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ABSTRACT

Genome-wide proximity ligation assays allow the
identification of chromatin contacts at unprece-
dented resolution. Several studies reveal that mam-
malian chromosomes are composed of topological
domains (TDs) in sub-mega base resolution, which
appear to be conserved across cell types and to
some extent even between organisms. Identifying
topological domains is now an important step toward
understanding the structure and functions of spatial
genome organization. However, current methods for
TD identification demand extensive computational
resources, require careful tuning and/or encounter
inconsistencies in results. In this work, we propose
an efficient and deterministic method, TopDom, to
identify TDs, along with a set of statistical methods
for evaluating their quality. TopDom is much more
efficient than existing methods and depends on just
one intuitive parameter, a window size, for which we
provide easy-to-implement optimization guidelines.
TopDom also identifies more and higher quality TDs
than the popular directional index algorithm. The TDs
identified by TopDom provide strong support for the
cross-tissue TD conservation. Finally, our analysis
reveals that the locations of housekeeping genes are
closely associated with cross-tissue conserved TDs.
The software package and source codes of TopDom
are available at http://zhoulab.usc.edu/TopDom/.

INTRODUCTION

Chromatin is the physical carrier of genetic and epigenetic
information. Recent studies indicate that its high-order spa-
tial conformation plays an important role in many nu-
clear processes, including gene expression, epigenetic or-

ganization and DNA replication (1–7). Although our un-
derstanding of the spatial organization of chromatin is still
very limited, genome-wide proximity ligation assays (6,8–
10) promise to grant new insights into 3D genome struc-
tures and their relation to nuclear functions. For example,
Hi-C data have led to the interesting observation that the
human, mouse and drosophila genomes are linearly par-
titioned into physical domains with strong internal con-
nectivity but limited interaction with other domains (1,4).
These domains occur below the mega base scale, and are
termed topological domains (TDs). The chromatin within a
TD often displays uniform functional properties such as hi-
stone modifications, active gene density, lamina interaction
propensity, replication timing, or nucleotide and repetitive
element compositions (1,4,6,11–13). Evidence suggests that
topological domains are widely conserved across species,
not just across cell types in the same species (1).

Several methods have been developed to identify topo-
logical domains (1,4,6,11–14). Sexton et al. (2012) defined
the first relevant concept, ‘physical domains,’ and devised a
probabilistic approach to first infer a distance-scaling factor
for each restriction fragment, then identify peaks in these
distance-scaling factors as the boundaries of physical do-
mains (4). Dixon et al. (2012) coined the term ‘topologi-
cal domain,’ and proposed an identification method based
on a directionality index (DI). The DI quantifies the de-
gree of upstream or downstream interaction bias for a ge-
nomic region, so its value changes drastically at the periph-
ery of a topological domain. Dixon et al. used a Hidden
Markov Model (HMM) to identify topological domains
from DIs (1). Hou et al. (2012) developed a Bayesian prob-
ability model assuming that the number of paired-end tags
linking two loci follows a Poisson distribution, and adopted
a Markov chain Monte Carlo (MCMC) strategy to esti-
mate the locations of the TD boundaries (12). Filippova
et al. (2014) proposed a dynamic programming method
called ‘Armatus’ which is able to capture persistent do-
mains across various resolutions. Levi-Leduc et al. (2014)
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defined a block-wise segmentation model for the detection
of TDs, and proved that the maximum likelihood estimate
of the block boundaries can be rephrased as a 1D segmen-
tation problem, which can be resolved using standard dy-
namic programming methods (14). More recently, Rao et al.
(2014) used dynamic programming to transform the origi-
nal contact frequency heatmap into an arrowhead matrix
and annotate the domains based on the transformed matrix
(6). For all the TDs identified by different methods, insulat-
ing factors such as CTCF and other histone modifications
were found to be highly enriched at the domain boundaries
(1,4,11–12).

