
Incubation of cocaine cue reactivity associates with 
neuroadaptations in the cortical serotonin (5-HT) 5-HT2C receptor 
(5-HT2CR) system

Sarah E. Swinford-Jacksona, Noelle C. Anastasioa,b, Robert G. Foxa, Sonja J. Stutza, and 
Kathryn A. Cunninghama,b

aCenter for Addiction Research

bDepartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, 
TX, USA

Abstract

Intensification of craving elicited by drug-associated cues during abstinence occurs over time in 

human cocaine users while elevation of cue reactivity (“incubation”) is observed in rats exposed to 

extended forced abstinence from cocaine self-administration. Incubation in rodents has been 

linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the 

hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is 

accompanied by lower potency and/or efficacy of the selective 5-HT2CR agonist WAY163909 to 

suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR 

protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the 

discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to 

sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency 

of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of 

synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 

5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-

administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-

administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these 

outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to 

incubation of cocaine cue reactivity.
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INTRODUCTION

Cocaine use disorder is characterized by cycles of use, abstinence and relapse (Volkow et al., 

2010). Exposure to the environmental contexts and stimuli previously associated with the 

drug experience (cue reactivity) can precipitate relapse (Carter and Tiffany, 1999; O’Brien et 

al., 1998). Cue reactivity can be defined as the attentional orienting response to drug-

associated stimuli that predict reward, and exposure to cocaine-associated cues includes 

physiological responses (e.g., elevated heart rate), subjective reactions (e.g., craving), 

appetitive approach behaviors (e.g., cocaine seeking) as well as neural circuit activation in 

humans (Carter and Tiffany, 1999; Field and Cox, 2008; Garavan et al., 2000; Maas et al., 

1998). Abstinent drug abusers are reported to exhibit a time-dependent increase in craving 

elicited by drug-associated cues (Bedi et al., 2010; Wang et al., 2013). In rodents, cue 

reactivity (lever presses reinforced by the discrete drug-paired cue complex) escalates over 

the first months following cessation of self-administration of cocaine (Grimm et al., 2001; 

Neisewander et al., 2000), other abused drugs (Abdolahi et al., 2010; Li et al., 2015) as well 

as non-drug rewards such as sucrose (Grimm et al., 2006; Grimm et al., 2002); escalation of 

cue reactivity during abstinence has been termed “incubation” (for review, Pickens et al., 

2011). Plasticity of neuronal signaling within the medial prefrontal cortex (mPFC) (Koya et 

al., 2009; LaLumiere et al., 2012; Whitfield et al., 2011), in concert with other nodes within 

the limbic-corticostriatal circuit (Conrad et al., 2008; Lu et al., 2003; Lu et al., 2005; Ma et 

al., 2014; Terrier et al., 2015), plays a fundamental role in the generation of cue reactivity 

and incubation phenomena.

The incentive-motivational effects of cocaine and cocaine-associated cues are regulated by 

serotonin (5-HT) systems within the mPFC, particularly through the 5-HT2C receptor (5-

HT2CR) (Filip and Cunningham, 2003; Pentkowski et al., 2010) which is enriched in this 

region (Liu et al., 2007; Lopez-Gimenez et al., 2001; Nocjar et al., 2015). Neisewander and 

colleagues demonstrated that localized stimulation of the 5-HT2CR in the prelimbic or 

infralimbic mPFC suppressed cue- and cocaine-primed reinstatement following extinction 

from cocaine self-administration (Pentkowski et al., 2010), an outcome identical to the 

effects of a selective 5-HT2CR agonist administered systemically (Burbassi and Cervo, 2008; 

Cunningham et al., 2013; Cunningham et al., 2011; Fletcher et al., 2008; Higgins et al., 

2015; Neisewander and Acosta, 2007). Interestingly, abstinent cocaine users exhibited lower 

sensitivity to the effects of a 5-HT2CR agonist (Buydens-Branchey et al., 1997; Lee and 

Meltzer, 1994; Patkar et al., 2006) and we recently reported that higher cue reactivity was 

observed in cocaine-dependent subjects carrying a single nucleotide polymorphism in the 

HTR2C gene (Anastasio et al., 2014a) which is predicted to diminish 5-HT2CR signal 

transduction (Lappalainen et al., 1995; Okada et al., 2004; Piva et al., 2011; Walstab et al., 

2011). Likewise, we identified that high cocaine cue reactivity correlated with the lowest 

levels of 5-HT2CR protein expression in the mPFC (Anastasio et al., 2014a) and a blunted 

sensitivity to the suppressive effects of the selective 5-HT2CR agonist WAY163909 
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(Anastasio et al., 2014a). Together with our observation that knockdown of the 5-HT2CR in 

the mPFC resulted in vulnerability to the expression of cocaine cue reactivity in rats 

(Anastasio et al., 2014b), these data suggest that the functional status of the cortical 5-

HT2CR system may be a mechanistic driver in the generation of cue reactivity.

The involvement of the 5-HT2CR system in the incubation of cue reactivity has not been 

investigated. The present study tested the hypothesis that incubation of cue reactivity during 

abstinence from cocaine self-administration is accompanied by lower potency and/or 

efficacy of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity. Given that 

the pharmacological responsivity of the 5-HT2CR is regulated by the localization of the 

receptor to cellular microdomains, such as membrane vs. cytoplasmic compartments 

(Herrick-Davis et al., 2015; Zacharias et al., 2002), we tested the hypothesis that incubation 

of cocaine cue reactivity (but not sucrose cue reactivity) is accompanied by a shift in the 

subcellular localization profile of the mPFC 5-HT2CR protein. Self-administration of 

sucrose is a behaviorally consistent paradigm in which acquisition and lever press behavior 

for a natural reinforcer reasonably match those seen in cocaine self-administration (Choi et 

al., 2011; Edwards et al., 2011). Furthermore, incubation of sucrose cue reactivity is well-

described (Grimm et al., 2006; Grimm et al., 2002), however 5-HT2CR agonists do not 

suppress sucrose cue reactivity (Burbassi and Cervo, 2008; Cunningham et al., 2011). The 

outcomes of the following experiments offer the first indication that a shift in the 

responsivity of the 5-HT2CR system, driven in part by the altered subcellular localization of 

the receptor, may contribute to incubation of cocaine cue reactivity.

