiling procedure involves chromatographic separation and MS based analysis. Due to 

the difference in hydrophobicity and polarity among other properties, each peptide elutes 

from the LC column at distinct retention time (RT). The eluted peptide is then analyzed by 

MS or tandem MS (MS/MS). An LC-MS run contains RT information in chromatogram, 

mass-over-charge ratio (m/z) in MS spectrum, and relative ion abundance for each particular 

ion. MS signals detected throughout the range of chromatographic separation are formatted 

in a three-dimensional map, which defines the data from a single LC-MS run, as shown in 

Fig. 1. The LC-MS data contain quantitative information of detected peptides and their 

associated proteins, which are identified by de novo sequencing or database searching using 

MS/MS spectra [10]. A reliable preprocessing pipeline is needed to extract features (usually 

referred to as peaks) from LC-MS data, in which each peptide is characterized by its isotopic 

pattern resulting from common isotopes such as 12C and 13C in a set of MS spectra within 

its elution duration, in superposition of noise signals (Fig. 2). Adequate consideration of 

such characteristics is crucial for LC-MS data preprocessing, including steps of noise 

filtering, deisotoping, peak detection, RT alignment, peak matching and normalization. 

Typically, these data preprocessing steps generate a list of detected peaks characterized by 

their RTs, m/z values and intensities. The preprocessed data can be used in subsequent 

analysis, e.g., identification of significant differences between groups. Association of these 

peaks with peptides/proteins is achieved through MS/MS identification, which is out of 

scope of this chapter, and we refer to interested readers to the literature [10]. In this section, 

critical preprocessing steps are introduced and discussed.

2.1 Noise Filtering

LC-MS data are subject to electronic/chemical noises due to contaminants present in the 

column solvent or instrumental interference. Appropriate noise filtering can increase the 

signal-to-noise ratio (SNR) and facilitate the subsequent peak detection step. Some software 

tools, e.g., MZmine 2 [11], integrate the noise filtering into the peak detection step to ensure 

coherence. Smoothing filters such as Gaussian filter and Savitzky-Golay filter [12] are 

commonly applied to eliminate the effects of noises. Due to the differences in terms of 

resolution and detection limit among various LC-MS platforms, parameters for the 

smoothing filters need to be adaptively selected, preferably through a pilot experiment with 

similar experimental settings.

2.2 Deisotoping

Most chemical elements have naturally occurring isotopes, e.g., 12C and 13C are two stable 

isotopes of the element carbon with mass numbers 12 and 13, respectively. Consequently, 

each analyte gives rise to more than one ion peaks in an MS spectrum, where the peak 

arising solely from the most common isotope is called the monoisotopic peak. In LC-MS 

based proteomics, each peptide is characterized by an envelope of ion peaks due to its 

constituent amino acids. 13C constitutes about 1.11 % of the carbon species and the 

approximately one dalton (Da) mass difference between 13C and 12C results in 1/z difference 
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between adjacent ion peaks in the isotopic envelope, where z is the state of a charged 

peptide. The deisotoping step integrates siblings of ion peaks originating from the same 

peptide and summarizes by its monoisotopic mass. This facilitates the interpretation of LC-

MS data and reduces the complexity in subsequent analysis. DeconTools [13] is widely used 

to deisotope MS spectra, which involves: (1) identification of isotopic pattern, (2) prediction 

of the charge state based on the distance between the ion peaks, and (3) comparison between 

the observed isotopic pattern and a theoretical distribution generated based on an average 

residue.

2.3 Peak Detection

Peak detection is a procedure to determine the existence of a peak in a specific range of RT 

and m/z value, and to quantify its intensity. Many LC-MS peak detection approaches [11, 

14, 15] are adapted from previously established methods such as those for analysis of 

matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) MS data [16, 17]. 