All the above methods identify topological domains from
different points of view, and all are effective at gaining
biological insights in downstream analyses. However, the
source codes of only several methods are publically avail-
able (1,11,14). Moreover, most of the above methods are
challenging for biologists to use, because they require exten-
sive pre-processing (4) and/or substantial parameter tun-
ing (1,4,11–12,14). Among the methods with open source
codes, Dixon et al. (1) used the Gaussian Mixture Model
and the HMM to predict the state of upstream or down-
stream bias for each bin, and found that the results depend
on parameters chosen by the researcher: the input number
of components in the mixture model and the cutoff for the
median posterior probability. The Armatus method has a
great advantage in that it builds consensus domains com-
bining multiscale domain sets, and requires only a single
major parameter (the resolution to generate domains) and
two additional minor parameters (the highest resolution
used to generate domains, and the step size to increment
the resolution parameter) in its combining step (11). The pa-
rameters required by the block-wise segmentation approach
(14) include the distribution of input data, which is chal-
lenging for biological users to determine.

Aside from usability, another important issue is the in-
consistency among the domains generated by different
methods, or even among domains generated by the same
method but with different input parameters. This is espe-
cially important given that previous literature has shown
that domain boundaries are more likely to be active re-
gions (12). Such regions are less compact and more likely
to form inter-chromosomal contacts with other active re-
gions (1,12). But if the signal indicating a TD boundary is
weak, the determination of topological domains is sensitive
to inconsistencies caused by (i) the heuristic nature of the
algorithms, (ii) noise in the data and probably most impor-
tantly (iii) the ambiguity of Hi-C data due to heterogene-
ity among cells in the sample. A robust TD identification
method should identify high-quality TDs in a consistent
manner.

In this paper, we propose an efficient and determinis-
tic method, TopDom, to systematically identify topological
domains. Compared to previous methods, TopDom has lin-
ear time complexity and only depends on a single, intuitive
parameter. Using this method, we identify TDs that repro-
duce the fundamental definition of a chromatin TD, namely
that the average contact frequency between regions within
a TD is much higher than the average contact frequency be-
tween inside and outside regions. We compared our method
with two existing methods, and showed that TopDom can

identify fine-scaled TDs with high quality. Using the TDs
identified by our method, we show that cross-tissue TD con-
servation is even stronger than previously reported, and that
the locations of housekeeping genes are strongly associated
with cross-tissue conserved TDs.

MATERIALS AND METHODS

We focused on three questions while designing a new
method for TD identification: (i) How can we reduce false
detections and improve the quality of the TDs? (ii) How
can we reduce the computational cost for TD detection? (iii)
How can we minimize the number of parameters required
to reliably identify TDs?

We propose an efficient and effective method, TopDom,
with a single easy-to-adjust parameter. The input data are
a Hi-C contact map, where entries are contact frequencies
between any two chromatin segments (i.e. bins in the data
matrix). Our method has three steps: (i) For each bin, we
generate a value binSignal by computing the average contact
frequency among pairs of chromatin regions (one upstream,
the other downstream) in a small window surrounding the
bin. This step results in a curve binSignal(i) that runs along
the chromosome. (ii) Discover TD boundaries as local min-
ima in the binSignal(i) series. (iii) Filter out false detections
in the local minima by statistical testing. Each step is de-
scribed in more detail below.

Step 1. Generating binSignal by computing bin-level contact
frequencies

A TD boundary can be defined as a region between two
adjacent TDs. In general, the contact frequencies between
regions upstream and downstream of a TD boundary are
lower than those between two regions within a TD. We use
this requirement to identify TD boundaries. First, for each
bin, we compute the average contact frequency between up-
stream and downstream regions around the bin location.
The size of the window for this calculation is controlled by
a free parameter w. Let i denote the bin index. We define
a window of length 2w that selects upstream regions Ui =
{i-w-1, i-w, . . . , i}, and downstream regions Di = {i+1, i+2,
. . . , i+w} around the bin i. The average contact frequency,
denoted binsignal(i )., is calculated as follows:

binsignal(i ) = 1
w2

w∑

l=1

w∑

m=1

cont. f req (Ui (l) , Di (m)) (1)

