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Abstract

Missing data due to limit of detection and limit of quantification is a common obstacle in 

epidemiological and biomedical research. We are interested in methodologies that provide 

unbiased and efficient estimates of these missing data while using popular statistical software. We 

describe a multiple imputation (MI) procedure for cross-sectional and longitudinal data which 

examines the sources of variation of hormones levels throughout the menstrual cycle conditional 

on specific biomarkers. We describe the rational, procedure, advantages and disadvantages of the 

multiple imputation procedure. We also provide a comparison to commonly used missing data 

procedures (complete cases analysis and single imputation). We illustrate our approach using the 

BioCycle data where we are interested in the effects of Vitamin E and Beta-carotene on 

Progesterone levels. We also evaluate the longitudinal impact of changes in Vitamin E on 

Progesterone levels over time. Finaly, we demonstrate the advantages of using MI over complete 

case analysis or naive single replacement in both cross-sectional and longitudinal analysis where 

measurements below the limit of quantification (LOQ) are unreported. We also illustrate that if 

available, inclusion of potentially demined unreliable data below the limit of detection (LOD) 

improves simple estimation substantially.

Keywords

Multiple imputation procedure; Complete case analysis; Longitudinal analysis; Cross sectional 
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1. Introduction

As new biomarkers emerge in basic science settings, epidemiologists and statisticians are to 

evaluate the effectiveness and utility of these new biomarkers. When evaluating new 

biomarkers, two laboratory quality control limits, limit of detection (LOD) and limit of 

quantification (LOQ), are commonly utilized and are an obstacle in epidemiological and 

other empirical studies for estimation of the health effect in humans. Although sometimes 

they are theoretically available, values below the LOD and/or LOQ are rarely released by the 
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laboratories to epidemiologist causing an incomplete data situations. The LOD is defined as 

the lowest analyte concentration that can be distinguished with reasonable confidence from 

background noise, that is to say that the measurements above the LOD reflect some true 

level of the biomarker being present. The LOQ is defined as the value at which the 

coefficient of variation (standard deviation divided by the mean) of the measurement is 

greater than some threshold, usually 20% is commonly accepted. Measurements below the 

LOQ are deemed unreliable in terms of the magnitude of the biomarker measured actually 

being present in contrast to background noise. In general the LOD is lower than the LOQ 

(Currie, 1968). Observations below the LOD and LOQ are not reported and are thus missing 

for further data analysis. This incomplete setup might cause bias, inefficiency and in most 

cases will make the analyses more complex. Since these missing values are often reported 

without distinction of being below LOD or LOQ, henceforth we will refer solely to the LOQ 

unless otherwise stated.

In this paper we are interested in different methodologies to effectively analyze data subject 

to LOQ. One commonly used method is complete case analysis (CCA), where observations 

with values below the LOQ are simply eliminated.Another method is single imputation, 

where every value below the LOQ is replaced by a constant such as LOQ/2 or LOQ/√2 

(Hopke et al., 2001; Richardson and Ciampi, 2003; Schisterman et al., 2006). More complex 

methodology such as maximum likelihood (ML) (Little and Rubin, 2002) and Bayesian 

analysis (Gelman et al., 2003) have become more prominent in the last few years to account 

for this missingness.

While CCA and single imputation are easy to employ, subsequent analysis of CCA 

commonly results in biased estimation, while analysis using single imputation will result in 

impaired estimates of variances and covariances (Little and Rubin, 2002). Bayesian and ML 

methods can provide unbiased and more efficient estimation but are often dependent on 

strong assumptions and are more difficult to apply in practice. Here we apply multiple 

imputation (MI) procedures (Harel and Zhou, 2007; Little and Rubin, 2002; Rubin, 1987) to 

the censoring of data below the LOQ, and present it as a method that is easy to employ while 

maintaining unbiasedness and efficiency. Multiple imputation is a well established procedure 

to deal with missing data, and an extensive body of literature has established it as one of the 

leading methodologies to deal with incomplete data. Each missing value (or value below the 

LOQ) is replaced by m appropriate values resulting in m complete datasets. Then each 

complete or filled in dataset is analyzed independently using a CCA (standard techniques 

without missing data) which results in m sets of estimates and their variances. These 

estimates are then combined to form a final estimate reflecting the observed data and the fact 

that some of the values were missing. Standard MI procedures for continuous missing values 

are often unrestricted, meaning that imputed values are selected across the biomarker's entire 

distribution. Here missing biomarker levels are known to be less than the LOQ and thus will 

only be imputed from this lower range or restricted to this censored portion of the 

distribution.

Since the data are missing, we need to make some assumptions about the process in which 

the missing data occur in order to choose the appropriate imputation procedure. There are 

three assumptions which are the basis of any analysis of incomplete data (Little and Rubin, 
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2002; Rubin, 1976): Missing Completely at Random (MCAR), Missing at Random (MAR), 

and Missing not at Random (MNAR). MCAR occurs when the missing values are not 

related to any measure in the study. In this case, the missingness, the random variable(s) that 

govern the missing data process is uncorrelated with variables to be used in the analysis. In 

this situation, the reason values are above or below the LOD is random and has nothing to do 

with the outcome of interest or other measured covariates. The process that causes the 

missing data (i.e., missingness – the set of reasons for missing data) is independent of any 

variables in the data. An example for MCAR process is missing by design; in this case 

biomarkers are measured on a predetermined proportion (p) of samples and are not 

measured one the remaining samples (1−p) by design. Clearly, missing values below the 

LOQ do not fit this scenario but rather MAR where the missingness process depends only on 

observed data. MNAR occurs when MAR does not hold, and the missingness process 

actually depends on missing values. For example, consider a response variable where values 

below the LOD are plausible. In addition there is a covariate in which the response will be 

missing with probability 80% if the covariate value is above its median and 20% if the 

covariate value is below its median. If the covariate is observed the missing data process can 

be considered as MAR because this information will be used during imputation, however, if 

this covariate is missing MNAR will be the right assumption because it will be dependent on 

information not considered during imputation.