In consideration of the isotopic pattern naturally present in LC-MS data, alternative 

strategies have also been exploited (e.g., as in the MaxQuant platform [18]). Most existing 

methods perform peak detection via a pattern matching process, followed by a filtering step 

based on quantified peak characteristics. A critical issue is that the elution profiles may vary 

across different RTs [19]. As a result, the use of a single pattern throughout the whole RT 

range in the current approaches may lead to inaccurate estimates of peak characteristics and 

SNR, where the latter is often employed as a filtering criterion. Also, peak detection is 

usually performed for each LC-MS run individually, without leveraging the information 

from other runs in the same experiment. Utilization of multi-scale information from multiple 

runs has been proposed for analysis of MALDI-TOF data [20]. This idea could potentially 

be applied to LC-MS data and lead to a more reliable peak detection result, where the peak 

matching step to be introduced later plays an important role.

2.4 Normalization

Due to the presence of various analytical and technical variability in LC-MS data, it requires 

appropriate normalization of intensity measurements to remove systematic biases and 

eliminate the effect of obscuring variability. One of the typical normalization approaches 

carries out the task through identifying a reference for ion intensities and making adjustment 

based on the reference. Apparently, identification of reliable reference is crucial for the 

normalization process. Most existing methods assume that each of the LC-MS runs in the 

same experiment should have an equal concentration of molecules on average [21]. With this 

assumption, measures including summation, median, and quantile of the ion intensities are 

used as the reference for normalization. Unfortunately, the validity of this assumption is 

questionable as an increase of concentration in a specific group of molecules is not 

necessarily compensated by a decrease in other groups [22]. More rigorous approaches using 

regression methods based on a set of matched peaks [23] or spiked-in internal standards [22] 

have been proposed. However, it is unclear that if neighboring ions (in terms of RT, m/z 
value, or intensity) would necessarily share a similar drifting trend along the analysis order. 

At present, the use of quality control (QC) runs to assess and correct variability in LC-MS 

data appears to be the most reliable approach [24], in which QC runs can be collected using 

a reference sample or a mixture pooled from the analyzed samples. This idea has been 
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successfully implemented for large-scale metabolomic studies, where variability along the 

analysis order is estimated for each of the detected peaks through assessment of the QC runs 

[24]. This circumvents the need to select an arbitrary reference, with additional experimental 

challenges to assure appropriate coverage and reproducible detection of ions in the QC runs. 

Alternatively, a recently published method called MaxLFQ [25] leverages information from 

every pair of peptides between samples to account for the reproducibility issue and exploits 

such information to accomplish normalization at protein level.

2.5 RT Alignment and Peak Matching

The peak matching step groups consensus peaks across multiple LC-MS runs prior to 

subsequent analysis, e.g., identification of significant differences between samples, to ensure 

a valid comparison of the LC-MS runs. Also, it is crucial for potential extensions of peak 

detection and normalization steps, by leveraging information from multiple runs. The main 

challenge in peak matching results from the presence of RT variability among LC-MS runs. 

Recent advances in MS technology have made highly precise and accurate mass 

measurement (low- to sub-ppm) achievable [26]. However, controlling the chromatographic 

variability remains challenging. Most LC-MS preprocessing pipelines, (e.g., OpenMS [14], 

msInspect [27], MZmine 2 [11]) integrate the estimation of RT variability into the peak 

matching step, in order to perform RT alignment and achieve reliable identification of 

consensus peaks.

RT alignment approaches can be categorized as: (1) feature-based approaches and (2) 

profile-based approaches [28]. The feature- based approaches perform the alignment task 

based on detected peaks and rely on the correct identification of a set of consensus peaks 

among LC-MS runs. On the other hand, the profile-based approaches utilize chromatograms 

of the LC-MS runs to estimate the variability along RT and then make an adjustment 

accordingly [29–31].

Incorporation of information from peptide identification can reduce the matching ambiguity 

and improve the alignment result [32, 33]. For example, the PEPPeR platform [33] integrates 

peak lists and MS/MS identification for RT alignment. More sophisticated approach has 

been implemented in MaxQuant [18], which leverages each preprocessing step to enhance 

the overall performance. In profile-based alignment, utilization of complementary 

information from various sources has also been shown to yield better alignment performance 

[30].