where cont.freq indicates the contact frequency between two
bins. Intuitively, binsignal(i ) illustrates the average contact
frequency between bins in the neighborhood of i, as illus-
trated in the diamond-shaped area of Figure 1A. We expect
binsignal(i ) to be high for bins located close to the cen-
ter of a TD, while it should be low at a TD boundary. In
the following section, we present our approach to find the
curve whose shape best fits binSignal across a TD bound-
ary without any parameters, and then detect local minima
using the fitting curve.
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Figure 1. TopDom method. (A) We define binSignal(i) as the average con-
tact frequency between an upstream and a downstream chromatin region
(Ui and Di) in a window (of size 2w) surrounding bin i. The value of
binSignal(i) is relatively high if bin i is located inside a TD (red diamond),
and reaches a local minimum at a TD boundary (dotted red diamond). (B)
Using a piecewise linear curve fitting algorithm, we identify turning points
(blue circles) in the original curve (black) binSignal(i). Dominant local min-
ima (red inverted triangles) can be detected using the piecewise linear curve
(dotted blue line). (C) We compute P-values to assess the validity of local
minima by comparing within.interactions and between.interactions using a
Wilcox rank-sum test. Deep valleys in the original binSignal(i) curve (top
layer), regions with P-values < 0.05 (second layer) and local minima in the
piecewise linear curve (third layer) are generally highly consistent. Also,
those regions indicate boundaries on a Hi-C contact map (bottom layer).

Step 2. Detect TD boundaries based on binSignal

Intuitively, local minima in the binSignal series along a
chromosome represent TD boundaries. However, some lo-
cal minima result from noise in the data. In order to capture
the dominant local minima, we first smooth the binSignal
curve. Our strategy is to approximate the binSignal curve
with line segments to capture major trends, and for this pur-

pose we adopt the linear-time algorithm of Kumar Ray et
al. (15,16).

Specifically, we fit binSignal with a piecewise linear func-
tion consisting of the longest possible line segments but
minimum fitting error, defined as the sum of distances from
points in binSignal to the fitted line segments. The fitness
function for a given line segment j is calculated as Fj = Lj -
Ej, where Lj denotes the line length and Ej the fitting error.
The end of a fitted line segment is termed a turning point.
The algorithm is detailed below. Given a fixed starting point
(Pstart), it tests line segments of increasing length connect-
ing Pstart to a later point (Pj). The fitness generally increases
with line length, but when the algorithm finds a line with a
smaller fitness score than the previous line, it saves the previ-
ous line as part of the final curve. The previously tested end-
point becomes a turning point and the new starting point
for the next iteration. Repeating this procedure until Pj ar-
rives at the end of binSignal (the end of the chromosome),
we are able to build a piecewise linear function that clearly
identifies all turning points in binSignal.

Given the set of turning points from the fitted line seg-
ments, we then search for the local minima that have the
smallest contact frequencies compared to those of their
neighboring bins. Local minima are points that satisfy the
following two conditions:

(1) The derivative changes from negative to positive in the
interval between two adjacent turning points

(2) The contact frequency has the smallest value the inter-
val between two adjacent turning points

Figure 1B exemplifies the original binSignal curve
(black), the fitting curve (blue dotted line) and the turning
points (blue dots). The local minima (red inverted triangles)
capture ‘TD boundary-like’ bins, and avoid weak local min-
ima in the original curve that are likely due to noise.

Step 3. Statistical filtering of false positive TD boundaries

To filter false positives from the identified TD bound-
aries, we take advantage of the fact that chromatin in-
teractions inside TDs generally have higher frequencies
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than those between adjacent TDs. This means that at a
TD boundary, interactions between upstream and down-
stream bins (i.e. between two different TDs) should be
much less frequent than interactions between different
upstream neighbor bins, or interactions between differ-
ent downstream neighbor bins. Thus, given a bin i, an
adjacent upstream window of length w and an adja-
cent downstream window of length w, we denote inter-
actions between the up- and downstream windows as the
‘between.interactions’, and interactions within the up- or
downstream windows as ‘within.interactions’. If bin i is lo-
cated at a TD boundary, we expect within.interactions to be
stronger than between.interactions; otherwise, there should
be no significant difference between within.interactions and
between.interactions.

