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Characterization of air traffic controllers’ (ATCs’) visual scanning strategies is a challenging issue due to the dynamic movement of
multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies
and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically
expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed
new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed
procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The
developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different
aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan
time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to
more consistent mapping with the ATCs’ linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and
(3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation
for better characterizing complex scanpaths in a dynamic task and automating the analysis process.

1. Introduction

Air traffic controllers are considered to have a highly stressful
occupation due to the weight of their responsibilities and
the constant expectation of their faultless performance [1, 2].
They monitor aircraft, communicate with pilots, and solve
conflicts that threaten either loss of separation (LOS) of a
minimum allowed distance between aircraft or wake turbu-
lence [3]. Since 1980, industrial air traffic has averaged over
5% growth each year [4] and continues to steadily rise [5],
causing ATCs to experience more difficulty with their tasks
[6, 7]. Each ATC is assigned a sector in space and as the air-
craft traffic increases, the sectors become more crowded [6].
Overload and scenario difficulty has been shown to decrease
ATC performance [8], and since more aircraft cause higher
probability of errors and ATCs are required to make no
mistakes, it is highly important to aid ATCs by providing

insight to efficient training methods and utilizing as much
automation as possible.

Previous research verified that one way to develop effi-
cient training programs is by allowing novices to view expert
ATC visual scanpaths to teach the novices the highest per-
forming scanning strategies at the quickest rate [9, 10]. This
method was appropriate because monitoring eye movements
can aid in understanding user intent [11]. A scanpath is a
sequential eyemovement across a display [12–14], as depicted
in Figure 1. The points represent eye fixations and the lines
represent saccades, which are movements between fixation
points [15]; the scanpath moves sequentially from point 1 to
point 8. Eye tracking devices, such as those under monitors,
have been used to successfully record, observe, and analyze
visual scanpaths to improve computer interfaces [16, 17].
Because research has shown that understanding ATC cogni-
tive processes is useful [18, 19] and observing scanpaths is a
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Figure 1: Scanpath example.

Figure 2: Example of a real scanpath overlaid on a static display of
1.5-minute duration.

suitablemethod [20], automating detailed characterization of
scanpaths would also be valuable to provide effective training
techniques. If scanpath characterization can be accurately
automated, expert ATC scanpaths can be collected, recorded,
and characterized for novices to watch for deeper under-
standing. Additionally, novices can receive more feedback on
their own scanpaths while running simulations to test the
efficiency of their strategies as well as their performance.

However, there is a lot of uncertainty when attempting to
characterize scanpaths. According to ATC linguistic inputs,
scanning strategies can be conceptually described as being
circular, linear, trajectory, regional, augmented, proximity-
based, or density-based [9, 21], but realistically identifying a
scanpath into only one of the listed categories is unlikely due
to overlap caused by their elementary definitions. Therefore,
the challenge exists in attempting to correctly map the
ATC self-reported strategies, or patterns, to each of their
actual scanpaths. This is difficult because scanpaths grow in
complexity with time and become highly difficult to classify.

Figure 2 shows a scanpath of 1.5-minute duration inwhich
correct classification into the strategies provided by the ATCs
would be unlikely. In addition to finding multiple overlap-
ping patterns, the patterns can be incomplete, chaotic, or
ambiguous.

Another major concern that causes classification uncer-
tainty is that some scanpaths appear to cause a pattern that
was not intended.Most expertATCs intend to use a particular
strategy, but extracting exactly what they intended from the
data can be difficult. For example, an ATC can intend to
use a circular scanpath, but it cannot be identified by the
eye tracking data alone because of constant back-and-forth
comparisons between aircraft and lack of a complete circle.
The circle can switch directions several times from clockwise
to counterclockwise in semicircles and can be interrupted by

comparisons that cause the ATC to look across the screen in
linearmotions.When observing the plotted data, it is possible
that the intended circular scanpath can be classified instead as
mixed between linear and augmented. To visualize this issue,
Figure 3 demonstrates additional fictional examples of basic
scanpaths with their corresponding shapes. The numbers
show the order the aircraft were viewed in, the thick red lines
show the saccades, and simplified representations are below
in blue. Choosing one pattern to label (a) and (b) from the
many options available unfortunately relies on a judgement
call, especially since the patterns are not exclusive. Scanpath
(a) can be argued to be circular from fixations 3 to 10, linear
from 1 to 8 or 5 to 12, or augmented from 1 to 12 moving
from quadrants Q2, Q4, Q1, and thenQ3. Scanpath (b) can be
linear, trajectory, or density-based from fixations 1 to 9. Simi-
lar issues frequently occur when viewing ATC scanpaths.The
patterns require thresholds and possibly hierarchical order to
determine which strategy was dominant.