METHODS

Animals

Male Sprague-Dawley rats (n=213), Harlan, Inc., Houston, TX) weighing 250–325 g at the 

start of experiments were used. Rats were acclimated for seven days to a colony room 

maintained at a constant temperature (21–23°C) and humidity (45–50%) on a 12 hour light-

dark cycle (lights on 0600–1800 h). Rats were housed two/cage and handled daily 

throughout the study. Food and water were available ad libitum. All experiments were 

carried out in accordance with the National Institutes of Health Guide for the Care and Use 
of Laboratory Animals (2011) and with approval from the University of Texas Medical 

Branch Institutional Animal Care and Use Committee.

Drugs

(−)-Cocaine (National Institute on Drug Abuse, Research Triangle Park, NC) was dissolved 

in 0.9% NaCl. WAY163909 [(7b-R,10a-R)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta[b]

[1,4] diazepino [6,7,1hi]indole] was a gift from Pfizer, Inc. (New York, NY) and was 

dissolved in 0.9% NaCl (vehicle).

Apparatus

Both cocaine and sucrose self-administration studies employed standard operant 

conditioning chambers (Med-Associates, Inc., St. Albans, VT, USA) housed in ventilated, 

sound-attenuating cubicles with fans (Med-Associates, Inc.). Each chamber was outfitted 
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with two retractable response levers, a stimulus light above each response lever, a houselight 

opposite the levers, and a magazine-type pellet dispenser. The cocaine infusions were 

delivered via syringes attached to infusion pumps (Med Associates, Inc.) located outside the 

cubicles. The infusion pumps were connected to liquid swivels (Instech, Plymouth Meeting, 

PA, USA) that were fastened to the catheters via polyethylene 20 tubing encased inside a 

metal spring leash (Plastics One, Roanoke, VA). Sucrose pellets (45 mg; Bio-Serv, 

Frenchtown, NJ, USA) were delivered into a pellet receptacle located between the two 

levers.

Cocaine self-administration and cue reactivity analyses

Rats were anesthetized (8.6 mg/kg of xylazine, 1.5 mg/kg of acepromazine, 43 mg/kg of 

ketamine in bacteriostatic saline) and implanted with intravenous catheters with back mounts 

and allowed to recover for 5–7 days (Anastasio et al., 2014a; Anastasio et al., 2014b; 

Cunningham et al., 2013; Cunningham et al., 2011). Catheter patency was maintained by 

daily flushes with a solution of 0.1 mL of bacteriostatic saline containing heparin sodium 

(10 U/mL; American Pharmaceutical Partners, East Schaumburg, IL), streptokinase (0.67 

mg/mL; Sigma Chemical), and ticarcillin disodium (66.67 mg/mL; Research Products 

International, Mt. Prospect, IL) immediately following daily cocaine self-administration 

sessions.

Cocaine self-administration training consisted of 14 daily 180-min sessions during which 

rats were trained to lever press for cocaine infusions (0.75 mg/kg/0.1 mL infusion) 

(Anastasio et al., 2014a; Anastasio et al., 2014b; Cunningham et al., 2013; Cunningham et 

al., 2011). Schedule completions on the active lever resulted in delivery of a cocaine infusion 

over a 6-sec period paired simultaneously with illumination of the house and stimulus lights 

and activation of the infusion pump (discrete cue complex paired with cocaine delivery); 

inactive lever presses produced no scheduled consequences. Following reinforcer delivery, 

the stimulus light as well as the infusion pump were inactivated; the house light remained on 

for an additional 20 sec to indicate a timeout period during which lever presses had no 

scheduled consequences. Rats were trained on a fixed ratio (FR) 1 schedule of reinforcement 

and progressed to an FR5 schedule after achieving seven infusions/hr with less than 10% 

variability for three consecutive days. Upon achieving stability on the FR5 schedule (less 

than 10% variability for a minimum of three consecutive days), rats were pseudorandomly 

assigned to either FA Day 1 or FA Day 30, and returned to their home cages for the 

appropriate FA period.

At the designated FA period, rats were assessed in a 60-min cue reactivity test session (“cue 

test” rats) in which presses on the previously-active lever were reinforced by the discrete cue 

complex (stimulus light illuminated, infusion pump activated) on an FR1 schedule; presses 

on the inactive lever were recorded but produced no scheduled consequences. “Cue test” rats 

were killed immediately upon removal from the cue reactivity session on FA Day 1 or FA 

Day 30. “No test” rats were returned to their home cage following the last self-

administration session and killed immediately upon removal from their home cages on FA 

Day 1 or FA Day 30 without re-exposure to the operant chambers to control for the 
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behavioral experience during the cue reactivity session in ex vivo neurochemical studies 

(Anastasio et al., 2014a).

Two cohorts of rats were trained to self-administer cocaine and assessed for cue reactivity. In 

the first cohort (n=149), pharmacological analyses were employed to test the hypothesis that 

incubation of cue reactivity during abstinence from cocaine self-administration is 

accompanied by lower potency and/or efficacy of the selective 5-HT2CR agonist 

WAY163909 to suppress cue reactivity. After meeting the criterion for stable cocaine self-

administration, rats received an injection of vehicle (0.9% NaCl, 1 mL/kg; i.p.) or 

WAY163909 (0.05 mg/kg, 0.2 mg/kg, or 1.0 mg/kg; i.p.) 15 min prior to the cue reactivity 

session on FA Day 1 or FA Day 30. The doses were chosen from our previous studies with 

WAY163909 (Anastasio et al., 2014a; Anastasio et al., 2014b) (Cunningham et al., 2013; 

Cunningham et al., 2011). The second cohort of rats (n=20) was trained to self-administer 

cocaine as above and treated with vehicle 15 min prior to the cue reactivity session on FA 

Day 1 or FA Day 30. The vehicle-treated rats from both cohorts were employed in ex vivo 
analyses (see below).

Sucrose self-administration and cue reactivity analyses

Sucrose self-administration training consisted of 14 daily 180-min sessions during which 

freely-fed rats (n=32) were trained to lever press for 45 mg sucrose pellets (Bio-Serv, 

Frenchtown, NJ) (Cunningham et al., 2011). Experimental parameters were identical to 

those employed in cocaine self-administration and cue reactivity analyses except that 

sucrose was substituted as the reinforcer. Rats from this cohort were employed in ex vivo 
analyses (see below).