between.interactions(i ) =
{cont. f req (Ui (l), Di (m)) | |l − i | ≤ wand |m − i | ≤ w}

wi thin.interactions(i ) =
{cont. f req (Ui (l), Ui (m)) | |l − i | ≤ wand |m − i | ≤ w}

or

{cont. f req (Di (l), Di (m)) | |l − i | ≤ wand |m − i | ≤ w}
..
We perform the Wilcox Rank Sum test to assess whether

there is a significant difference between within.interactions
and between.interactions for each bin. Because the contact
frequency between two bins is highly dependent on the ge-
nomic distance between them, we calculate the z-score of
each cont.freq (A, B), normalized by all cont.freq (A, B)
with the same genomic distance. Finally, we filter out local
minima with P-values larger than 0.05. As shown in Fig-
ure 1C, almost all local minima discovered in the processed
binSignal curve are associated with P-values< 0.05. In prac-
tice, only a small proportion of the local minima are dis-
carded at this step. Note that although Steps 2 and 3 are
both designed to identify TDs based on the fundamental
definition, Step 3 draws on a broader chromatin range (two
adjacent TDs) than Step 2 (only a window around a TD
boundary).

Given all identified local minima and the P-values of all
bins along the chromosome, we use the following rule to an-
notate TDs and boundary regions: given two consecutive
local minima, if any bin does not show a significant differ-
ence between the contact frequencies of within.interactions
and between.interactions (P-value > 0.05), we classify the
region between the minima as a TD; otherwise, we classify
it as a boundary region. The boundary regions represent
TD-free chromatin at the given sequencing resolution and
current parameter settings.

RESULTS

Determination of the TopDom parameter

We performed our analysis on Hi-C data sets of two mouse
cells (embryonic stem cell and cortex cell) and two human
cell lines (embryonic stem cell and IMR90), at a bin resolu-
tion of 40 kb, as suggested in the previous study (1). Top-
Dom has a single adjustable parameter, the window size

w used to compute binSignal. In general, as w increases,
the size of the discovered TDs increases and the number
of TDs decreases (Figure 2). To determine the best win-
dow size w, we rely on an important characteristic of TDs:
bins within a given TD should have more similar contact
frequency profiles than bins outside the TD. Therefore, we
calculated Pearson’s correlation coefficient (PCC) between
the contact profiles of bins within a TD as a quality mea-
surement. Moreover, since topological domains are local
features of chromatin organization, we also calculate the
weighted Pearson’s correlation coefficient (wPCC) where
contacts inside the TDs are weighted more. Specifically,
each bin’s contribution to wPCC is weighted by the back-
ground contact frequency bi for any two bins at a distance i
between the bin and the center bin of the TD. For the con-
tact profiles x and y of two bins within a TD, the weighted
correlation coefficient is calculated according to (Equation
2).

corr (x, y; b) = cov(x, y; b)√
cov(x, x; b)cov(y, y; b)

(2)

where

cov(x, y; b) =
∑

i

wi (xi − m(x; b)) (yi − m(y; b))∑
i bi

and

m(x; b) =
∑

i bi xi∑
i bi

As shown in Figure 3, among the window sizes w = 3,
5, 7, 9, 12 and 15, the choice w = 5 consistently achieved
the highest average PCC/wPCC scores. This measurement
can be considered a general guideline to determine w, as the
ideal value might depend on the genome studied. Consider-
ing the previously reported minimum TD size (≈200 kb) (1)
and our bin size of 40 kb, w = 5 is a reasonable setting. All
results discussed below, unless otherwise stated, are based
on the setting w = 5.

Comparison between TopDom and existing methods

Considering the popularity of existing methods (based on
the number of citations and source code availability), we
compared our TopDom method with the directionality in-
dex method (1) and the recently developed HicSeg method
(14). We refer to these two methods hereafter as DI and Hic-
Seg, respectively.