Other issues to consider are the level of influence on a
scan from the number of aircraft, the difficulty of the scenario,
and the spatial layout of the aircraft. Overall, the type of
scan depends on the ATC’s strategy and level of influence
from the mentioned variables which often leads to multiple
incomplete, local, or unclear patterns that prove highly chal-
lenging to characterize. For example, in [9], circular is defined
as observing circular motions in the scanpath; however the
details describing circular motions were not defined. There-
fore, it is possible to have human judgement bias during inter-
rater agreement if specific procedures to characterize and
classify the scanpaths are not developed.

In order to begin addressing these problems in a simpli-
fied manner, consider limiting the scanpath patterns to only
being circular, linear, and mixed as provided in Table 1. In
this research, only circular and linear patterns were searched
for because they are the simplest strategies to witness and
most frequently used by expert ATCs [21] and depend only
on scanpath shape. Ideal examples include counterclockwise,
clockwise, and spiral for circular patterns and horizontal, ver-
tical, and diagonal for linear patterns. The realistic examples
are representations of the ideal examples; the mixed pattern
uses both circular and linear movements to complete the
scan, so there is no ideal form. The realistic examples are fic-
tional, overlaid on a low congestion scenario of 12 aircraft to
conceptually demonstrate the categories. Note that patterns
can have a combination of their characteristics such as the
second circular and linear examples that change direction
before completion.

Due to the different possible interpretations and the high
magnitude of complexity, scanpaths are difficult to classify
into the patterns provided by the expert ATCs. Although
some ideal and realistic examples are provided, there is
still a challenge in mapping each scanpath to those selected
patterns. Patterns are described conceptually, but there are
no given thresholds ormathematical representations to confi-
dently identify them. For example, how is a linear movement
mathematically defined from an ATC verbal description
(such as moving left to right while zigzagging [21])? More-
over, if linear movements are successfully represented in
mathematical form, how are realistic scanpaths analyzed
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Figure 3: Examples of scanpaths with corresponding simplified patterns. The scanpaths overlaid on aircraft are shown above with saccades
in red and the interpreted patterns are shown below in blue. (a) Circular, linear, and regional patterns can be identified. (b) Linear, trajectory,
and density-based patterns can be identified.

Table 1: Ideal and realistic examples of relevant scanpath patterns.

Circular Linear Mixed

Ideal examples

CCW CW

Spiral
N/A

Realistic examples

given that they do not move in perfect or predictable ways?
Many conditions need to be considered, such as the random
fluctuations that occur in scans including back-and-forth
movements to previous aircraft. Although many algorithms
were developed to compare and analyze visual scanpaths
[12, 22–32] and their capabilities and limitations are provided
in detail in [12], the methods were limited to comparing
scanpaths but not mapping the visual scanpaths to strategies
verbalized by the experts.

Naturally, it is difficult to develop mathematical models
or algorithms based on verbal descriptions provided by the
ATCs. The descriptions require more depth; after refining
them, it may be possible to divide the scanpaths into patterns
that can be confidently classified based on certain criteria.
Pattern identification requires thresholds that address points
of deviation, the percentage of aircraft viewed following a
given pattern, and methods to correctly identify the pattern.
Otherwise, many patterns can be claimed to be used in a scan
although only one is dominant and intended by the ATC.

If terminologies and procedures were predetermined and
applied in a systematic manner, then more consistent and in-
depth discoveries could be reached. Therefore, the purpose
of this paper is to (1) introduce new terminology, (2) apply
filtration methods to scanpaths to simplify their representa-
tion before judgement, (3) provide procedures that behave as
a conceptual framework for raters during pattern classifica-
tion, and (4) apply the proposed procedures to characterize
scanpaths and compare their results across scenarios with
different number of aircraft. This work is meant to ease char-
acterization of scanpaths, increase characterization accuracy,
and contribute to future automation of scanpath characteri-
zation.

2. Proposed Methodology

2.1. Terminology for Identifying Visual Scanning Strategies.
New terminology is introduced in order to filter out the
complex scanpaths into manageable forms that can lead to
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Figure 4: Local scan without and with a comparison.The black dots represent aircraft named𝑊,𝑋,𝑌, and𝑍.The numbered arrows indicate
the order in which the aircraft were observed. Green indicates a local scan and red indicates a comparison. (a) Local scan between𝑊, 𝑋, 𝑌,
and 𝑍 with no comparisons. (b) Local scan between𝑋, 𝑌, and 𝑍 and comparison between 𝑌 and 𝑍.

representations of the strategies provided by ATCs. Assume
there are 𝑁 number of aircraft present on the radar display
for the definitions provided below:

(i) Raw scanpath: the raw scanpath is the entire scanpath
including all fixations and saccades from the begin-
ning to the end of the task being carried out by the
ATC to solve all conflicts in the scenario.

(ii) Global scan: a global scan is a complete observation of
all𝑁 aircraft.

(iii) Local scan: a local scan is an observation of a group of
aircraft with possible comparisons, where the group
contains 2 to (𝑁 − 1) aircraft.

(iv) Comparison: a comparison occurs when aircraft are
consecutively scanned at least twice after already
being viewed once before for a total of three or more
observations until moving on to different aircraft.