5-HT2CR protein analysis

The 5-HT2CR protein expression profiles were assessed using Western blot analyses of 

tissue harvested from FA Day 1 or FA Day 30 “cue test” and “no test” cocaine- or sucrose-

trained rats (Anastasio et al., 2014a) or naïve rats. Naïve rats were included as an additional 

control to interrogate levels of 5-HT2CR protein expression and subcellular distribution 

independent of experimental manipulation. Rats were anesthetized (400 mg/kg chloral 

hydrate solution), decapitated, and brains were cut in 2 mm coronal sections, rapidly 

microdissected with a scalpel on a cool tray (4°C) (Heffner et al., 1980), frozen in liquid 

nitrogen and stored at −80°C. Tissue encompassing the mPFC (cingulate cortex 1, prelimbic 

cortex and infralimbic cortex) was extracted at 3.00 mm from bregma (Paxinos and Watson, 

1998). Protein fractionation techniques were employed to assess the synaptosomal 

expression profile (Anastasio et al., 2010; Liu et al., 2007) or the membrane vs. cytoplasmic 

protein expression profile of the 5-HT2CR (Anastasio et al., 2013; Anastasio et al., 2014b).

The crude synaptosomal protein fraction is enriched for pre- and postsynaptic proteins [i.e., 

presynaptic terminals, postsynaptic membranes, postsynaptic density, synaptic protein 

complexes (Breukel et al., 1997)] and was prepared as described previously (Anastasio et al., 

2010; Liu et al., 2007). Individual mPFC tissues were homogenized in 10 times w/v ice cold 

Krebs buffer (125 mM NaCl, 1.2 mM KCl, 1.2 mM MgSO4, 1.2 mM CaCl2, 22 mM 

Na2CO3, 1 mM NaH2PO4, 10 mM glucose) containing 0.32 M sucrose plus protease 
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inhibitor cocktail and phosphatase inhibitor 2 and 3 cocktails (10 μL/mL; Sigma-Aldrich, St. 

Louis, MO). The homogenate was centrifuged at 1000 g for 10 min at 4°C to pellet the 

nuclear fraction. The supernatant was collected and centrifuged at 16,000 g for 20 min at 

4°C to pellet the crude synaptosome. The pellet was re-suspended in Krebs buffer with 1% 

dodecyl maltoside or 0.5% NP40.

Crude plasma membrane and cytoplasmic protein fractions were prepared via differential 

centrifugation as previously described (Anastasio et al., 2013; Anastasio et al., 2014b). The 

crude membrane fraction captures membrane-associated proteins localized to the plasma 

membrane and membranous organelles (e.g., mitochondria) (Rockstroh et al., 2011; Suski et 

al., 2014). The crude cytoplasmic fraction contains a number of intracellular organelles 

(except the nucleus) as well as the cytosol, but not a selective marker of the plasma 

membrane (i.e., cadherin) (Cunningham laboratory, unpbulished observations; Rockstroh et 

al., 2011; Suski et al., 2014). The mPFC was homogenized in 10 times w/v extraction buffer 

(10 mM HEPES, 1 mM EDTA, 2 mM EGTA, 1 mM DTT) plus protease inhibitor cocktail 

and phosphatase inhibitor 2 and 3 cocktails (10 μL/mL). The homogenate was centrifuged at 

1000 g for 10 min at 4°C to pellet the nuclear fraction. The supernatant was collected and 

centrifuged at 20,000 g for 30 min at 4°C to pellet the membrane-bound enriched protein 

fraction. The cytoplasmic fraction was collected and reserved. The membrane-enriched 

pellet was washed once and resuspended in buffer [(20 mM HEPES, 200 mM NaCl, 1 mM 

EDTA, 1 mM EGTA, 1 mM DTT, protease inhibitor cocktail and phosphatase inhibitor 2 

and 3 cocktails (10 μL/mL)] plus 0.5% NP40.

Equal amounts of crude synaptosomal protein (30 μg) were reduced with Laemmli sample 

buffer and heated for 20 min at 70°C then separated by SDS-PAGE using 10% Bis-Tris gels 

(Invitrogen, San Diego, CA) for 2–3 hrs at 110V. Proteins were transferred to a PVDF 

membrane (BioRad, Hercules, CA) via a wet-transfer electroblotting apparatus (BioRad) 

overnight at 60–70V (Anastasio et al., 2010). Membranes were blocked with Odyssey 

blocking buffer [LI-COR® Biosciences; 1:1 in Tris Buffered Saline (TBS), pH 7.4] followed 

by incubation with primary antibody [mouse monoclonal 5-HT2CR (D-12, sc-17797, Santa 

Cruz; 1:100), mouse monoclonal pan-cadherin (ab6528, Abcam; 1:5000)] (Anastasio et al., 

2010; Anastasio et al., 2015; Fink, 2015). Membranes were rinsed in TBS + 0.1% Tween-20 

(TBS-T), incubated with secondary antibody [infrared-labeled goat anti-mouse 

IRDye™800CW (926-32210) or IRDye™680RD (926-68070; LI-COR® Biosciences, 

Lincoln, NE, 1:10000)], then rinsed in TBS-T. PVDF membranes were imaged using the 

Odyssey® Infrared Imaging System (LI-COR® Biosciences, Lincoln, NE). The integrated 

intensity of immunoreactive bands normalized to the housekeeping protein cadherin were 

analyzed with the Odyssey® software.

The subcellular localization (synaptosomal; membrane vs. cytoplasmic) profile of the mPFC 

5-HT2CR protein was assessed via the Wes™ automated Western blotting system 

(ProteinSimple, San Jose, CA) which utilizes capillary electrophoresis-based 

immunodetection for higher resolution, sensitivity, and reproducibility (even at low sample 

concentrations) relative to traditional immunoblotting techniques (Anastasio et al., 2015; 

Fink, 2015; Liu et al., 2013). Wes™ reagents (biotinylated molecular weight marker, 

streptavidin-HRP fluorescent standards, luminol-S, hydrogen peroxide, sample buffer, DTT, 
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stacking matrix, separation matrix, running buffer, wash buffer, and matrix removal buffer, 

secondary antibodies, antibody diluent, and capillaries) were obtained from the 

manufacturer (ProteinSimple) and used according to the manufacturer’s recommendations 

with minor modifications (Anastasio et al., 2015; Fink, 2015). The mouse monoclonal 5-

HT2CR (D-12, sc-17797, Santa Cruz; 1:50), mouse monoclonal pan-cadherin (ab6528, 

Abcam; 1:10000), and mouse monoclonal GAPDH antibody (6C5, Advanced 

Immunochemicals; 1:50000) were diluted with ProteinSimple antibody diluent. Equal 

amounts of protein (3 μg) were combined with 0.1X sample buffer and 5X master mix (200 

mM DTT, 5X sample buffer, 5X fluorescent standards), gently mixed, and then denatured at 

95°C for 5 min. The denatured samples, biotinylated ladder, antibody diluent, primary 

antibodies, HRP-conjugated secondary antibodies, chemiluminescent substrate, and wash 

buffer were dispensed to designated wells in a pre-filled microplate (ProteinSimple). 