3 Pipeline for LC-MS Data Preprocessing

Several preprocessing pipelines have been made available in various software tools including 

OpenMS [14], msInspect [27], MZmine 2 [11], and MaxQuant [18]; however, very few 

studies have systematically evaluated and compared their performance [34]. As a result, 

determination of the most appropriate pipeline is still challenging. As a starting point, we 

present a step-by-step example using MaxQuant in this section. This software tool is chosen 

for demonstration due to (1) its ease of use, (2) its capability to handle data from large-scale 

LC-MS experiments, and (3) its active discussion forum.
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MaxQuant can be downloaded from http://www.maxquant.org/downloads.htm after 

registration. A personal computer with CPU frequency at 800 MHz and RAM at 2GB per 

thread is the minimum requirement for installation. Multicore processor is recommended for 

parallel computation. Prerequisite software/plugins include Xcalibur, MSFileReader, 

and .NET Framework 4.5. A peptide search engine, Andromeda [35], is integrated as part of 

MaxQuant and downstream bioinformatics and statistical analyses on the outputs of 

MaxQuant can be performed using Perseus, if needed. Users are referred to the forum 

(https://groups.google.com/forum/#!forum/maxquant-list) for related discussions and 

possible solutions. For comparative analysis by label-free LC-MS methods, detailed 

preprocessing steps using MaxQuant (version 1.4.1.2) are described in the following.

3.1 Importing Files

1. Launch the MaxQuant graphical interface (Fig. 3) and load the .raw files (from 

Thermo instruments) to be processed. The basic information (file name, size, etc.) 

of the imported data will be displayed on the interface. Specify additional 

information (e.g., fraction labels) for the MaxQuant analysis using the experimental 

design template.

2. Click the icon of “Write template” to generate a “combined” folder in the same 

location of the .raw files.

3. Under the newly generated “combined” folder, open the template file 

“experimentalDesignTemplate.txt” using appropriate text editor (e.g., Microsoft 

Excel).

4. The template file presents a table with three columns, where the “Name” column 

should have been filled in with the .raw file names. Complete the table with distinct 

numbers in the “Fraction” column and group information in the “Experiment” 

column (see Note 1). Save these changes.

5. Click the “Read from file” icon and select the modified template file to import the 

specified information.

3.2 Setting Group Specific Parameters

Click tab “Group-specific parameters” (Fig. 4a), where default values are given for general 

experiment information, label-free quantification, first search, and advanced settings. If data 

with different experimental protocols are processed together, users can set specific 

parameters for each group. Modify settings within each parameter group according to 

specific experiments.

1. The “Type” setting is machine dependent. Select “All Ion Fragmentation” if an 

Exactive is used. “Standard” (default) should be selected for other Thermo 

instruments (XL, Velos, etc.).

1If the user specifies an identical name for several LC-MS runs in the experiment column, their information will be combined and 
these individual runs will not be compared. This is, however, an ideal setting if they are all fractions of the same sample.
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2. Specify labels, if a labelling strategy is used. For a label-free analysis, select 

“Multiplicity” as “1”.

3. “Variable modifications” settings describe the chemical reactions on the proteins. 

This does not include fixed modifications that should be selected under “Global 

parameters”.

4. Select the enzyme used to digest the proteins in “Digestion mode”. Trypsin is used 

in most cases.

5. Indicate maximum allowable missed cleavages during enzymatic digestion. Default 

allowable value is “2”.

6. Specify the instrument type.

7. Select “LFQ” for label-free analysis.

8. The “First Search” and “Main Search” (under “Advanced”) specify a two-step 

search in MaxQuant, where a number of peptides are selected for calibration of 

mass and RT, followed by a refined search.