(v) Initial global scanpath (IGS): the IGS is the first
complete observation of all𝑁 aircraft on the display. It
includes all fixations and saccades that occurred until
all aircraft were visited.

(vi) Extracted IGS: the extracted IGS is the IGS with
comparisons removed, or filtered out; it applies the
initial filter to the IGS.

(vii) Fundamental IGS: the fundamental IGS is the IGS
without local scans; it applies the most intense filter
and extracts the simplest form of the IGS. It displays
the order each aircraft was viewed during the IGS.

During a global scan, if all𝑁 aircraft are visited, then the
following eye fixation starts the next possible global scan. In
a raw scanpath, there can be multiple global scans or none
if all the aircraft were never viewed. Similarly, a global scan
can include multiple local scans or none, and a local scan can
includemultiple comparisons or none. Particularly, they exist
as subsets of each other as shown below:

(Raw Scanpath) ⊆ (Global Scans) ⊆ (Local Scans) ⊆
(Comparisons).

The concept of local scans and comparisons is derived
from the definition of visual groupings [33], or a significant
amount of transitions between aircraft. Comparisons are
made during conflict resolution between aircraft. When a
comparison is finalized by an ATC moving on to different

aircraft, the ATC can either return again to the same aircraft
to perform another comparison, compare a different group of
aircraft, or continue scanning. A comparison is always a local
scan, although local scans are not always comparisons if the
aircraft are merely scanned without repetition. Figure 4 illus-
trates the difference between a local scan and comparison; (a)
shows a local scan between𝑊,𝑋, 𝑌, and 𝑍 with no compar-
isons while (b) shows a local scan between 𝑋, 𝑌, and 𝑍 with
a comparison beginning during the sixth movement between
𝑌 and 𝑍 shown in red. Note that the aircraft group shown
(𝑊, 𝑋, 𝑌, 𝑍) are only 4 out of many more aircraft on a radar
display; thus viewing them does not complete a global scan.

Only the IGS was analyzed for number of comparisons
and scanpath pattern because there are less chances of local
scans and comparisons during that time. After the IGS is
completed, all the aircraft have been viewed and the remain-
ing time ismost likely spent on conflict resolutionwhich does
not require additional global scans. Individual ATC scanning
strategies are most likely to be witnessed during the IGS with
more ease and clarity compared to the rest of the scan.

However, the problem remains that the IGS usually
consists of multiple local scans with comparisons causing it
to still be difficult to classify. Applying filters to the repetitive
movements eases the classification process; therefore the
extracted and fundamental IGSs were used. The extracted
IGS represents how raters should naturally observe scanpaths
while watching and judging scanning strategies; it disregards
comparisons between aircraft but has to consider local scans.
The fundamental IGS is the most simplified representation of
a scanpath; as previously mentioned, it disregards local scans
which implies excluding comparisons as well. It has𝑁 num-
ber of fixations and (𝑁 − 1) number of connections between
fixations. The connections between the fixations are not nec-
essarily saccades since they merely show the path to the next
viewed aircraft by the ATC without considering any repeat
observations to previous aircraft. Particularly, the aircraft are
numbered from 1 to𝑁 in the order they were fixated on; then
connections are drawn sequentially between the fixations.

Once the extracted and fundamental IGSs are obtained,
their patterns can be classified.The scanpath strategies consist
of seven known pattern categories: circular, linear, trajectory,
regional, augmented, density-based, and proximity-based
categories [9, 21]. Two additional categories that allow all
scanpaths to be identified are “mixed” and “other.” The most
popular strategies used by expert ATCs are circular and then
linear [9, 21], and as previously explained, they are also shape
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INPUT IGS
OUTPUTThe number of comparisons made during the IGS
Step 1. Define 3 states as Scanned, Potential Comparison, and Comparison.
Step 2. If an aircraft is viewed for the first time, it is placed in Scanned.
Step 3. If an aircraft from Scanned is viewed for the second time, it is copied into Potential Comparison.
Step 4. If the next aircraft viewed is also from Scanned, it is copied into Potential Comparison as well. Otherwise, if a new aircraft is
viewed, it is placed in Scanned and the Potential Comparison state clears.
Step 5. If Potential Comparison is occupied with aircraft and one of those aircraft are viewed again, it is copied into Comparison.
Step 6. As long as aircraft in Potential Comparison continue to be viewed, they are copied into Comparison as one comparison.
Step 7. When an aircraft is viewed that is not in Potential Comparison, the comparison is complete, the number of comparisons
(𝑁Comp) is incremented, and the states Potential Comparison and Comparison are cleared. The aircraft that broke the comparison
is either new and belongs in Scanned or is already in Scanned and is copied into Potential Comparison to possibly begin the next
comparison.

Procedure 1: Counting the number of comparisons.