Rubin (1976) introduced this definition in order to find the minimum condition in which one 

DOES NOT have to model the missingness process. In order for that to occur, two 

assumptions must hold. First, we have to assume the MAR assumption is valid. Second, we 

have to assume independence between the estimates of parameters used for imputation and 

those estimated in the substantive model of interest. Having these two assumptions implies 

ignorability, which means one can ignore the missingness model and need to deal only with 

the observed data. In this study, we assume that the LOQ level is known, and hence the 

reason for missing values is observed which leads to MAR assumption and the use of 

ignorable models.

In this paper, we show how MI procedures can be used to account for data below the LOQ in 

two different scenarios. First we consider a cross-sectional data set up, where we are 

interested in the effect of two biomarkers on an outcome and want to use linear regression to 

assess these relationships. Second, we apply similar methodology accounting for 

missingness to a longitudinal scenario and ask how the biomarker (over time) affects the 

outcome. In both scenarios we will allow measurement of biomarkers to have a positive 

probability for values below the LOQ, and will compare the performance of MI relative to 

CCA and single imputation.

Additionally, we will examine the effects of using values below the LOQ on estimation. In 

most cases, laboratories will have measurements below the LOQ but will prefer not to 

release these values to researchers due to quality control convention. Guo et al. (2010) 

showed that the measurement error below the LOQ might be actually smaller then the 

measurement error above the LOQ. We will argue that it will be best if one can use the 

values below the LOQ instead of missing values delivered by the lab albeit the assumed 

larger measurement error below the LOQ.
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In section 2 we will describe the biomarker data, main questions and the appropriate models. 

In section 3 we will present the example where we apply CCA, single imputation and MI to 

account for missing values. We will provide some results regarding both cross-sectional and 

longitudinal examples with and without the availability of values below the LOQ and discuss 

the implications of these results. We will present a small simulation study in section 4 and 

conclude with some discussion in section 5.

2. Data Description and Methods

Oxygen free radicals have been associated with spontaneous abortion, infertility, birth 

weight, and chronic disease processes. Circulating levels of estradiol and progesterone also 

fluctuate during the follicular and luteal phase of the menstrual cycle in ovulatory women. 

However, little is known about the relation between markers of oxidative stress and 

antioxidant status, estrogen levels and their influence on menstrual cycle function. The 

BioCycle Study sought to investigate the relation between endogenous reproductive 

hormone levels and antioxidants including vitamin levels across the menstrual cycle in a 

prospective cohort of premenopausal women. A sample of 259 women, age 18 to 44 at 

enrollment with a self-reported cycle length from 21 to 35 days and with no known 

condition that might affect her cycle (e.g., being underweight, current use of exogenous 

hormones including hormonal contraception, current breast feeding, etc.) were recruited 

(Wactawski-Wende et al., 2009). Blood sample collection was limited by patient burden and 

cost to 8 draws per cycle with two cycles per woman. In order to capture exposure at critical 

windows of hormonal variability, 8 visits were differentially spaced out (approximately days 

2, 7, 12, 13, 14, 18, 21, 27 of a 28 day cycle) and timed based on a home fertility monitor 

measuring Luteinizing hormone surge rather than simple calendar time. This monitor based 

timing of specimen collection allowed for a more uniform and representative hormonal 

profiles across the varying menstrual cycle lengths of the participants.

With multiple timed measurements across 509 total cycles from 259 women, the richness of 

these data allow for a wide variety of analyses. Here we are focused on answering two 

important questions. Does antioxidant status measured via vitamin E or Beta-carotene levels 

affect the maximum level of progesterone? And, do serum progesterone levels change over 

the cycle and what influence does vitamin E have on this change? The first question is a 

cross sectional analysis evaluating the relationship between maximum progesterone levels as 

a function of circulating vitamin E and Beta-carotene levels. The second is a longitudinal 

analysis as we examine change of levels and relations over time. All the measurements of 

progesterone, vitamin E and Beta-carotene levels were subject to LODs and LOQs (Table 

2.1). Fortunately, the Biocycle study dataset includes values below the LOQ but above the 

LOD. Given this additional information, we are going to illustrate these analyses in two 

ways. First we are going to analyze these cross sectional and longitudinal relations based on 

conventional laboratory reporting where all values below the LOQ are missing. Second, we 

will replicate the analyses while incorporating measurements between the LOQ and the 

LOD which are usually withheld from analysis, but are available for this data.

In table 2.1 we present some summary statistics of few of the main variables. We present the 

mean, standard deviation and percent missing in two scenarios. First, when values below the 
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LOQ are missing. Second, when values below the LOQ are available (values below the LOD 

are not available). Vitamin E has 93.7% of its values below the LOQ but only 9.8% of it 

values below the LOD. It is also apparent that due to this large amount of potential missing 

values the mean and variance of Vitamin E change dramatically if we take the values below 

the LOQ in consideration.