Our TopDom program (available via http://zhoulab.usc.
edu/TopDom/) was written in R (CRAN) script and tested
on an Intel Xeon 3.3GHz computer with 10GB RAM.
We ran the HicSeg algorithm on the same computer with
nb change max = 500, distrib = ‘G’ and model = ‘Dplus’.
For the DI method, we followed the default settings men-
tioned in (1). In the same computational environment, Top-
Dom is more efficient at identifying TDs from the same in-
put HiC data. TopDom takes 6–7 min, while DI takes >8
h and HicSeg takes about 2.5 h to process the whole mouse
genome.

We counted the number of TDs identified by the three
methods. Setting the window size w = 5, TopDom identifies

http://zhoulab.usc.edu/TopDom/
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Figure 2. Variations in the size and number of TDs. The median size of TDs increases (blue) and the number of TDs decreases (red) with window size.

Figure 3. Selection of the window size. The average intra-TD Pearson’s correlation coefficient (PCC) and weighted PCC were adopted as measurements
of a TD’s quality. We computed intra-TD PCC/wPCC for all TDs, with the window size varying from 3 to 15, and the highest average PCC was obtained
for w = 5 (red) in all four cell lines. The results for wPCC are very similar (plots not shown).
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Figure 4. Illustration of topological domains identified by the DI method,
HiCseg and TopDom. TD boundaries (gray bars) are plotted on the Hi-C
contact map of chromosome 10 (randomly chosen for this illustration) in
mESC and hESC cell types. TD boundaries identified by TopDom (bot-
tom) sensitively capture boundary-like regions. Most TD boundaries iden-
tified by the DI method and HiCseg are shared by the TopDom TD bound-
aries.

more TDs than the other two methods; consequently, the
average size of TDs identified by TopDom is smaller (see
Table 1).

Consistent with results from the DI and HiCseg methods,
we found that the average size of TDs in hESC is slightly
smaller than that in IMR90, ≈450 kb versus ≈600 kb, re-
spectively. As shown in Figure 4, TopDom captures more
boundary-like regions, and most of the TD boundaries dis-
covered by the DI and HiCseg methods are covered by the
TD boundaries. While the DI method is generally good at
identifying boundaries between large TDs, TopDom and
HiCseg are able to detect TDs of smaller size. Thus, both

algorithms reveal the topological structure of a genome on
a finer scale than DI, and with improved efficiency.

We then compared the methods in terms of three different
quality measurements: the intra-TD Pearson’s correlation
coefficient (PCC), the intra-TD weighted Pearson’s correla-
tion coefficient (wPCC), and the difference between the av-
erage intra-TD and inter-TD contact frequencies. The last
measure is a good alternative quality score because bins in
the same TD should have high-frequency interactions, while
bins from adjacent TDs should have limited interactions.
Let Intra(i) denote the average of contact frequencies be-
tween bins within the same TD i, and Inter(i, j) denote the
average of contact frequencies between a bin in TD i and a
bin in adjacent TD j, where |i – j | = 1. The TD quality can
then be defined as Intra(i) – Inter(i, j).

With the setting w = 5, TopDom displays significantly
better performance in terms of the mean and variance of
all three quality measurements across all four cell lines (P-
value < 1e−50 by t-test), except for the measurements of
PCC and wPCC on IMR90 (Figure 5). This evaluation indi-
cates that generally, our method more accurately identifies
TDs in terms of the similarity of their contact profiles.