INPUT Fundamental IGS
OUTPUT Circular scanpath
Let the center of the screen be the origin.
Let 0∘ be assigned in reference to the first eye fixated target (𝜗

1

).
Let 𝑖 be an indicator for sequential eye fixations where 𝑖 = {1, 2, 3, . . . , 𝑘}.
Let 𝑛 be a counter variable where 𝑛 = {1, 2, 3, . . . , 𝑘}.
Step 1. Assign each subsequent eye fixated target a degree value (𝜗

𝑖

, where 𝑖 = {2, 3, 4, . . . , 𝑘}) in reference to the clockwise direction
from 𝜗

1

.
Step 2. Increment 𝑛 for each sequential increase in 𝜗

𝑖

(where 𝜗
𝑖+1

≥ 𝜗
𝑖

), then go to Step 4.
Step 3. Increment 𝑛 if the next value is 𝜗

𝑘

, then continue to increment 𝑛 for each sequential decrease in 𝜗
𝑖

(where 𝜗
𝑖−1

≤ 𝜗
𝑖

), then
go to Step 4.
Step 4. If 𝑛 ≥ 𝑁/2, then the pattern is labeled circular.

Procedure 2: Identifying circular scanpaths.

dependent and are the easiest to identify. Thus, for purpose
of simplification, this work divides all scanpath patterns into
circular, linear, mixed, and other categories which are briefly
defined below and previously illustrated in Table 1. Trajectory
scans are not included because they are utilized by novices
[9], and this research studies expert ATC behavior:

(i) Circular: circular scanpaths rotate in a clockwise
or counterclockwise motion and include spirals and
rectangles. They move along adjacent edges of the
screen and tend to end adjacent from where they
began.

(ii) Linear: linear scanpaths are directional from one side
to its opposite and move in zigzags perpendicular to
their horizontal, vertical, or diagonal direction. They
tend to end opposite from where they began.

(iii) Mixed: mixed scanpaths occur when both circular
and linear scanpaths occur and can include overlap.

(iv) Other: other scans lack confident identification and
therefore include patterns that are unknown or cat-
egories too difficult to confidently identify including
regional, augmented, density-based, and proximity-
based scanpaths.

2.2. Characterization Procedure. Based on the definitions in
Section 2.1, procedures were developed for identifying the
number of comparisons in an IGS and for pattern classifica-
tion of extracted and fundamental IGSs.The analysis process
included counting the number of comparisons in the IGS,
then simplifying the IGS to extracted and fundamental forms,
and classifying those simplified scanpaths as circular, linear,
mixed, or other as indicated in Figure 5.

Procedures were followed to determine the number of
comparisons and the type of scanpath. The procedures are
meant to be used on IGSs; Procedure 1 analyzes the IGS, and
Procedures 2–4 analyze the fundamental IGS. Procedures 2–
4 only serve as guidelines for extracted IGSs due to the many
fluctuations caused by considering local scans; interrater
agreement is still the dominant classification method for
extracted IGSs. For fundamental IGSs, the procedures are
followed for initial classification of scanpaths, and then inter-
rater agreement is utilized to reassign pattern classification to
exceptional cases that are judged incorrectly classified by the
procedures.

Procedure 1was used to count the number of comparisons
made during the IGS. When aircraft were viewed for the sec-
ond time, it was not counted as a comparison because it was
possible that the ATC forgot a piece of information or needed
to make a confirmation. When the aircraft were immediately
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INPUT Fundamental IGS
OUTPUT Linear scanpath
Let (𝑋

𝑖

, 𝑌
𝑖

) be the coordinates of an eye fixated target where 𝑖 is an indicator for sequential eye fixations.
Let𝑋min = min{𝑋

1

, 𝑋
2

, . . . , 𝑋
𝑁

},𝑋max = max{𝑋
1

, 𝑋
2

, . . . , 𝑋
𝑁

}, 𝑌min = min{𝑌
1

, 𝑌
2

, . . . , 𝑌
𝑁

}, and 𝑌max = max{𝑌
1

, 𝑌
2

, . . . , 𝑌
𝑁

}.
Step 1. When an eye fixated target is an extreme point on the𝑋 or 𝑌 axis on the screen, let it be (𝑋

1

, 𝑌
1

).
Step 2. (Left-to-right). If (𝑋

1

, 𝑌
1

) = (𝑋min, 𝑌) AND𝑋 values increase to𝑋max AND 𝑌 values switch directions between increasing
and decreasing at least twice AND (𝑋

𝑛

, 𝑌
𝑛

) = (𝑋max, 𝑌), then go to Step 6.
Step 3. (Right-to-left). Else if (𝑋

1

, 𝑌
1

) = (𝑋max, Y) AND𝑋 values decrease to 𝑋min AND 𝑌 values switch directions between
increasing and decreasing at least twice AND (𝑋

𝑛

, 𝑌
𝑛

) = (𝑋min, 𝑌), then go to Step 6.
Step 4. (Bottom-to-top). Else if (𝑋

1

, 𝑌
1

) = (𝑋, 𝑌min) AND 𝑌 values increase to 𝑌max AND𝑋 values switch directions between
increasing and decreasing at least twice AND (𝑋

𝑛

, 𝑌
𝑛

) = (𝑋, 𝑌max), then go to Step 6.
Step 5. (Top-to-bottom). Else if (𝑋

1

, 𝑌
1

) = (𝑋, 𝑌max) AND 𝑌 values decrease to 𝑌min AND𝑋 values switch directions between
increasing and decreasing at least twice AND (𝑋

𝑛

, 𝑌
𝑛

) = (𝑋, 𝑌min), then go to Step 6.
Step 6. If 𝑛 ≥ 𝑁/2, then the pattern is labeled linear.
Note: Identification of linear scans with diagonal movements are evaluated by repeating the steps after rotating the display by 45
degrees.