3.3 Setting Global Parameters

Click tab “Global parameters” (Fig. 4b), where default values are given for settings 

including general analysis information, sequences, identification, protein quantification, site 

quantification, label-free quantification, isobaric label quantification, etc. These settings 

apply for all data files. We describe critical settings to modify parameters according to 

specific experimental designs in the following steps.

1. Click “Add file” to load the .fasta files for the database against which the processed 

spectra are searched. The files are parsed through Andromeda configuration (see 
Note 2).

2. Specify the fixed modifications such as carbamidomethylation of cysteine.

3. “Re-quantify” allows the first search as calibration steps prior to the more exact 

main search and re-calibration steps. “Match between runs” enables association of 

spectral identification across LC-MS/MS runs based on RT and accurate mass. 

These two boxes are recommended to be selected.

4. In “Sequences” section, set “Decoy mode” and “Special AAs”, select “Include 

contaminants”, and load other .fasta files if the database used for first search is 

different from the one loaded in “Fasta files”.

5. Set the searching parameters in “Identification”, such as false discovery rate (FDR), 

number of peptides required for a valid identification, minimum peptide length, 

minimum number of unique (see Note 3) and razor peptides, posterior error 

2Andromeda configuration is required before starting MaxQuant to correctly retrieve protein sequence information from the .fasta 
files, as different databases may be delimited in distinct ways. Figure 5 illustrates the main configuration steps including (1) loading a 
new database entry by clicking the green plus button (“+”) in tab “Sequence”; (2) importing user-defined .fasta file; (3) specifying a 
parsing rule form the list in the “Select Rule” tab; (4) checking if Andromeda is able to retrieve the information from the .fasta file 
correctly in the “Test Rule” tab; (5) clicking the green plus button (“+”) in the top-left corner of the “Select Rule” panel if users need 
to write specific rules.
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probability (PEP), and score cutoff. Deselect the “Filter labelled amino acids” box 

for label-free analysis.

6. Specify the quantification methods in “Protein quantification,” including minimum 

ratio count, peptide type for quantification, and whether modified peptides are 

considered.

3.4 Starting Analysis

1. Set “Number of threads” available to the analysis on the bottom of the setting 

window for global parameters (Fig. 4b). Using more threads yields faster 

computation times.

2. Start the analysis with the above settings. The progress can be monitored in the 

“Performance” tab.

4 Analysis of Targeted Quantitative Proteomic Data

Untargeted LC-MS based proteomics is generally biased towards analysis of the most 

abundant and observable proteins. Biologically relevant molecular responses, however, are 

often less discernible in that analysis. Targeted quantification by multiple reaction 

monitoring (MRM) using triple quadrupole (QqQ) mass spectrometers has been introduced 

to overcome the limitations of untargeted analysis [36]. Briefly, the MRM method organizes 

the analysis of a specific list of peptides associated with targeted proteins, characterized by 

the m/z values of their precursor and fragment ions. The precursor-fragment ion pairs are 

called transitions, which are highly specific and unique for the targeted peptides. A specific 

ion is selected in the first quadrupole (Q1) on the basis of its precursor m/z value. The ion 

gets fragmented by collision-induced dissociation (CID) in the second quadrupole. Only the 

relevant ions produced by the fragmentation are selected in the third quadrupole (Q3). The 

resulting transitions are then used for quantification. As the data acquisition is highly 

specific with less interference from irrelevant ions, the MRM analysis can yield more 

sensitive and accurate quantification results.

Most bioinformatics tools developed for targeted proteomic data analysis have been either 

limited in their functions or restricted to specific instrument vendors [37]. Freely available 

software, such as MaRiMba [38], MRMaid [39], and TIQAM [40], are only designed to aid 

creation of transition list. Other proprietary software, such as Agilent Mass Hunter 

Workstation, Applied Biosystems MRMPilot, Thermo-Fisher Pinpoint, and Waters 

TargetLynx, are limited to specific instrument vendor and not freely accessible. MRMer [41] 

and Skyline [37] are two instrument-independent and freely available platforms used for 

MRM analysis. In this following, we briefly present major steps for targeted quantification 

using Skyline, including design of transition list and analysis of acquired MRM data. This 

software can be downloaded from https://proteome.gs.washington.edu/software/skyline.