Separation electrophoresis (375 V, 31 min, 25°C) and immunodetection in the capillaries 

were fully automated using the following settings: separation matrix load for 200-s, stacking 

matrix load for 14-s, sample load for 7-s, antibody diluent for 30 min, primary antibody 

incubation for 60 min, secondary antibody incubation for 30 min, and chemiluminescent 

signal exposure for 5-s, 15-s, 30-s, 60-s, 120-s, 240-s, and 480-s. Data analyses were 

performed using the Compass Software (ProteinSimple). The area under the curve of the 5-

HT2CR peak was normalized to the area under the curve of the cadherin peak (synaptosomal 

and membrane fractions) or area under the curve of the GAPDH peak (cytoplasmic fraction). 

Representative “virtual blot” electrophoretic images were automatically generated by the 

Compass Software (ProteinSimple).

5-HT2CR mRNA analysis

We employed RT-PCR analyses to determine 5-HT2CR mRNA levels on FA Day 30 vs. FA 

Day 1 from cocaine self-administration. Immediately following the cue reactivity test 

session, rats were sacrificed and the mPFC was harvested as described above. Samples of 

mPFC were homogenized in Trizol Reagent® and RNA was isolated using the Trizol 

Reagent Protocol (Life Technologies, Grand Island, NY) (Anastasio et al., 2014b). Reverse 

transcription was performed on 250 ng RNA using SuperScript III Reverse Transcriptase 

(Life Technologies) with random hexamer primers. RT-PCR reactions were assayed in 

triplicate on a 7500 Fast RT PCR System using TaqMan Fast Advanced Master Mix and 

TaqMan® gene specific primer/probes [Htr2c: Rn00562748_m1 (spans boundary of exons 4 

and 5); Cyclophilin A (Ppia): Rn00690933_m1; Life Technologies]. Data are presented in 

terms of Crossing Threshold (Ct), where ΔCt=Ct(Htr2c)−Ct(Cyclophilin).

Statistical analyses

Student’s t-test was used to analyze total intake during acquisition and maintenance of 

cocaine or sucrose self-administration. A two-way ANOVA for the factors of FA Day (FA 

Day 1, FA Day 30) and WAY163909 treatment (vehicle, 0.05, 0.2 and 1.0 mg/kg) was used 

to analyze previously-active and inactive lever presses and latency to the first response 

during the cue reactivity test session; planned comparisons were subsequently made with a 

Dunnett’s test (Keppel, 1973). The four parameter logistic nonlinear regression (Sigma Plot, 

Version 12.3, Systat Software, Inc., Chicago, IL) was used to estimate the dose of 

WAY163909 estimated to decrease cue reactivity by 50% of the maximum suppression by 
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WAY163909 (ID50) on FA Day 1 vs. FA Day 30 from cocaine self-administration 

(Ratkowsky and Reedy, 1986; Tallarida and Murray, 1987). A one-way ANOVA was used to 

analyze previously-active and inactive lever presses and latency to the first response on FA 

Day 1 vs. FA Day 30 following sucrose or cocaine (second cohort) self-administration. A 

two-way ANOVA for the factors of FA (FA Day 1, FA Day 30) and group (“cue test”, “no 

test”) was used to analyze synaptosomal 5-HT2CR protein expression; planned comparisons 

were made with a Tukey’s test (Keppel, 1973). Student’s t-test was used to analyze 5-

HT2CR mRNA levels on FA Day 1 vs. FA Day 30. A one-way ANOVA (FA Day 1, FA Day 

30, naïve) was used to analyze synaptosomal, membrane, cytoplasmic or 

membrane:cytoplasmic 5-HT2CR protein expression; planned comparisons were made with 

a Tukey test (Keppel, 1973). A Pearson’s correlation was used to analyze the relationship 

between previously-active lever presses on the cue reactivity test session and the 

membrane:cytoplasmic ratio of 5-HT2CR protein expression (Keppel, 1973). The 

experiment-wise error rate for all analyses was set at α=0.05.

RESULTS

Incubation aligns with lower potency of a selective 5-HT2CR agonist to suppress cocaine 
cue reactivity

Rats readily acquired cocaine self-administration to stability (i.e., seven infusions/hr on an 

FR5 schedule for at least three sessions) and displayed <10% variation in the number of 

infusions earned during the maintenance sessions (Fig. 1a). There was no difference in total 

cocaine intake across the self-administration phase between rats assigned to FA Day 1 

(368.6 ± 8.9 mg/kg) or FA Day 30 (362.7 ± 7.2 mg/kg; t1,147=0.26; n.s.).

We tested the hypothesis that rats assessed for cue reactivity (previously-active lever presses; 

mean ± SEM) on FA Day 1 and FA Day 30 from cocaine self-administration would display 

lower potency and/or efficacy of the selective 5-HT2CR agonist WAY163909 to suppress cue 

reactivity (Anastasio et al., 2014a). Rats were injected with vehicle (0.9% NaCl) or 

WAY163909 (0.05 mg/kg, 0.2 mg/kg, or 1.0 mg/kg; i.p.) 15 min prior to the cue reactivity 

session on FA Day 1 or FA Day 30. A main effect of FA Day (F1,132=74.28; p<0.05), 

WAY163909 treatment (F3,132=21.81; p<0.05), and an FA Day x WAY163909 treatment 

interaction (F3,132=4.38; p<0.05) were observed for previously-active lever presses for the 

discrete cue complex. Planned comparisons indicated that cue reactivity was significantly 

elevated in the vehicle-treated rats on FA Day 30 vs. FA Day 1 from cocaine self-

administration (Fig. 1b), consistent with previous observations that cue reactivity incubates 

during forced abstinence from cocaine-taking (Grimm et al., 2001; Neisewander et al., 