Procedure 3: Identifying linear scanpaths.

INPUT Fundamental IGS
OUTPUTMixed or other scanpath
Step 1. If the scanpath satisfies Procedure 2, but not Procedure 3, then the pattern keeps its circular classification.
Step 2. If the scanpath satisfies Procedure 3, but not Procedure 2, then the pattern keeps its linear classification.
Step 3. If the scanpath satisfies both Procedures 2 and 3, then the pattern is classified as mixed.
Step 4. Otherwise, the scanpath is classified as other.

Procedure 4: Identifying mixed and other scanpaths.

Start with the entire scan

Focus only on the first scan of all targets or aircraft

Filter out comparisons

Filter out local scans

Raw scanpath

Obtain initial global scanpath (IGS)

Acquire extracted IGS

Acquire fundamental IGS

Classify the scanpath as being circular, linear, mixed, or other

Classify the scanpath as being circular, linear, mixed, or other

Count number of comparisons

Figure 5: Flow chart for IGS analysis procedure.

observed for a third time, it was assumed that the ATC was
making a comparison. In reference to Figure 2, following
Procedure 1 leads to no comparisons in (a) and the beginning
of the first comparison in (b) although aircraft𝑌was scanned
3 times in both examples.

Table 2: Application example of Procedure 1.

Step Scanned Potential comparison Comparison 𝑁Comp

1 E, A, B, C E — 0
2 E, A, B, C, F — — 0
3 E, A, B, C, F B, E B 1
4 E, A, B, C, F, D — — 1
5 E, A, B, C, F, D B, E, A B, A, B, E, A, E 2
6 E, A, B, C, F, D — — 2
7 E, A, B, C, F, D C — 2

An example is provided that applies Procedure 1 in order
to increase clarity. Consider a 20-step sequence between 6
aircraft: A, B, C, D, E, and F. The sequence is as follows:

E→A→B→C→E→F→B→E→B→D→B→E→A→
B→A→B→E→A→E→C.

Table 2 shows how each aircraft appropriately falls into the
states introduced in Procedure 1. In the first step, aircraft (E,
A, B, C) are viewed for the first time and placed into Scanned;
then an aircraft (E) is seen again and copied into Potential
Comparison. In the second step, a new aircraft is viewed (F)
and placed into Scanned, so the states Potential Comparison
andComparison clear. In the third step, aircraft from Scanned
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are viewed again (B, E) and copied into Potential Comparison.
When an aircraft in Potential Comparison is additionally
viewed (B), it is copied into Comparison where aircraft are
allowed to repeat, and 𝑁Comp is incremented to 1 (0 + 1 = 1).
In the fourth step, a new aircraft is viewed (D) and placed
into Scanned, and Potential Comparison and Comparison are
cleared. In the fifth step, previous aircraft are viewed (B, E, A)
and copied into Potential Comparison until they are repeated
and therefore copied into Comparison (B, A, B, E, A, E)
where the comparison continues between those aircraft that
are also in Potential Comparison, and 𝑁Comp is incremented
to 2 (1 + 1 = 2). In the sixth step, an aircraft that was not in
Potential Comparison is viewed, so Potential Comparison and
Comparison are cleared. In the seventh step, since the next
aircraft (C) was already in Scanned, it is placed in Potential
Comparison. The number of comparisons incremented until
𝑁Comp = 2 for this sequence.

After Procedure 1 is completed for total number of com-
parisons during the IGS, the extracted and fundamental IGSs
are used for Procedures 2–4 for pattern classification. The
procedures are general guidelines for classifying extracted
IGSs but are closely followed for fundamental IGSs; they are
applied by raters; then patterns are determined by interrater
agreement. Scans are labeled as being circular or linear when
at least 50% of the 𝑁 total aircraft sequentially follow that
pattern, because if a pattern is used on at least half of the
aircraft (in the studied scenarios which range from 12 to 20
aircraft on the display), it is most likely not coincidental. Note
that the percentage threshold can be adjusted and there is
some allowance for points to deviate from the procedures
without interrupting the sequential count of aircraft following
a pattern; the aircraft count can be paused for 1 or 2 deviation
points and then continued for the next aircraft if they
continue the pattern. Circular and linear scans depend on
the shape made by the scanpath and are independent of
ATC intention. If the radar screen is represented by a grid
divided into sections, the shape-dependent patterns can be
conceptually identified based on the order the aircraft were
observed near the outside border of the grid.Hence the center
of the grid should be considered a region of error.