2.1. Cross Sectional Analysis and MI

Conventional MI (Harel and Zhou, 2007; Little and Rubin, 2002; Rubin, 1987) is a common 

missing data technique which replaces every missing value with m ≥ 2 plausible values. The 

procedure is comprised of three stages. First, the imputation stage, in which we create 

multiple, say m, ”complete” datasets by filling in missing values for each dataset 

independently. Second, the analysis stage, in which we analyze the m ”complete” datasets 

using standard CCA for datasets with no missing data. Finally, the combining results stage, 

in which the results from the m analyses are combined into a single, global result that takes 

into consideration the variability in the data and the fact that some of the values were 

missing.

These steps can vary widely depending on the type of missingness, imputation model and 

analysis model. However, most commonly used statistical software includes built in 

packages and functions to perform MI for many scenarios. In general, when data is 

continuous the imputation model will be based on a multivariate normal model and when the 

data is categorical the imputation will be based on multinomial model. Models for mixed, 

continuous and categorical, variables will be based on location models (Schafer, 1997a). 

Limited review of methodology and applications of MI can be found in the appendix; some 

other review references are also available (Harel and Zhou, 2007; Schafer and Graham, 

2002). Since we are dealing with continuous variables we will conform to the norm and use 

the joint normal model. It has been shown that the normal assumption is quite robust to 

distribution misspecification and even variables which are clearly not normal result in 

mostly unbiased and efficient estimates (Schafer, 1997a).

In our set-up we treat values below the LOQ as missing data. Doing so leads to a 

conventional missing data problem, where we know that all these missing values fall in the 

interval (0, LOQ). We assume the missingness process follows the MAR assumption and 

therefore we can use ignorable models. If non-ignorable models are of interest, slightly more 

complex modeling will be needed. However, for brevity we will not elaborate on non-

ignorable models, for more details see Little and Rubin (2002). Here in the imputation stage, 

we use this information when filling in missing values and (under our assumptions) 

maximizing the amount of information used in the analysis. The assumptions required for 

the MI analysis are very comparable to those required by maximum likelihood analysis 

(normality, ignorability, etc). There is no clear guide line for the amount of missing values 

allowed before the procedure collapse. The advantage of MI relative to ML is that it the rate 

of missing information, a measure quantifying the impact of the missing values on the 

inference can be estimated and evaluate its effects (Harel, 2007; Harel and Zhou, 2007; 

Little and Rubin, 2002; Rubin, 1987).
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2.2. Longitudinal MI

When variables represent the measure of specific quantity over time, we are dealing with a 

longitudinal structure. Again, consider our example where progesterone and vitamin E levels 

are measured several times along the woman's biological cycle. Suppose each column 

represents a variable while each line represents a subject (one can represent each subject 

with multiple lines, but for the purpose of MI one line per subject is required). However, 

there is a specific relationship between the variables.

The common imputation model (cross-sectional) is a joint normal model. This model can 

work to impute longitudinal data under some assumptions. In this model (under the 

longitudinal setup) the variables are treated as normal variables with a common joint normal 

distribution. With each, the measured value at time t, follows a normal distribution with 

mean and variance and that can be correlated with any or all other time points. This simple 

joint model will be appropriate for MI when the missing data are sparse cross-sectionally 

and the between-variable correlations dominate the within-individuals autocorrelations. 

More complex models have been proposed (e.g. PAN imputation or panel data (Schafer and 

Yucel, 2002)), but are not yet commonly used and are not available in commercial statistical 

software such as SAS (SAS Institute Inc., 2003). In particular PAN modeling allows missing 

values on the responses, though does not allow any missing values in the covariates. In our 

case however, the majority of missing values occur on Vitamin E which is a covariate. 

Therefore we chose to use the normal imputation.

After the missing values below the LOQ are imputed, the next two stages of MI follow as 

described in section 2.1. The m sets of ”complete” data are analyzed using the appropriate 

CCA for longitudinal data. Then the results from these analyses are combined to arrive at a 

single, final result taking into account the observed data and the missing values (values 

below the LOQ).

3. Progesterone and Vitamin E in Women

3.1. Cross-Sectional Data

We are interested in evaluating the effect of serum vitamin E and Beta-carotene levels on 

maximum progesterone levels during the menstrual cycle. For each woman, the maximum 

Progesterone level for the cycle is identified along with the appropriate vitamin E and Beta-

carotene levels. For simplicity consider the model with fixed effects as below

and a random intercept for each individual as the model we are interested in evaluating in 

our cross sectional analysis. Recall from Table 2.1 that all of the measurements in this model 

are subject to LOQ and as such the laboratories commonly report these values as missing.

We will account for this missingness and compare subsequently estimated models by 

applying three techniques: (1) complete case analysis by naively omitting missing 

observations below the LOQ; (2) single imputation - every missing value is replaced by 
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LOQ/2; (3) multiple imputation. After applying CCA and single imputation, the model 

above was estimated using proc Mixed in SAS (SAS Institute Inc., 2003). For MI we used a 

chain equation implemented in IVEware (Raghunathan et al., 2002) an MI macro for SAS 

(SAS Institute Inc., 2003). Using IVEware the user can specify the interval in which the 

imputed values should fall. Here the LOQ of progesterone was 0.2, hence we specified that 

the imputed values fall between 0 and 0.2 for progesterone. After the data were imputed, the 

regression model specified above was estimated from all (m = 10) ”complete” sets of data 

and the results were combined using Rubin (1987) rules through proc mianalize in SAS.