2000). Cue reactivity in vehicle-treated rats is replotted (Fig. 1c) for FA Day 1 (dotted line) 

and FA Day 30 (dashed line). Planned comparisons for FA Day 1 indicated that rats treated 

with the intermediate (0.2 mg/kg) or high dose (1.0 mg/kg) of WAY163909 exhibited lower 

previously-active lever presses vs. rats treated with vehicle (p<0.05); the low dose (0.05 

mg/kg) of WAY163909 had no effect vs. rats treated with vehicle (Fig. 1c; n.s.). Planned 

comparisons for FA Day 30 indicated that only the high dose (1.0 mg/kg) of WAY163909 

significantly attenuated previously-active lever presses vs. rats treated with vehicle (p<0.05); 

the intermediate (0.2 mg/kg) and low (0.05 mg/kg) doses of WAY163909 had no effect vs. 
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rats treated with vehicle (Fig. 1c). The dose of WAY163909 estimated to decrease 

previously-active lever presses by 50% of the maximum suppression by WAY163909 (ID50) 

was 0.12 mg/kg on FA Day 1 and 0.39 mg/kg on FA Day 30 (~3-fold rightward shift). There 

was no difference in the maximum efficacy of 1 mg/kg of WAY163909 (previously active 

lever presses expressed as percent suppression vs. vehicle) on FA Day 1 (32.8 ± 8.8%) vs. 
FA Day 30 (48.0 ± 4.1%; t1,34=2.24; n.s.). Thus, incubation was associated with lower 

potency of WAY163909, but no change in efficacy, to suppress cue reactivity on FA Day 30 

vs. FA Day 1.

Inactive lever presses in vehicle-treated rats are replotted (Fig. 1d) for FA Day 1 (dotted line) 

and FA Day 30 (dashed line). For inactive lever presses, no main effect of FA Day 

(F1,132=0.94; n.s.), a main effect of WAY163909 treatment (F3,132=3.66; p<0.05), and no FA 

Day x WAY163909 treatment interaction (F3,132=0.22; n.s.) were observed during the cue 

reactivity test session. Planned comparisons indicated that WAY163909 did not significantly 

alter inactive lever presses on either FA Day 1 or FA Day 30 at any dose tested (Fig. 1d). No 

main effect of FA Day (F1,132=1.85; n.s.), a main effect of WAY163909 treatment 

(F3,132=5.57; p<0.05), and no FA Day x WAY163909 treatment interaction (F3,132=0.04; 

n.s.) were observed for latency to the first press on the previously-active lever during the cue 

reactivity test session. On FA Day 1, planned comparisons indicated that the latency to first 

press (mean ± SEM) following WAY163909 treatment at 0.05 mg/kg (27.4 ± 4.6 sec; n.s.), 

0.2 mg/kg (39.7 ± 6.6 sec; n.s.) and 1.0 mg/kg (57.7 ± 10.6 sec; n.s) did not differ from 

vehicle (32.4 ± 10.9). On FA Day 30, the latency to first press following WAY163909 

treatment at 0.05 mg/kg (18.9 ± 5.5 sec; n.s.) or 0.2 mg/kg (34.0. ± 10.6 sec; n.s.) did not 

differ from vehicle (21.0 ± 4.9 sec). The latency to first press following 1.0 mg/kg (50.8 

± 11.3; p<0.05) was significantly higher relative to vehicle (21.0 ± 4.9 sec). Thus, 

WAY163909 suppressed cue reactivity with a limited impact on additional measures of 

behavioral performance.

Cue reactivity incubates during forced abstinence from sucrose self-administration

Rats readily acquired sucrose self-administration to stability and displayed <10% variation 

in the number of pellets earned during the maintenance sessions (Fig. 1e). There was no 

difference in total sucrose intake across the self-administration phase between rats assigned 

to FA Day 1 (19.9 ± 2.1 g) or FA Day 30 (21.0 ± 2.2 g; t1,30=0.13; n.s.).

A main effect of FA Day (F1,16=7.40; p<0.05) was observed for previously active lever 

presses (mean ± SEM) on the cue reactivity test session. Previously-active lever presses 

(mean ± SEM) were significantly elevated on FA Day 30 vs. FA Day 1 from sucrose self-

administration (Fig. 1f). No main effect of FA Day was observed for inactive lever presses 

(F1,16=1.58, n.s.; Fig. 1f). No main effect of FA Day was observed for the latency to the first 

press (F1,16=0.88; n.s). The latency was 20.8 ± 8.4 sec on FA Day 1 and 13 ± 3.1 sec on FA 

Day 30 from sucrose self-administration. Thus, cue reactivity incubates during forced 

abstinence from sucrose-taking, as previously described (Grimm et al., 2006; Grimm et al., 

2002).
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Incubation of cocaine, but not sucrose, cue reactivity associates with lower synaptosomal 
5-HT2CR protein expression in the mPFC

We tested the hypothesis that incubation of cocaine cue reactivity would associate with 5-

HT2CR protein expression in the mPFC synaptosomal fraction. Vehicle-treated rats were 

sacrificed on FA Day 1 or FA Day 30 from cocaine (Fig. 1a,b) or sucrose self-administration 

(Fig. 1e,f) immediately following the cue reactivity test session (“cue test”) or upon removal 

from their home cages without re-exposure to the operant chambers (“no test”) (Anastasio et 

al., 2014a). A portion of the “no test” protein expression data from FA Day 1 from cocaine 

self-administration rats was previously reported (Anastasio et al., 2014a) and has been 

reanalyzed within the present experiment for comparison. A diagram of the mPFC region 

dissected for analyses is shown in Fig. 2a.

Figure 2 illustrates the qualitative (inset) and quantitative analyses (bars) of mPFC 5-

HT2CR synaptosomal protein expression at FA Day 1 and FA Day 30 from cocaine (Fig. 2b) 

or sucrose self-administration for both “cue test” and “no test” rats (Fig. 2c). For cocaine cue 

reactivity, a main effect of FA Day (F1,21=13.19; p<0.05), but no main effect of cue group 

(F1,21=3.75; n.s.) or FA Day x cue group interaction (F1,21=0.93; n.s.) on mPFC 5-HT2CR 

protein expression was observed. Planned comparisons indicated that synaptosomal 5-

HT2CR protein expression in the mPFC was lower on FA Day 30 vs. FA Day 1 regardless of 

cue group (“cue test” or “no test”; Fig. 2b). We performed RT-PCR to assess 5-HT2CR 

mRNA levels in the mPFC from rats sacrificed immediately following the cue reactivity test 

session on FA Day 1 or FA Day 30 from cocaine self-administration. Expression of 5-

HT2CR mRNA (mean ± SEM.) was identical between FA Day 1 (4.82 ± 0.13 arbitrary units, 

A.U.) and FA Day 30 (4.80 ± 0.30 A.U.; t1,4=0.00; n.s.). For sucrose cue reactivity, there 

was no main effect of FA Day (F1,27=0.21; n.s.) or cue group (F1,27=0.02; n.s.) and no FA 

Day x cue group interaction (F1,27=0.70; n.s.). Synaptosomal 5-HT2CR protein expression in 

the mPFC was identical on FA Day 30 vs. FA Day 1 under both “cue test” and “no test” 

conditions (Fig. 2c). Together, these data demonstrate that lower 5-HT2CR expression in the 

mPFC is specific to incubation of cocaine cue reactivity and that the profile of 5-HT2CR 

protein expression is potentially regulated by post-transcriptional mechanisms (e.g., 

trafficking and/or recycling processes).