Epigenetic characteristics of chromatin in topological do-
mains

We explored whether certain regulatory factors might be as-
sociated with topological boundary regions. For mouse cor-
tex and mESC cells, we collected ChipSeq data from Shen et
al. 2012 (17) for the architectural protein CTCF, promoter-
related marks (RNA Polymerase II and H3K4me3) and
enhancer-related histone modifications (H3K4me1 and
H3K27ac). As shown in Figure 6, in both cell types CTCF
binding sites are twice as enriched near TD boundaries
compared to surrounding regions, confirming the role of
CTCF as an insulator (18,19). Similarly, promoter marks
such as RNA Polymerase II and H3K4me3 also peak near
the boundaries in both cell types (Figure 6). This observa-
tion suggests that gene transcription start sites (TSSs) are
mainly located at TD boundaries. In addition, H3K4me1
is slightly depleted at locations close to the TD boundaries
in both cell types. Interestingly, we observed that H3K27ac
shows a different pattern, with a slight peak at the TD
boundaries in the mESC cells and a slight depletion at the
TD boundaries in mouse cortex cells. The signals are weak
for both of these marks, however, due to the regulatory
complexity of enhancer regions (Figure 6). All of these ob-
servations are highly consistent with previous discoveries
(1,4,11–13,20) and support the claim that functional orga-
nizations are closely related to physical TD structures.

TopDom can identify fine-scaled topological domain struc-
tures

Our method identified more TDs than the other two meth-
ods at w = 5 (see Table 1), and its domains are smaller
than those identified by other two methods. There is a great
deal of overlap between the regions identified as TDs (com-
paring DI to TopDom and HiCseg to TopDom), as shown
in Figure 4. We now analyze the overall consistency be-
tween different sets of TDs, and ask whether the new regions
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Figure 5. Quality comparison of TDs identified by TopDom, HicSeg and DI on four cell lines using the intra-inter difference measurement (the top panel),
the average Pearson’s correlation coefficient (the middle panel) and the weighted Pearson’s correlation coefficient (the bottom panel). TopDom achieved
higher scores than HicSeg and DI on all cases except IMR90 cells, with the PCC and wPCC measurements.
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Table 1. Comparison of TDs identified by three different methods for four cell types

Species Cell Type Method No. of TDs Ave. Size of TDs

Human hESC TopDom 5904 453 kb
DI 3127 855 kb
HicSeg 5240 528 kb

IMR90 TopDom 4640 580 kb
DI 2348 1123 kb
HicSeg 4189 657 kb

Mouse mESC TopDom 4477 531 kb
DI 2200 1093 kb
HicSeg 3484 720 kb

Cortex TopDom 4094 596 kb
DI 1518 1540 kb
HicSeg 3103 809 kb

flagged by TopDom are likely to be true TDs. We classify
all identified TD boundaries as common boundaries if they
are identified by two different methods or in two cell types,
and unique boundaries otherwise. The following paragraphs
describe how we match TDs from different sets to identify
corresponding TD boundaries.

Let A and B be two sets of TDs identified by the two
methods on the same sample, {a1, a2, . . . , an} and {b1, b2,
. . . , bm}. For each TD in A (ai ∈ A), we aim to find the best
matching subsets in B (B’ ⊂ B) where B’ contains consecu-
tive TDs along a chromosome. The overlap score measures
the degree of matching between a TD from A and a set of
consecutive TDs from B:

overlap(ai , B′) =
∣∣{ai } ∩ B′∣∣
|{ai } ∪ B′|

We computed the overlap scores between every TD in A
(ai ∈ A) and all possible subsets (B’ ⊂ B) in B. The subset
with the highest overlap score is selected as the best match-
ing set of ai ⊂ A.

bestmatch(ai ) = max
B′⊂B

{
overlap(ai , B′)

}

Note that the overlap score and the bestmatch operation
can also be used to compare TDs across cell types.

Figure 7A illustrates this concept. The i-th TD in A (ai ∈
A) is overlapped by four TDs (bj, bj+1, bj+2, bj+3) in B. We
identify the subset B’ = {bj+1, bj+2, bj+3} with the highest
overlap score as the bestmatch of ai. Therefore, boundaries
partitioning bj-bj+1 and bj+3-bj+4 are classified as common
boundaries, and the boundaries demarcating bj+1-bj+2 and
bj+2-bj+3 are considered unique boundaries.