These results are presented in Table 3.1. It is clear that both single imputation and MI are 

preferred over CCA. CCA relies on the least amount of data resulting in estimates that 

appear biased (see estimates of β2 for example, where CCA has an insignificant estimate of 

3.38 with standard deviation of 6.27, compared to significant estimate of MI 6.74 with 

standard deviation 1.74) and have the largest standard errors. While the standard errors are 

similar, the magnitude of the estimated relationship is greater and thus more significant 

based on MI rather than a single imputed value (see estimates of β2 for example, where 

single imputation has a significant estimate of 4.70 with standard deviation 1.85, compared 

to MI with 6.74(1.74)). Thus antioxidant status measured via vitamin E or Beta-carotene 

levels appear to affect the maximum level of progesterone, with significance and magnitude 

which is greatest using MI. Because of the richness of the Biocycle data set we are able to 

perform the same analysis while utilizing the availability of values below the LOQs (we 

observed progesterone 95.7%, Beta-carotene 93.6% and vitamin E 90.7%). Estimators based 

on CCA change markedly and standard deviation is dramatically reduced, from 6.27 with 

these values to 1.99 for β2, however not enough to result in a statistically significant 

relationship. When comparing single imputation and MI the effects of including these data 

are less pronounced. However, from theoretical point of view and from the apparent results it 

is clear MI is superior. The Beta-carotene coefficient β2 is 30% smaller for single imputation 

compared to MI. For the vitamin E coefficient there is a difference of 25% when the values 

below the LOQ are given and a difference of 50% when they are not.

3.2. Longitudinal Data

Changes in vitamin E level are also of interest and its impact on Progesterone throughout the 

woman's biological cycle. As described in section 2, we have information about the 

biomarker (vitamin E) and outcome (Progestrerone) on days 2, 7, 12, 13, 14, 18, 21, and 27 

of the cycle. Similar to the cross sectional analysis, we will illustrate the utility of MI 

through the relatively simple model, where the fixed effects are

while there are subject specific (intercept) random effect.

Similar to section 3.1, we evaluate this model based on data traditionally reported above the 

LOQ and again when we have values below the LOQ. We are going to compare CCA, single 

imputation and MI. The results are presented in table 3.2. CCA and single imputation were 

Harel et al. Page 7

Sri Lankan J Appl Stat. Author manuscript; available in PMC 2016 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyzed as described above. For MI, we used IVEware (Raghunathan et al., 2002) in SAS 

(SAS Institute Inc., 2003) as it was described in section 3.1.

Since IVEware (Raghunathan et al., 2002) was not developed to deal with multilevel data, 

the imputation model does not take into consideration the within subject correlations. 

Although this is a limitation to the study, the alternative is to write a specific MCMC code 

for the imputation stage, which would require a different code for different models and a 

capable programmer. The use of the R (R Development Core Team, 2008) package called 

PAN (Schafer, 1997b, 2001) which allows multilevel imputation (observations within 

subjects), is problematic because it allows only missing in the response variables and not in 

covariates. In our set-up most of the missing values were in the covariates. One may 

consider imputing using PAN while flipping the model (look at the responses as covariates 

and at the covariates as responses) however, this will cause non-conginial model (Meng, 

1994) which might be problematic for the estimation. For these reasons and in order for 

other researchers to be able to replicate our procedures, we chose to use the currently 

available software (SAS) and the specific assumptions mentioned above. Using these 

assumptions we control for pair wise correlations between the variables but not higher level 

interactions. The results in table 3.2 show that serum progesterone levels do seem to change 

over the cycle and are influenced by vitamin E. Again, CCA is a poor choice with 

coefficients clearly inconsistent with those obtained using single imputation and MI. 

However, if obtained, the use of data below the LOQ results in CCA estimators that is 

reasonable. Using the values below the LOQ, CCA results in a model similar to single 

imputation and MI. This might be an indicator that with the values below the LOQ present 

the MCAR assumption is reasonable and therefore not much difference is expected between 

the different estimation procedures (i.e. CCA, single imputation and MI). It is not surprising 

then that single imputation and MI perform similarly.

4. Simulations

We conducted a brief simulation exploring the scenario in our cross-sectional example. We 

started by generating random data based on the log transformed distributions of Vitamin E 

(x) and Beta-carotene (z) and then produced dependent data with random error reflected in 

our progesterone data on day 7(y). Specifically, we generated x from a normal distribution 

N(2.08, 0.252), z and y had the following structure, z = −3.187 + 0.652x + ε1, y = −0.484 

− 0.335x − 0.11z + ε2 where ε1 N(0, 0.652) and ε2 N(0, 0.592). Where N(a, b) represent a 

normal distribution with mean a and variance b. Bias, standard error and mean square error 

(mse) for point estimates and confidence interval width and coverage probability were 

calculate based on 1000 iterations of samples of size n = 500. Coefficients were estimated 

using all of the data, no censoring, and then again using the various methods to account for 

10, 20, and 50% of missing data in the x variable. The y and z variable were not censored.