Incubation of cocaine cue reactivity associates with altered subcellular distribution of 5-
HT2CR protein in mPFC

We tested the hypothesis that incubation of cocaine cue reactivity is associated with 

differential subcellular distribution of 5-HT2CR protein expression in the mPFC as an 

indicator of post-transcriptional mechanisms including receptor trafficking and/or recycling 

processes. Rats from the second cohort readily acquired cocaine self-administration to 

stability (i.e., seven infusions/hr on an FR 5 schedule for at least three sessions) and 

displayed <10% variation in the number of infusions earned during the maintenance sessions 

(data not shown). There was no difference in total cocaine intake across the self-

administration phase between rats assigned to FA Day 1 (366.7 ± 18.8 mg/kg) or FA Day 30 

(385.6 ± 30.0 mg/kg; t1,18=0.29; n.s.). Cue reactivity was significantly higher on FA Day 30 

vs. FA Day 1 (Fig. 3a; F1,18=25.38; p<0.05) as shown for the first cohort (Fig. 1b).
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Analyses of synaptosomal (Fig. 3b), membrane (Fig. 3c), and cytoplasmic (Fig. 3d) mPFC 

5-HT2CR protein expression in these rats are presented. A cohort of naïve rats were included 

as an additional neurochemical control. The horizontal bars represent the mean (solid line) ± 

SEM (dotted lines and shading) of 5-HT2CR protein expression in the mPFC of naïve rats. A 

main effect of group (naïve, FA Day 1, FA Day 30) was detected for synaptosomal 5-HT2CR 

protein expression in the mPFC (F2,13=5.33; p<0.05). Planned comparisons indicated that 

synaptosomal 5-HT2CR protein expression (Fig. 3b, inset) was lower on FA Day 30 vs. FA 

Day 1 (Fig. 3b; p<0.05), replicating observations presented in Fig. 2b. Synaptosomal 5-

HT2CR protein expression on FA Day 1 and FA Day 30 did not differ from naïve (Fig. 3b; 

n.s.). A main effect of group was detected for membrane 5-HT2CR protein expression 

(F2,14=6.98; p<0.05). Membrane expression of 5-HT2CR (Fig. 3c, inset) was lower on FA 

day 30 vs. FA Day 1 (Fig. 3c; p<0.05) and vs. naïve (Fig. 3c; p<0.05); membrane 5-HT2CR 

protein expression on FA Day 1 did not differ from naïve (Fig. 3c; n.s.). A main effect of 

group was detected for cytoplasmic 5-HT2CR protein expression (F2,14=4.04; p<0.05). 

Cytoplasmic expression of 5-HT2CR (Fig. 3d, inset) did not differ between FA Day 1 and 

FA Day 30 or naïve (Fig. 3d; n.s.). A main effect of group was detected for the ratio of 

membrane to cytoplasmic 5-HT2CR protein expression (F2,14=13.27, p<0.05). The ratio of 

membrane to cytoplasmic 5-HT2CR expression was lower on FA Day 30 vs. FA Day 1 (Fig. 

3e; p<0.05), but did not differ from naïve (Fig. 3e; n.s.). There was an inverse correlation 

between previously-active lever presses during the cue reactivity test session and the 

membrane:cytoplasmic ratio of 5-HT2CR protein expression in individual rats (Fig. 3f; r=

−0.8922; p<0.05). Together, these data suggest that incubation of cocaine cue reactivity is 

manifested by adaptations in trafficking and/or recycling processes that dictate the 

subcellular localization of the 5-HT2CR protein.

DISCUSSION

The present studies demonstrate that the incubation of cue reactivity during prolonged 

abstinence from cocaine self-administration is associated with lower potency of the selective 

5-HT2CR agonist WAY163909 to suppress cue reactivity, with no evident change in agonist 

efficacy. Biochemical analyses established that incubation associates with lower 

synaptosomal expression of 5-HT2CR protein in the mPFC, a key site that mediates the 

incubation phenomena (Koya et al., 2009; Ma et al., 2014; Whitfield et al., 2011). Further, a 

greater proportion of the expressed 5-HT2CR protein was sequestered in the cytoplasmic (vs. 

membrane) compartment of the mPFC at prolonged vs. early forced abstinence and there 

was an inverse correlation of the membrane to cytoplasmic 5-HT2CR ratio in the mPFC with 

levels of cocaine cue reactivity. Collectively, these outcomes are the first indication that a 

shift in the responsivity of the 5-HT2CR system, driven in part by the altered subcellular 

localization of the receptor, may contribute to incubation of cocaine cue reactivity.

The findings presented here uphold the interpretation that the functional status of the 5-

HT2CR system is a factor in establishing the incubation phenomena. An analysis of the dose-

effect curve for the high affinity (Ki=10.5 nM) and efficacy (90% vs. 5-HT) 5-HT2CR 

agonist WAY163909 (Dunlop et al., 2005) substantiated a ~3-fold rightward shift in its 

potency to suppress cue reactivity in prolonged (ID50 = 0.39 mg/kg) relative to early forced 

abstinence (ID50 = 0.12 mg/kg) from cocaine self-administration. In general, a full agonist 
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need only occupy a fraction of available receptors to activate a maximal response (Kenakin, 

2002; Strange, 2008); this concept is supported here by the fact that the maximal efficacy of 

WAY163909 (1 mg/kg) is retained in prolonged forced abstinence. The subcellular 

localization of the 5-HT2CR is a key feature of receptor readiness to signal and respond to 

agonists (Kenakin, 2002; Strange, 2008). In the present study, the ratio of membrane to 

cytoplasmic 5-HT2CR expression in the mPFC was significantly lower at prolonged vs. early 

abstinence, in the absence of differences in 5-HT2CR mRNA levels, suggesting that post-

transcriptional mechanisms govern the neuroadaptations in the 5-HT2CR system that 

contribute to elevated cocaine cue reactivity.