As shown in Figure 7B, TopDom identified 2300–2900
unique boundaries in the four cell types when compared
with the DI method. TopDom identified 1200–1700 unique
boundaries when compared with the HiCseg method. This
result suggests that the TopDom TD boundaries include
most of the TD boundaries detected by the DI and HiC-
seg methods. Moreover, we confirm that TD boundaries are
strongly conserved across cell types (>70%) (see Figure 7C),
which implies that TD structure is also conserved (1).

We next asked whether the TopDom unique bound-
aries can be considered ‘true TD boundaries’ based on
their epigenetic characteristics. We examined the enrich-
ment patterns of three epigenetic profiles, CTCF, PolII
and H3K4me3, at unique and common (shared by dif-

ferent methods) boundaries for the two mouse cell types.
As shown in Figure 8, epigenetic enrichment patterns at
our unique boundaries are similar to those at the common
boundaries. This strongly suggests that our method is find-
ing fine-scale structures not reported by other methods.

TopDom reveals a significant association between TD conser-
vation and housekeeping gene locations
We examined the locations and properties of genes in the
context of TDs. For all 22 000 genes of hg18 refSeq in the
UCSC genome browser database, we assigned each gene to
one of the TDs identified by TopDom. RNA-seq data of the
hESC (GSM438363) and IMR90 (GSM438361) cell lines
(21–24) were collected from the NCBI Epigenomics Gate-
way, and cufflinks (25) was used to measure gene expression
levels. Similar to the epigenetic profiles, gene density and
gene expression increase in regions close to TD boundaries
(Figure 9A), suggesting that TD boundaries are likely to
have open chromatin. Furthermore, we examined the loca-
tions of about 3000 human housekeeping genes (26) and ob-
served that they reside significantly closer to TD boundaries
than would be expected under random assignment (Figure
9B). This observation is consistent with previous claims that
housekeeping genes tend to locate at TD boundaries (1,4).
In contrast, we selected 230 differentially expressed genes
(q-value < 0.05) using cuffdiff (25) and observed that the
locations of those genes do not show a preference toward
TD boundaries (Figure 9B). This could indicate that gene
expression differences are largely driven by complex regula-
tory interactions within the TDs.

Considering the facts that housekeeping genes behave
similarly across cell types, and that their locations are highly
related to TD structures, we next asked if there is a relation-
ship between the locations of housekeeping genes and the
structural conservation of TDs across cell types. Dixon et
al. reported that around 50–80% of boundaries are shared
across cell types (1). In our result, around 80–90% of TD
boundaries in the differentiated cells (IMR90 cell, mouse
cortex cell) are included in those of embryonic stem cells
(hESC, mESC) (Figure 7C), and more than 70% of TD
boundaries found in embryonic stem cells are shared with
differentiated cells. This suggests that our TDs can provide
even stronger support for the conservation of TDs across
cell types.

We then examined whether the conserved TD structures
are related to the locations of housekeeping genes. First, we
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Table 2. Chi-squared test on the association between conserved TD structures and the locations of housekeeping genes

Common Boundaries Unique Boundaries

House-keeping genes 3315 388
Non House-keeping genes 16 053 3255

Around 90% of housekeeping genes are mapped to common domain boundaries.
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Figure 6. Epigenetic characteristics surrounding boundary regions. From
the ChIP-seq data of five epigenetic marks in mouse ESC and cortex cells,
we identified peaks (P-value < 0.05) using MACS14 (28). The CTCF and
promoter marks (Polymerase II and H3K4me3) are enriched near TD
boundaries for both cell types. For the enhancer marks H3K4me1 and
H3K27ac, the enrichment patterns near boundaries are slightly depleted
in both cell types.