Table 4.1 shows the results for the coefficient for x, the variable affected by the LOD. The 

bias is the least for CCA followed closely by MI. The single imputation of both 0 and 

LOD/2 showed substantial bias. With respect to standard error and mse MI performed the 

best, nearly as well as when all of the data was present. The small bias and standard error 
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lead to confidence intervals with coverage far better than the unacceptable coverage due to 

single imputation and were markedly shorter than those generated via CCA.

5. Conclusions

As in any missing data problem, ignoring the problem is equivalent to making a strong 

assumption about the data. It is well known that ignoring the missing data problem and using 

CCA will be valid under MCAR, but will likely be biased in other situations. In addition, the 

inference will be inefficient since the confidence intervals will be much larger than 

competing methods. Since the missingness process can not be MCAR in our situation, it is 

obvious that CCA performed poorly and should not be used. In both cross-sectional and 

longitudinal analyses we showed that the use of CCA will lead to different models (results) 

compared with single and multiple imputation.

Due to the fact that the missing values were missing in a specific area of the distribution 

(below the LOD, LOQ), it is not surprising that single and multiple imputation performed 

similarly with respect to the significance of the models and the estimation in general. In the 

cross-sectional example, while the standard errors are similar, the magnitude of the 

estimated relationship is greater and thus more significant based on MI rather than a single 

imputed value. Based on our simulations and the large volume of literature arguing that MI 

is superior to single imputation and the magnitude difference between the two methods we 

will recommend using MI when ever possible.

Guo et al. (2010) showed that the logic underlying not reporting values below the LOQ is 

flawed. They showed that the standard deviation of the predictive distribution increases with 

the value of the biomarker. This led them to the conclusion that ”in absolute terms, the 

distortion in the reported values above the LOQ is actually worse than the distortion in the 

values below the LOQ, which is the rationale for not reporting them.” In this manuscript we 

showed that the results that use the values below the LOQ are superior to those without. It is 

common that laboratories will not release values below the LOQ. However, if the research 

community will be able demonstrate the advantage of using these values (as we have done 

here) the laboratories will have to conform to the demand and release these values.

Any imputation model will require several different types of assumptions. In this manuscript 

we assumed the data is missing at random and ignorable based on Rubin (1987) definitions. 

We also assumed that the cross-sectionally imputation will work for the longitudinal data as 

well. By doing so, we actually assumed that the variables are independent identically 

distributed. This will be appropriate when the between variable variation dominates the 

within variable autocorrelation.

We used a joint normal imputation model for the cross-sectional analysis and added the 

assumption that the between-variable correlations dominate the within-individuals 

autocorrelations in the longitudinal analysis. Although, this will be one of the limitations of 

this manuscript, the advantages of using this procedure are its ease, the ability to use 

common statistical software, and the advantages over other procedures being used for limit 

of detection problems.
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There is not much existing work on left- or interval-censored exposures. Lynn (2001) 

introduced a maximum likelihood approach for left-censored HIV viral load, and compared 

it to ad hoc substitutions and multiple-imputation. When a left-censored exposure is subject 

to measurement error, Richardson and Ciampi (2003) suggested a substitution with the 

expectation below the LOD. They showed it will provide an unbiased estimate. Gomez et al. 
(2003) showed by simulation that midpoint substitution is flawed for a discrete-valued 

interval-censored baseline characteristic in a randomized trial. In linear and logistic 

regression, Schisterman et al. (2006) suggested a substitution method for handling left-

censored exposures. They concluded that the values below LOD will be best if replaced with 

the expectation above the LOD. Lei et al. (2010) incorporates the approaches of Richardson 

and Ciampi (2003) and Schisterman et al. (2006) for linear regression under a likelihood-

based framework.

Since the values below the LOD cannot (accurately) be measured, it is reasonable to 

consider that these values are a mixture of true zeros and values below the LOD. Some 

approaches have been developed for outcomes (Berk and Lachenbruch, 2002; Chu et al., 
2010), but to our knowledge not for exposures. An MI approach that allows this type of 

mixture was developed by Olsen and Schafer (2001).

In this manuscript we did not compared the MI results with ML and Bayesian analysis. It 

has been shown that under the same assumptions and vague priors the result should be quite 

similar. This manuscript does compare MI to the two most commonly used methods for 

handling data missing due to a LOD. CCA and single replacement are used not for their 

impressive estimation properties but rather presumably for ease of implementation. We have 

shown here that MI as a method to account for missing data below a LOD remains easy to 

employ while also achieving estimation with minimal bias and nominal coverage 

probability. It has been shown that procedures such as MI, ML, or Bayes will be superior in 

most circumstances over CCA and single imputation with MI being by far the simplest to 

practically employ.
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Appendix

The imputation stage is the complex part of MI, since the analysis would be equivalent to a 

scenario of complete data and the combining rules are simple and implemented in many 

statistical software packages. There are many ways to implement the imputation stage. The 

types of variables have an important role in the imputation procedure. The most common 

imputation model is designed for continuous variables under multivariate normality 

assumption. Other models available are for categorical data, mixed model for categorical and 
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continuous variables, and the model for multi-level data. More detailed information can be 

found in Schafer (1997a). It is important to specify the analysis model in advance, so that the 

imputation model will be as general as possible and will contain all the variables and 

variable relationships (interactions) one thinks are preset in the data. It was established that 

there is an advantage for using a comprehensive approach for the imputation model, in 

which one would use as many variables possible that might be related to the outcome and/or 

the missingness process (Collins et al., 2001). If the imputation model and the analysis 

model are not the same we are subject to a non-congeniality case (Meng, 1994). When both 

models are the same (and using non-informative priors) the results of MI and ML will be 

very similar.