Circular patterns are basically achieved when an imagi-
nary bar originating from the center of the display stretching
out to the border rotates at least 180∘. As the bar rotates, the
scanpath must hit the aircraft it touches; circular patterns
are made when the scanpath moves to adjacent points
along the border, resulting in clockwise or counterclockwise
movements as defined in Procedure 2. They usually result in
rotating back to the starting point although that is not always
the case.

Similarly, linear patterns can be conceptualized by imag-
ining a bar that stretches across the display either vertically,
horizontally, or diagonally. As the bar moves from one side to
its opposite, the scanpath must hit the aircraft in contact with
the bar which results in zigzag motions perpendicular to the
direction the bar is moving in. Procedure 3 demonstrates this
idea; the scanmoves from one side or corner of the grid to the
opposite, similar to wave propagation. The scanpath travels
perpendicular to the direction of movement in zigzagging

motions which creates switching of opposite positions along
the border.

Procedures 2–4 provide conceptual frameworks to clas-
sify the patterns with chosen thresholds. The classification
process is not complete until Procedures 2–4 are applied to
each scanpath sequentially. Certain assumptions are made
before utilizing Procedures 2 and 3: there is a uniform dis-
tribution of aircraft across the display, tolerance is applied by
raters to allow some deviation from the ideal patterns, and the
procedures are based on assuming that the spatial layout of
the multiple targets (or aircraft) are distributed in a uniform
manner with random spacing, meaning that they are not
equally aligned following a uniform distribution.

The rationale for Procedure 2 is as follows. The angle
of the first eye fixated target is always set at 𝜃

1
= 0
∘. Step

1 assigns 𝜃 values to each subsequent eye fixated target in
reference to 𝜃

1
(e.g., in Figure 6(a), 𝜃

2
is 15∘ clockwise from

𝜃
1
). Steps 2 and 3 investigate whether there is a consistent

increase or decrease of 𝜃 values. If increasing, then the visual
scan is in a clockwise motion, and if decreasing, then the
visual scan is in a counterclockwise motion. Note that for a
counterclockwise movement, 𝜃

1
(where 𝑖 = 1) is followed by

𝜃
𝑘
(where 𝑖 = 𝑘), and then the 𝑖 values decrease from 𝑘. In Step
4, if the identified number of eye fixated targets (𝑛) is over half
the total eye fixated targets (𝑁), then we classify the scanpath
as circular. Note that the threshold used in Step 6 can be
adjusted. A tolerance in sequential increase or decrease must
be allowed (e.g., a few 𝜃

𝑖
values can increase among an overall

decrease of 𝜃
𝑖
values) since eye movements are not mechan-

ical and often deviate from ideal mathematical patterns or
verbal explanations of individual’s search patterns. Examples
of circular scanpaths classified by Procedure 2 are shown in
Figures 6(a) and 6(c). Each black point represents a target;
the first target being fixated on is 0∘ (𝜃

1
). In Figure 6(a), the

remaining points have sequentially increasing 𝜃 values which
creates a clockwise rotation. In Figure 6(c), the first 10 points
apply to a circular pattern, which are over half of the aircraft;
therefore it also satisfies Procedure 2.

The rationale for Procedure 3 is as follows. Step 1 defines
the starting point of the aircraftfixated on an extreme location
on the 𝑥- or 𝑦-axis of the display. The starting point does not
need to be the first eye fixation point on the target since the
pattern may not start until a few eye fixations occurred on
other targets. Also note that𝑋 and𝑌 extrema can include any
points relatively near the outside border of the screen to allow
some tolerance; they do not have to be the absolute extrema,
but they need to be close. Steps 2–5 define the general trend of
linearmovements of either vertical or horizontal movements.
In detail, the movements can be in the overall vertical
direction with horizontal zigzags or in the overall horizontal
direction with vertical zigzags. The reason that there are 4
differentiated steps is that each step indicates whether the
overall direction is increasing from left to right (Step 2), right
to left (Step 3), bottom to top (Step 4), or top to bottom (Step
5) and insures they end near the opposite side of the display.
In Step 6, if the identified number of eye fixated targets (𝑛)
is over half the total eye fixated targets (𝑁), then we classify
the scanpath as being linear. Note that the threshold used in
Step 6 can be adjusted. Again, a tolerance in the overall
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Figure 6: Fundamental scanpath examples that are identified using Procedures 2–4. (a) Circular scanpath identified with Procedures 2 and 4
(Step 1). (b) Linear scanpath identified with Procedures 3 and 4 (Step 2). (c) Mixed scanpath identified with Procedure 4 (Step 3). (d) Another
scanpath identified with Procedure 4 (Step 4).

direction must be allowed (e.g., a few 𝑋
𝑖
(or 𝑌

𝑖
) values

can increase among overall decrease of 𝑋
𝑖
(or 𝑌
𝑖
) values).