Neuroimaging studies in humans (Garavan et al., 2000; Maas et al., 1998) and 

pharmacological and behavioral studies in rodents (Koya et al., 2009; LaLumiere et al., 

2012; Ma et al., 2014; Pentkowski et al., 2010; Whitfield et al., 2011) have implicated the 

mPFC as a key neuronal locus that controls the persistence of cocaine-associated cues to 

generate susceptibility to relapse, including the 5-HT2CR (Anastasio et al., 2014a; Anastasio 

et al., 2014b). The observations described herein support the hypothesis that disruption of a 

population of synaptically-localized 5-HT2CR (Anastasio et al., 2010) and a reduced 5-

HT2CR tone in mPFC is an integral mechanism in the expression of cue reactivity during 

abstinence from cocaine self-administration (for review, Cunningham and Anastasio, 2014). 

The 5-HT2CR interfaces in a functionally-coordinated manner with synaptic proteins to 

promote or inhibit receptor readiness and subsequent signaling capacity (Gavarini et al., 

2006), most likely a reactive process to the dynamic microenvironment. A shift in receptor 

expression from the membrane fraction to the cytoplasmic fraction indicates that post-

transcriptional processes which govern 5-HT2CR trafficking and subcellular localization 

(e.g., RNA editing, alternative splicing) (Marion et al., 2004; Martin et al., 2013) may also 

be subject to regulation during periods of abstinence from cocaine. It is intriguing to propose 

that the neurochemical adaptations, including fluctuations in 5-HT neurotransmission 

promoted by cocaine-taking and periods of withdrawal (Parsons and Justice, 1993; Parsons 

et al., 1995), may be responsible for shuttling 5-HT2CR protein between subcellular 

compartments. Future analyses are required to determine the importance of other factors 

likely to contribute to the 5-HT2CR functional capacity and responsivity to agonist in vivo, 

including receptor density, affinity, reserve and/or coupling efficiency (Kenakin, 2002; 

Sanders-Bush and Breeding, 1990). Our primary objective in the present studies was to 

uncover the late-emerging changes in 5-HT2CR expression that may be involved in 

incubation, but shifts in 5-HT2CR expression may also occur during cocaine self-

administration and/or in the first 24 hours following the cessation of cocaine-taking. 

Interestingly, the profile of mPFC 5-HT2CR membrane expression in naïve rats mirrored that 

observed at early forced abstinence from cocaine self-administration. Without a 

comprehensive understanding of 5-HT levels and 5-HT2CR function during abstinence from 

cocaine (Parsons and Justice, 1993; Parsons et al., 1995), concise conclusions about the 

functional status of the 5-HT2CR system relative to basal conditions are difficult to 

formulate. Nonetheless, while similar between naïve and early abstinence, 5-HT2CR 

membrane expression in prolonged abstinence was lower than naïve controls and early 

abstinence, findings that support the interpretation that the subcellular distribution of 5-

HT2CR expression is dysregulated at prolonged abstinence from cocaine-taking. A greater 
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appreciation of the subcellular distribution of the 5-HT2CR and the specific mechanisms 

which regulate its postsynaptic functionality will advance the development of therapeutics 

designed to harmonize 5-HT2CR signaling in the mPFC to minimize heightened cue 

reactivity.

The present studies implicate the involvement of synaptically expressed 5-HT2CR in the 

mPFC as an additional molecular substrate of the incubation phenomenon. However, the 

manner in which diverse molecular elements, ranging from neurotrophic factors (Whitfield 

et al., 2011) to intracellular signaling molecules (Koya et al., 2009) to receptor localization 

(present study), interface and interact to control incubation remains to be elucidated. 

Serotonergic terminals predominantly synapse on PFC interneurons (Smiley and Goldman-

Rakic, 1996) and the 5-HT2CR transcript and protein are localized to PFC GABA 

interneurons (Liu et al., 2007; Vysokanov et al., 1998), although cortical pyramidal neurons 

also express the 5-HT2CR (Carr et al., 2002; Clemett et al., 2000; Liu et al., 2007). Given 

that the 5-HT2CR in the mPFC localized to parvalbumin-positive interneurons (Liu et al., 

2007), which innervate and inhibit efferent signaling of pyramidal neurons (Gabbott et al., 

1997; Markram et al., 2004), the 5-HT2CR-mediated influence on GABA interneurons 

would be expected to provide inhibitory control over output of cortical pyramidal neurons 

under basal conditions. Thus, low 5-HT2CR tone in mPFC following prolonged abstinence 

from cocaine self-administration may predict less inhibitory control over output to key 

structures (e.g., nucleus accumbens; NAc) (Conrad et al., 2008) to modulate cocaine-seeking 

behavior in protracted abstinence. The tightly regulated balance of mPFC projections to the 

NAc (Ma et al., 2014) and dynamic remodeling events within the NAc AMPA receptor 

system (Conrad et al., 2008) cement neuroadaptive processes within the corticoaccumbens 

circuit as central to the development and expression of incubation following cocaine self-

administration.

We found that dysregulation of the mPFC 5-HT2CR system does not appear to be involved in 

incubation following forced abstinence from sucrose self-administration which is consistent 

with prior reports that have identified disparate mechanisms involved in incubation 

following cocaine vs. sucrose self-administration in the mPFC (Koya et al., 2009) and NAc 

(Counotte et al., 2014; Lu et al., 2003). In contrast, convergent mechanisms for incubation 

following cocaine and sucrose self-administration have been described within limbic areas 

of the brain, such as the amygdala (Lu et al., 2007; Uejima et al., 2007), which may 

implicate different neurocircuitry in incubation following abstinence from drug vs. non-drug 

reinforcers. Of note, 5-HT2CR populations within the NAc (Filip and Cunningham, 2002; 

Navailles et al., 2008) and the ventral tegmental area (Bubar and Cunningham, 2007; Bubar 

et al., 2011; Navailles et al., 2008) also control corticostriatal circuitry (Pozzi et al., 2002), 

but have yet to be fully investigated for their role in incubation following either cocaine or 

sucrose self-administration. Collectively, neuroadaptations in the 5-HT2CR and other 

neurobiological systems within the corticoaccumbens circuit could aggregately prime the 

neural network for an augmented response to reward-related cues in prolonged abstinence 

from cocaine self-administration.