In most cases, the imputation model will not be in a closed form which will lead us to use 

some Markov Chain Monte Carlo (MCMC) procedures. Computations are summarized in 

Schafer (1997a). Lately, the use of Multiple Imputation using Chain Equations (MICE) 

(Van-Buuren and Oudshoorn, 1999) have become more commonly used (Horton and Lipsitz, 

2001). Using MICE, the researcher represents the posterior distribution of the imputation 

model as a product of equations based on Bayes rule. All of which is built into standard 

software such as SAS (SAS Institute Inc., 2003), Splus (Schimert et al., 2000), and R (R 

Development Core Team, 2008).

For the use of MI we must assume that with complete data, tests and intervals based on the 

normal approximation (Q̂ − Q)/√U ∼ N(0, 1) would be appropriate. In the absence of Ymis, 

we have random versions or imputations  from which we calculate the 

imputed-data estimates  and their estimated variances 

, j = 1, 2, …, m. The overall estimate of Q is Q̄ = m−1 ΣQ̂(j). To obtain a 

standard error for Q̄, we calculate the between-imputation variance B = (m − 1)−1 

ΣQ(x00302)(j) − Q̄)2 and Ū = m−1 ΣU(j), the within-imputation variance. The estimated total 

variance is T = (1 + m−1)B + Ū, and tests and confidence intervals are based on a Student's t 

approximation (Q̄ − Q)/√T ∼ tν, with degrees of freedom .

References

Berk KN, Lachenbruch PA. Repeated measures with zeros. Statistical Methods in Medical Research. 
2002; 11(4):303–316. [PubMed: 12197298] 

Chu H, Gange S, Li X, Hoover D, Liu C, Chmiel J, Jacobson L. The effect of haart on hiv rna 
trajectory among treatment-nave men and women: A segmental bernoulli/lognormal random effects 
model with left censoring. Epidemiology. 2010; 21(4):S2–S34.

Collins L, Schafer J, Kam C. A comparison of inclusive and restrictive strategies in modern missing 
data procedures. Psychological Methods. 2001; 6:330–351. [PubMed: 11778676] 

Currie L. Limits for qualitative detection and quantitative determination–application to radiochemistry. 
Analytical Chemistry. 1968; 40(3):586–592.

Gelman, A.; Carlin, JB.; Stern, HS.; Rubin, DB. Bayesian Data Analysis, Second Edition (Chapman & 
Hall/CRC Texts in Statistical Science). 2. Chapman and Hall/CRC; 2003. 

Gomez G, Espinal A, W Lagakos S. Inference for a linear regression model with an interval-censored 
covariate. Statistics in Medicine. 2003; 22(3):409–425. [PubMed: 12529872] 

Harel et al. Page 11

Sri Lankan J Appl Stat. Author manuscript; available in PMC 2016 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Guo Y, Harel O, Little R. How well quantified is the limit of quantification? Epidemiology. 2010; 
21(4):S10–S16. [PubMed: 20526201] 

Harel O. Inferences on missing information under multiple imputation and two-stage multiple 
imputation. Statistical Methodology. 2007; 4:75–89.

Harel O, Zhou XH. Multiple imputation: Review of theory, implementation and software. Statistics in 
Medicine. 2007; 26(16):3057–3077. [PubMed: 17256804] 

Hopke PK, Liu C, Rubin DB. Multiple imputation for multivariate data with missing and below-
threshold measurements: Time-series concentrations of pollutants in the arctic. Biometrics. 2001; 
57(1):22–33. [PubMed: 11252602] 

Horton N, Lipsitz S. Multiple imputation in practice: Comparison of software packages for regression 
models with missing variables. The American Statistician. 2001; 55(3):244–254.

Lei N, Chu H, Liu C, Cole S, Vexler A, Schisterman E. Linear regression with an independent variable 
subject to a detection limit. Epidemiology. 2010; 21(4):S17–S24. [PubMed: 21422965] 

Little, R.; Rubin, D. Statistical Analysis with Missing Data. New York: Wiley; 2002. 

Lynn HS. Maximum likelihood inference for left-censored hiv rna data. Statistics in Medicine. 2001; 
20(1):33–45. [PubMed: 11135346] 

Meng X. Multiple imputation inference with uncongenial sources of input (with discussion). Statistical 
Science. 1994; 10:538–573.

Olsen MK, Schafer JL. A two-part random-effects model for semicontinuous longitudinal data. Journal 
of the American Statistical Association. 2001; 96(454):730–745.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation 
for Statistical Computing; Vienna, Austria: 2008. 

Raghunathan, TE.; Solenberger, PW.; Van Hoewyk, J. IVE-ware: Imputation and Variance Estimation 
Software. User guide, Institute for Social Research, University of Michigan; 2002. 

Richardson DB, Ciampi A. Effects of exposure measurement error when an exposure variable is 
constrained by a lower limit. American Journal of Epidemiology. 2003; 157(4):355–363. 
[PubMed: 12578806] 

Rubin D. Inference and missing data. Biometrika. 1976; 63:581–592.