Bj Bj+1 Bj+2 Bj+3

Ai

Method A

Method B

Method B unique
boundary
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Figure 7. Common and Unique Boundaries. (A) Illustration of common
and unique boundaries. (B) Overlap of TD boundaries identified by the DI
method versus TopDom (top) and HiCseg versus TopDom (bottom). Most
TD boundaries identified by the DI and HiCseg methods are included in
the set identified by TopDom. (C) Overlap of TD boundaries in different
cell types (hESC versus IMR90, mESC versus cortex). The TD sets overlap
greatly, indicating the strong conservation of TDs across cell types.

counted the number of housekeeping genes that are close to
common and unique boundaries in the IMR90 and hESC
cells. As shown in Table 2, around 90% of housekeeping
genes are located close to common boundaries. Consider-
ing that the proportion of common boundaries at hESC
is around 70%, this proportion is significantly higher than
expected. By a chi-square test (Table 2), we confirm that
housekeeping genes are located significantly closer to com-
mon boundaries (P-value < 2.2e-16). In summary, our anal-
ysis provides strong evidence that TDs are highly conserved
across cell types, and that the locations of housekeeping
genes are closely related to the conserved TDs.
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Figure 8. Epigenetic characteristics of unique boundaries. We examined the epigenetic characteristics of unique boundaries, identified with respect to DI
(A) and HiCseg (B). In both (A) and (B), CTCF, Polymerase II and H3K4me3 have strong peaks near unique TD boundaries for both mESC and mouse
cortex cells. Their epigenetic profiles at unique boundaries are very similar, with the boundaries showing in Figure 6.
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Figure 9. Gene expression and housekeeping gene density near TD boundaries. (A) For two human cell types (hESC and IMR90), we observed that the
median RPKM tends to be higher closer to TD boundaries. (B) Housekeeping genes reside significantly closer to TD boundaries than expected (top), but
no such pattern exists for differentially expressed genes (bottom).

DISCUSSION

We have presented an efficient and deterministic method,
TopDom, for identifying chromatin topological domains
(TDs). Compared to previous methods, TopDom is not
only computationally efficient but also easy for general
users to learn and apply. Using several objective assess-
ments, we show that our method captures finer-scale TDs
with generally higher quality than two popular existing
methods.

Given a Hi-C data set with fixed resolution (bin size),
the only parameter that needs to be chosen by a researcher
is the window size, and we have discussed how to choose
an appropriate value for this parameter in the Results sec-
tion. We discovered that the TDs identified under differ-
ent window sizes w are slightly different, and additionally
confirmed that the identified TDs overlap with each other
a great deal (Figure 10). This indicates that the set of TD
boundaries identified with a small value of w will include
most of the TD boundaries identified with a large value of
w. Furthermore, we applied TopDom to the Hi-C data at
20 kb and 40 kb resolutions to determine how the bin reso-
lution affects TopDom performance. According to the ap-
proach described above, we set w = 5 for the 40 kb Hi-C
data of all four cell lines and w = 7, 15, 15 and 5 for the

20 kb Hi-C data of mESC, Cortex, hESC and IMR90, re-
spectively. We then computed the overlap scores of the TDs
identified on 20 kb-resolution data with those identified on
40 kb-resolution data. The mean overlap score is around
0.97 on all four cell lines, with a standard deviation around
0.09, indicating that TopDom is not sensitive to the choice
of bin size.

We also demonstrated the validity of the TopDom
method through several biological assessments. The TDs
identified by TopDom support previous claims that TD
boundaries are highly related to CTCF binding, promoter
regions and housekeeping gene locations. We also observed
that TDs are highly conserved; there can be more than
70% overlap in their boundaries across cell types. More-
over, when comparing TDs from two different cell types,
we found that housekeeping genes are preferentially located
close to TD boundaries in both cell types, which implies that
topological conservation is associated with the locations of
these genes.

TD identification can not only provide insights into lo-
cal chromatin structures, but also facilitate the construction
of global 3D genome models. Since chromatin interactions
within a TD are much more frequent than interactions be-
tween TDs, a coarse genome structural model can use TDs
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Figure 10. Overlap score of TDs under different window settings. TDs identified by two different w settings have a high overlap score (>0.9) in all four cell
types.

as its basic building blocks. While the fine structures within
a TD can vary (27), all chromatin regions within a TD are
likely to co-localize in nuclear space. Thus, our method, by
efficiently and effectively identifying TDs, can help emerg-
ing efforts on investigating the higher order genome organi-
zation.
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