Examples of linear scanpaths classified by Procedure 3 are
shown in Figures 6(b) and 6(c). The scanpath in Figure 6(b)
starts at𝑋min, then the𝑋 values consistently increase as the𝑌
values switch directions (between increasing and decreasing)
6 times, and finally it ends at𝑋max; the linear direction is hori-
zontal from left to right. In Figure 6(c), the last 10 points apply
towards a horizontal linear pattern from right to left (the third
point is excluded, so 9 total points count towards the linear
pattern), which include over half of the aircraft; therefore it
also satisfies Procedure 3.

The rationale for Procedure 4 is as follows. Steps 1 and
2 cause the scanpath to be analyzed for circular or linear
patterns. If the scanpath is exclusively circular or linear, it is
classified as such. In Step 3, if the scanpath can satisfy both
requirements for circular and linear patterns, it is labeled
mixed. Step 4 is provided to assign “other” classification for
scanpaths that do not utilize circular or linear patterns at
all. After the procedures are followed, interrater agreement
is used in order to account for exceptional cases. Utilizing
interrater agreement is a necessity due to the fact that realistic
scanpaths do not follow ideal mathematical patterns. All of
the figures provided in Figure 6 are classified using Procedure
4. Part (a) is classified by Step 1, part (b) is classified by Step 2,
part (c) is classified by Step 3, and part (d) is classified by Step
4. The example in (c) is mixed because the first 10 fixations
qualify as being circular since the 𝜃 values are increasing,
and the last 10 fixations (excluding the third point) qualify
as being linear since the 𝑋 values are consistently decreasing
as the 𝑌 values switch direction twice. The example in (d)
is “other” because neither circular nor linear patterns occur
consecutively for at least half of the aircraft.

3. Experiment

3.1. Participants. At Indianapolis ARTCC, 25 expert ATCs
with FAA certification provided the scanpaths. Their expe-
rience ranged from 3 to 30 years with an average of 20.7 and
standard deviation of 7.1. Due to toomuch loss of data to draw
confident conclusions, 1 participant was excluded from each
scenario resulting in the analysis of 24 participants across 3
scenarios for a total of 72 recordings.

3.2. Apparatus. A Tobii X60 eye tracker was used to collect
the eye tracking data of the participants at a collection
rate of 60Hz. Simscope/Simtarget software was used to

simulate a radar display of air traffic on a 48.26 cm LCD
monitor. The eye tracker had an accuracy of 0.5∘ with each
degree corresponding to approximately 1.2 cm when eyes
were 68.6 cm from the monitor. Participants’ eyes were about
100 cm from the monitor which resulted in a maximum
fixation error of 1 cm. Data blocks were 1.5 cm by 1.1 cm;
therefore the data block visual angle was about 0.6∘ due to the
height. Digital surveillance radar (DSR) mode was used on
Simscope/Simtarget with a refresh rate of 5 s, which simulates
realistic radar displays with considerable accuracy.

3.3. Task. ATCs had to identify and solve conflicts while
their eye tracking data was collected. Before the tasks began,
2 practice scenarios were performed in order to familiarize
the ATCs with the simulation. During the following tasks
that were recorded for data analysis, they were required
to announce aircraft call signs of LOS pairs until no more
remained during 3 unique scenarios.

3.4. Scenarios. There were 3 en route scenarios presented to
each participant that are displayed in Figure 7: (1) low con-
gestion scenario with 12 aircraft shown in (a), (2) moderate
congestion scenario with 16 aircraft shown in (b), and (3)
high congestion scenario with 20 aircraft shown in (c). The
simulations have black backgroundswith bright green objects
and text, but to enhance the images, the color was inverted
and converted to black and white, and the text size was
increased by 200%. Each small diamond shape symbolizes an
aircraft and the line projecting out indicates the direction of
travel.The display provides a top-down view of the aircraft as
if they are being observed from above, looking down towards
the Earth’s surface. The three lines of text by each aircraft is
the data tag which lists the flight number, altitude, and speed,
respectively.The aircraft in these scenarios are en route; hence
each has constant altitudes indicated by the “C” following the
altitude.

3.5. Data Analysis. The independent variable was the aircraft
congestion of low, moderate, and high. The dependent vari-
able was each resulting scanpath. From each raw scanpath,
the IGS was obtained and then extracted and fundamental
IGSs were obtained.The raw scanpath was measured for total
time, the IGS was analyzed for scan time and number of
comparisons by applying Procedure 1, and the extracted and
fundamental IGSs were analyzed for pattern classification of
circular, linear, mixed, or other using Procedures 2–4 with
interrater agreement.
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Figure 7: Scenarios performed by each participant. (a) Low congestion scenario. (b) Moderate congestion scenario. (c) High congestion
scenario.

Tobii Studio software was used to collect and analyze the
eye tracking data.The velocity threshold identification (I-VT)
algorithm [34, 35] was used with the defaulted threshold of
0.42 pixels/ms to define a spatial fixation.