3The uniqueness of peptide is related to the proteome database. In MaxQuant, a peptide is recognized as unique to a group of proteins 
(termed protein group) if on the entire proteome its sequence only occurs in this group.
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To design a transition list using Skyline, users should import spectral libraries (e.g., public 

spectral libraries or results from search engines such as Andromeda applied in untargeted 

analysis) and background proteome files (e.g., human proteome database) to provide 

background information of the targeted proteomic experiments, upon which, the Skyline can 

read and match the inserted targeted protein list (in fasta sequences or protein IDs, typically 

from untargeted proteomic data analysis). Skyline allows the users to customize the 

parameters of generated transitions (e.g., precursor charges, ion types, and product ions). 

The selected transitions and corresponding spectra are well visualized in Skyline windows. 

This facilitates further refinement such as removing poor matches in the spectral library 

before exporting the list. To analyze MRM data acquired with transition lists already 

designed (unnecessarily by Skyline), we set up the background proteome information and 

insert the transition list with associated proteins into Skyline. The data collected on a QqQ 

MS instrument using this transition list are then imported. Skyline begins loading the files 

into their high- performance data caches, where the relevant information can be retrieved 

efficiently. Meanwhile, peak detection is automatically performed and detected peaks are 

assigned to their corresponding transitions. Once completed, Skyline highlights the 

transitions with their integration boundaries and measured signals. The users can inspect the 

data by comparing replicates (across samples) in terms of their RT and intensity ratios. 

Manual curations are allowed to correct erroneous assignment and adjust the integration 

boundaries (see Note 4). Finally, the quantification results can be customized and exported 

into a .csv file, on which, the downstream statistical analysis can be performed.

5 Notes
1If the user specifies an identical name for several LC-MS runs in the experiment column, 

their information will be combined and these individual runs will not be compared. This is, 

however, an ideal setting if they are all fractions of the same sample.
2Andromeda configuration is required before starting MaxQuant to correctly retrieve protein 

sequence information from the .fasta files, as different databases may be delimited in distinct 

ways. Figure 5 illustrates the main configuration steps including (1) loading a new database 

entry by clicking the green plus button (“+”) in tab “Sequence”; (2) importing user-

defined .fasta file; (3) specifying a parsing rule form the list in the “Select Rule” tab; (4) 

checking if Andromeda is able to retrieve the information from the .fasta file correctly in the 

“Test Rule” tab; (5) clicking the green plus button (“+”) in the top-left corner of the “Select 

Rule” panel if users need to write specific rules.
3The uniqueness of peptide is related to the proteome database. In MaxQuant, a peptide is 

recognized as unique to a group of proteins (termed protein group) if on the entire proteome 

its sequence only occurs in this group.
4The inspection is crucial for cases where multiple peaks are detected, and consequently 

selection of the best peak may not be consistent across samples. To improve the performance 

of peak selection, Skyline also allows users to create custom advanced selection models and 

to utilize information from iRT retention time prediction of peptides.

4The inspection is crucial for cases where multiple peaks are detected, and consequently selection of the best peak may not be 
consistent across samples. To improve the performance of peak selection, Skyline also allows users to create custom advanced 
selection models and to utilize information from iRT retention time prediction of peptides.
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Fig. 1. 
An LC-MS run contains RT information in chromatogram, mass-over-charge ratio (m/z) in 

MS spectrum, and relative ion abundance for each particular ion
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Fig. 2. 
A typical feature in LC-MS data
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Fig. 3. 
Procedure of MaxQuant (Subheading 3.1): loading files and setting up experimental design 

template
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Fig. 4. 
Procedure of MaxQuant (Subheadings 3.2–3.4): setting group-specific parameters (panel a); 

setting global parameters and starting analysis (panel b)
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Fig. 5. 
Configuration of Andromeda
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