Rubin, D. Multiple Imputation for Nonresponse in Surveys. New York: Wiley, New York; 1987. 

SAS Institute Inc. SAS/STAT Software Version 9.1. Cary, NC: 2003. 

Schafer, J. Analysis of Incomplete Multivariate Data. London: Chapman & Hall; 1997a. 

Schafer, J. Imputation of Missing Covariates Under a Multivariate Linear Mixed Model. The 
Pennsylvania State University; 1997b. 97-04, Dept of Statistics

Schafer, JL. New Methods for the Analysis of Change. American Psychological Association; 
Washington, DC: 2001. p. 357-377.chapter Multiple Imputation with PAN

Schafer JL, Graham JW. Missing data: Our view of the state of the art. Psychological Methods. 2002; 
7(2):147–177. [PubMed: 12090408] 

Schafer JL, Yucel RM. Computational strategies for multivariate linear mixed-effects models with 
missing values. Journal of Computational and Graphical Statistics. 2002; 11(2):437–457.

Schimert, J.; Schafer, J.; Hesterberg, T.; Fraley, C.; Clarkson, D. Analyzing Data with Missing Values 
in S-PLUS. Data Analysis Products Devision, MathSoft; Seattle, WA: 2000. Software

Schisterman EF, Vexler A, Whitcomb BW, Liu A. The limitations due to exposure detection limits for 
regression models. American Journal of Epidemiology. 2006; 163(4):374–383. [PubMed: 
16394206] 

Van-Buuren, S.; Oudshoorn, C. Flexible Multivariate Imputation by MICE. Leiden: TNO Preventie en 
Gezondheid; 1999. TNO/VGZ/PG99.054

Wactawski-Wende J, Schisterman EF, Hovey KM, Howards PP, Browne RW, Hediger M, Liu A, 
Trevisan M. Biocycle study: Design of the longitudinal study of the oxidative stress and hormone 
variation during the menstrual cycle. Paediatric and Perinatal Epidemiology. 2009; 23(2):171–184. 
[PubMed: 19159403] 

Harel et al. Page 12

Sri Lankan J Appl Stat. Author manuscript; available in PMC 2016 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harel et al. Page 13

Ta
b

le
 2

.1

Su
m

m
ar

y 
St

at
is

tic
s 

of
 C

ro
ss

 S
ec

tio
na

l D
at

a.

M
is

si
ng

W
it

h 
va

lu
es

V
ar

ia
bl

e
M

ea
n

St
d

%
 m

is
si

ng
M

ea
n

St
d

%
 m

is
si

ng

Pr
og

es
te

ro
ne

11
.1

1
5.

27
0.

4%
11

.1
1

5.
27

0.
4%

V
ita

m
in

 E
0.

54
0.

48
93

.7
%

0.
18

0.
17

9.
8%

B
et

a-
ca

ro
te

ne
0.

20
0.

14
6.

5%
0.

20
0.

14
6.

3%

B
M

I
24

.0
9

3.
87

0.
2%

24
.0

9
3.

87
0.

2%

A
ge

27
.3

8
8.

23
0.

2%
27

.3
8

8.
23

0.
2%

Sri Lankan J Appl Stat. Author manuscript; available in PMC 2016 April 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harel et al. Page 14

Ta
b

le
 3

.1

R
eg

re
ss

io
n 

C
oe

ff
ic

ie
nt

s 
(S

ta
nd

ar
d 

D
ev

ia
tio

n)
 o

f 
th

e 
E

ff
ec

t o
f 

V
ita

m
in

 E
 a

nd
 B

et
a-

ca
ro

te
ne

 o
n 

Pr
og

es
te

ro
ne

.

M
is

si
ng

W
it

h 
va

lu
es

C
C

A
Si

ng
le

 im
p

M
I

C
C

A
Si

ng
le

 im
p

M
I

β 0
10

.3
2 

(2
.1

2)
*

10
.3

7 
(0

.5
0)

*
9.

62
 (

0.
46

)*
10

.5
5 

(0
.5

4)
*

10
.3

5 
(0

.5
0)

*
9.

74
 (

0.
46

)*

β 1
-1

.7
6 

(2
.0

3)
-1

.5
9 

(1
.4

7)
-2

.1
2 

(1
.6

3)
-0

.9
6 

(1
.4

2)
-1

.3
3 

(1
.4

1)
-2

.8
5 

(1
.6

0)

β 2
3.

38
 (

6.
27

)
4.

70
 (

1.
85

)*
6.

74
 (

1.
74

)*
3.

47
 (

1.
99

)
4.

65
 (

1.
85

)*
6.

71
 (

1.
72

)*

* Si
gn

if
ic

an
t a

t 5
%

 s
ig

ni
fi

ca
nc

e 
le

ve
l

Sri Lankan J Appl Stat. Author manuscript; available in PMC 2016 April 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harel et al. Page 15

Ta
b

le
 3

.2

R
eg

re
ss

io
n 

co
ef

fi
ci

en
ts

 (
St

an
da

rd
 D

ev
ia

tio
n)

 o
f 

th
e 

L
on

gi
tu

di
na

l E
ff

ec
t o

f 
V

ita
m

in
 E

 o
n 

Pr
og

es
te

ro
ne

.

M
is

si
ng

W
it

h 
va

lu
es

C
C

A
Si

ng
le

 im
p

M
I

C
C

A
Si

ng
le

 im
p

M
I

β 0
2.