An improved understanding of the mechanisms which mediate the incubation phenomenon 

could provide insight into treatment modalities that may be differentially effective to curb 
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cue reactivity and prevent relapse at early vs. prolonged periods of abstinence from cocaine. 

Importantly, these data suggest that pharmacotherapy with the FDA-approved selective 5-

HT2CR agonist lorcaserin may be generally efficacious, but more potent and particularly 

useful early after cessation of cocaine use to mitigate relapse primed by exposure to drug-

associated cues and perhaps bolster relapse prevention during abstinence (Cunningham and 

Anastasio, 2014; Harvey-Lewis et al., 2016).
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Highlights

Cue reactivity incubates during forced abstinence from cocaine- or sucrose-taking.

Incubation aligns with lower potency of 5-HT2CR agonist to suppress cocaine cue 

reactivity.

Incubation of cocaine cue reactivity associates with lower 5-HT2CR expression in 

mPFC.

Membrane to cytoplasmic 5-HT2CR ratio inversely correlates with cocaine cue 

reactivity.
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Figure 1. Cue reactivity incubates during forced abstinence from cocaine and sucrose self-
administration, and incubation aligns with lower potency of a selective 5-HT2CR agonist to blunt 
cocaine cue reactivity
(a) Mean responses (± SEM) on the active (black circles) or inactive lever (white circles), 

and total number of cocaine infusions earned (± SEM; gray circles) are presented for the 

acquisition and maintenance phase of cocaine self-administration. (b) Mean (± SEM) 

previously-active lever presses and inactive lever presses are presented for the cue reactivity 

test session in vehicle-treated rats on FA Day 1 and FA Day 30 from cocaine self-

administration. Cue reactivity is significantly elevated on FA Day 30 vs. FA Day 1 from 

cocaine self-administration (*p<0.05; n=19–20/group). (c) Mean (± SEM) previously-active 

lever presses are presented for the cue reactivity test session on FA Day 1 and FA Day 30 

from cocaine self-administration. On FA Day 1, WAY163909 at 0.2 mg/kg (n=16; p<0.05) 

and 1.0 mg/kg (n=19; p<0.05), but not 0.05 mg/kg (n=16; n.s.), suppressed cue reactivity vs. 
vehicle (dotted line). On FA Day 30, WAY163909 at 1.0 mg/kg (n=17; p<0.05), but not 0.05 

mg/kg (n=17; n.s.) or 0.2 mg/kg; n=16; n.s.), suppressed cue reactivity vs. vehicle (dashed 

line). (d) Mean (± SEM) inactive lever presses are presented for the cue reactivity test 

session on FA Day 1 and FA Day 30 from cocaine self-administration. Treatment with 

WAY163909 did not alter inactive lever presses on either FA Day 1 (n.s.) or FA Day 30 

(n.s.). (e) Mean responses (± SEM) on the active (black circles) or inactive lever (white 

circles), and total number of sucrose pellets earned (± SEM; gray circles) are presented for 

the acquisition and maintenance phase of sucrose self-administration. (f) Mean (± SEM) 

previously-active lever presses and inactive lever presses are presented for the cue reactivity 
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test session on FA Day 1 and FA Day 30 from sucrose self-administration. Cue reactivity is 

significantly elevated on FA Day 30 vs. FA Day 1 from sucrose self-administration 

(*p<0.05; n=8–10/group).
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Figure 2. Incubation of cocaine, but not sucrose, cue reactivity associates with lower 
synaptosomal 5-HT2CR protein expression in the mPFC
(a) The diagram demonstrates the region of mPFC dissected for ex vivo analyses (Paxinos 

and Watson, 1998). (b) Synaptosomal 5-HT2CR protein expression (normalized to cadherin) 

in the mPFC is lower in rats assessed in the cue reactivity test session (“cue test”;*p<0.05; 

n=8/group) and “no test” rats sacrificed upon removal from their home cages at the expected 

time of that test session without re-exposure to the operant chambers (^p<0.05; n=4–5/

group) on FA Day 30 vs. FA Day 1 from cocaine self-administration; a representative 

immunoblot is located in inset. There was no difference between “cue test” and “no test” 

groups on the same FA Day. (c) Synaptosomal mPFC 5-HT2CR protein expression 

(normalized to cadherin) did not differ on FA Day 1 vs. FA Day 30 from sucrose self-

administration in “cue test” rats assessed in the cue reactivity test session (n=7– 9/group) or 

in “no test” rats sacrificed upon removal from their home cages at the expected time of that 

test session without re-exposure to the operant chambers (n.s.; n=7/group); a representative 

immunoblot is located in inset.
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Figure 3. Incubation of cocaine cue reactivity associates with altered subcellular distribution of 
5-HT2CR protein in the mPFC
(a) Mean (± SEM) previously-active and inactive lever presses are presented for the cue 

reactivity test session on FA Day 1 and FA Day 30 from cocaine self-administration in the 

second cohort. Cue reactivity is significantly elevated in vehicle-treated rats on FA Day 30 

vs. FA Day 1 (*p<0.05; n=10/group). (b–e) The horizontal bars represent the mean (solid 

line) ± SEM (dotted lines and shading) 5-HT2CR protein expression in the mPFC of naïve 

rats. (b) Synaptosomal 5-HT2CR protein expression (normalized to cadherin) in the mPFC is 

lower on FA Day 30 vs. FA Day 1 from cocaine self-administration (*p<0.05; n=4–6/group); 

representative electrophoretic bands are located in inset. Synaptosomal 5-HT2CR protein 

expression on FA Day 1 and FA Day 30 did not differ from naïve (n.s.). (c) Membrane 

expression of 5-HT2CR (normalized to cadherin) is lower on FA Day 30 vs. FA Day 1 

(*p<0.05) and lower on FA Day 30 vs. naïve (^p<0.05; n=5–6/group); representative 

electrophoretic bands are located in inset. Membrane 5-HT2CR protein expression on FA 

Day 1 did not differ from naïve (n.s.) (d) Cytoplasmic expression of 5-HT2CR (normalized 

to GAPDH) did not differ between FA Day 1 and FA Day 30 or naïve (n.s.); representative 

electrophoretic bands are located in inset. (e) The ratio of membrane to cytoplasmic 5-

HT2CR expression in the mPFC is lower on FA Day 30 relative to FA Day 1 (*p<0.05), but 

did not differ from naïve (n.s.). (f) There was an inverse correlation between active lever 

presses in the cue reactivity test session and the membrane:cytoplasmic ratio of 5-HT2CR 

protein expression for individual rats (r=−0.8922; p<0.05).
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