77
 (

0.
42

)*
2.

99
 (

0.
12

)*
3.

16
 (

0.
13

)*
3.

13
 (

0.
13

)*
3.

01
 (

0.
12

)*
3.

05
 (

0.
12

)*

β 1
-1

.8
5 

(1
.0

2)
-7

.1
0 

(0
.8

7)
*

-7
.0

5 
(0

.8
4)

*
-6

.8
4 

(0
.8

7)
*

-6
.9

3 
(0

.8
5)

*
-6

.9
7 

(0
.8

5)
*

β 2
-2

.1
8 

(0
.9

4)
*

-6
.9

0 
(0

.8
1)

*
-7

.0
0 

(0
.7

9)
*

-6
.2

2 
(0

.8
2)

*
-6

.7
3 

(0
.7

9)
*

-6
.7

8 
(0

.7
9)

*

β 3
-1

.2
3 

(0
.7

0)
-3

.8
9 

(0
.6

5)
*

-4
.2

0 
(0

.6
4)

*
-3

.6
8 

(0
.6

5)
*

-3
.8

4 
(0

.6
4)

*
-3

.8
9 

(0
.6

4)
*

β 4
-1

.6
4 

(0
.9

1)
-3

.4
9 

(0
.7

9)
*

-3
.8

2 
(0

.7
6)

*
-3

.5
5 

(0
.7

9)
*

-3
.4

3 
(0

.7
7)

*
-3

.5
5 

(0
.7

8)
*

β 5
-0

.3
4 

(1
.0

6)
0.

28
 (

0.
89

)
-0

.4
3 

(0
.7

8)
-0

.0
7 

(0
.8

9)
0.

30
 (

0.
87

)
0.

15
 (

0.
87

)

β 6
4.

11
 (

1.
16

)*
15

.2
5 

(0
.9

5)
*

12
.7

1 
(1

.0
1)

*
13

.5
6 

(0
.9

3)
*

14
.6

0 
(0

.9
0)

*
14

.2
7 

(0
.9

1)
*

β 7
6.

69
 (

1.
16

)*
20

.3
7 

(0
.9

5)
*

17
.2

7 
(1

.0
2)

*
18

.1
2 

(0
.9

4)
*

19
.2

8 
(0

.9
2)

*
18

.8
8 

(0
.9

2)
*

β 8
1.

67
 (

1.
37

)
8.

53
 (

1.
10

)*
6.

54
 (

1.
08

)*
7.

31
 (

1.
10

)*
8.

11
 (

1.
06

)*
7.

87
 (

1.
07

)*

* Si
gn

if
ic

an
t a

t 5
%

 s
ig

ni
fi

ca
nc

e 
le

ve
l

Sri Lankan J Appl Stat. Author manuscript; available in PMC 2016 April 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harel et al. Page 16

Ta
b

le
 4

.1

Si
m

ul
at

io
n 

R
es

ul
ts

 f
or

 R
eg

re
ss

io
n 

C
oe

ff
ic

ie
nt

s 
at

 R
is

k 
fo

r 
M

is
si

ng
 V

al
ue

s.

P
oi

nt
 E

st
im

at
e

C
I

Sc
en

ar
io

%
m

is
s

M
ea

n
St

d
bi

as
m

se
W

id
th

C
ov

C
om

pl
et

e 
D

at
a

0
-0

.3
38

0.
10

7
-0

.0
02

0.
01

1
0.

42
9

0.
95

2

C
C

A
10

-0
.3

38
0.

13
1

-0
.0

03
0.

01
7

0.
53

1
0.

95
7

20
-0

.3
39

0.
15

2
-0

.0
04

0.
02

3
0.

62
1

0.
95

6

50
-0

.3
28

0.
25

2
0.

00
7

0.
06

3
0.

99
4

0.
95

9

Im
pu

te
 (

0)
10

-0
.0

98
0.

04
0

0.
23

7
0.

05
8

0.
16

0
0

20
-0

.0
76

0.
03

1
0.

25
9

0.
06

8
0.

12
1

0

50
-0

.0
61

0.
02

3
0.

27
4

0.
07

6
0.

09
3

0

Im
pu

te
 (

L
O

D
/2

)
10

-0
.1

75
0.

06
4

0.
16

0
0.

03
0

0.
25

2
0.

29
5

20
-0

.1
41

0.
05

3
0.

19
5

0.
04

1
0.

20
5

0.
04

3

50
-0

.1
14

0.
04

2
0.

22
1

0.
05

1
0.

16
9

0.
00

3

M
I

10
-0

.3
44

0.
11

1
-0

.0
09

0.
01

2
0.

44
2

0.
94

4

20
-0

.3
59

0.
11

7
-0

.0
24

0.
01

4
0.

46
8

0.
94

4

50
-0

.4
25

0.
15

5
-0

.0
90

0.
03

2
0.

62
7

0.
92

4

Sri Lankan J Appl Stat. Author manuscript; available in PMC 2016 April 20.


	Abstract
	1. Introduction
	2. Data Description and Methods
	2.1. Cross Sectional Analysis and MI
	2.2. Longitudinal MI

	3. Progesterone and Vitamin E in Women
	3.1. Cross-Sectional Data
	3.2. Longitudinal Data

	4. Simulations
	5. Conclusions
	Appendix
	References
	Table 2.1
	Table 3.1
	Table 3.2
	Table 4.1