Analysis of oculomotor trends included average raw
scanpath time versus aircraft congestion, average IGS time
versus aircraft congestion, average number of IGS compar-
isons versus aircraft congestion, and average IGS time versus
average number of IGS comparisons.The results were plotted
and an ANOVA test was applied with pairwise comparisons
between each relationship.

For visual scan pattern classification, two raters utilized
Procedures 2–4 to reach an interrater agreement. Extracted
scanpath classification is similar to the previous method
used in [9] because interrater agreement was dominant and
the procedures were only used as guidelines. Fundamental
scanpaths were classified using a more elaborate procedure
thanwhat was previously used in [9]. Classification depended
on the procedures; then interrater agreement was used to

confirm accurate use of the procedures and reassign classifi-
cation to exceptional scanpaths that were judged incorrectly
classified by the procedures. Each scan was reviewed at least
3 times by the raters to minimize judgement errors. The
results of extracted and fundamental scanpath patterns were
compared against each other to see if they differed and with
ATCs’ verbal inputs from [21] to check consistency.

4. Results

From all 75 recordings, 3 were excluded due to missing peri-
ods of eye tracking data: participant 5 in low and moderate
congestion scenarios and participant 22 in high congestion
scenario. Therefore 72 recordings were used, 24 recordings
from each scenario.

4.1. Oculomotor Trends. The oculomotor trends include scan
time and number of comparisons as aircraft congestion
increases. Figures 8(a) and 8(b) illustrate how scan time and
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Figure 8: Oculomotor trends. (a) Average time to complete the raw scanpath (red) and average time to perform the IGS (black). (b) Number
of comparisons during the IGS. (c) Average time to complete the IGS with respect to the identified number of comparisons during the IGS.

number of comparisons both increased with more aircraft.
As ATCs conducted more comparisons, they took longer to
complete the IGS as shown in Figure 8(c), which implies that
increasing the amount of aircraft increases the number of
comparisons which increases the required scan time.

For the following data analysis on oculomotor trends, 𝛼
= 0.05 was used to determine significance of results. The dif-
ferent congestion levels (low, moderate, and high) had signif-
icant effect on the total scan time (𝐹 = 5.47, 𝑝 < 0.001) illus-
trated in Figure 8(a). Post hoc analysis (Tukey test) showed
that there were significant differences among all congestion
levels (𝑝 < 0.001 for all pairwise comparisons). Similarly,
the different congestion levels had significant effect on the
IGS time (𝐹 = 4.14, 𝑝 < 0.001). Post hoc analysis (Tukey test)
showed significant differences for low versus high (𝑝 < 0.001)
and moderate versus high (𝑝 < 0.001), and marginal differ-
ences for low versus moderate (𝑝 = 0.08). The different con-
gestion levels had significant effect on the mean number of
comparisons (𝐹 = 2.53, 𝑝 < 0.001) illustrated in Figure 8(b).
Post hoc analysis (Tukey test) showed significant differences
for low versus high (𝑝 < 0.001) and moderate versus high
(𝑝 = 0.010), and insignificant differences were found for low
versus moderate (𝑝 = 0.108). The number of comparisons
had significant effect on the IGS time (𝐹 = 11.80, 𝑝 <
0.001) illustrated in Figure 8(c). Post hoc analysis (Tukey test)
showed significant differences for most pairwise compar-
isons, as depicted in Table 3.

4.2. Scanpath Patterns. The results of the extracted and fun-
damental scanpath classifications for different levels of con-
gestion are provided in Figure 9. The number of participants
to use the given patterns is shown for circular (C), linear (L),
mixed (M), and other (O). Several trends can be witnessed
from the data. The fundamental scanpaths show a similar
trend for low and moderate congestion if mixed patterns
are not considered (since it is unknown if they should be
counted as circular, linear, or other): circular scanpaths are
most common, followed by linear, and other scanpaths are
least common. For high congestion, the pattern occurrences
are fairly consistent. However, for the extracted scanpaths,
the trends were quite different. Other scanpaths were most
common due to the influence of local scans, and they in
fact consist of almost half of the identified patterns. Circular
patterns are slightly more occurrent than linear, but neither is
frequent, and mixed patterns are least popular except in the
moderate congestion scenario where they suddenly rise.

The detailed scanpath patterns identified from the
extracted and the fundamental scanpaths of all participants
during the IGS are shown in Table 4 for each scenario. As
previously explained, the “extracted scanpath pattern” was
determined by observing the IGS while excluding compar-
isons. The “fundamental scanpath pattern” was derived from
the shape created by the order the aircraft were viewed,
which excluded any repeated fixations. The fundamental
scanpath is the IGS without local scans (which also excludes
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Table 3: Least squares means for effect number of comparisons. Pr > |𝑡| for𝐻0: LSMean(𝑖) = LSMean(𝑗). Dependent variable: IGS time.

𝑖/𝑗 1 2 3 4 5 6 7 8 9
1 0.234 0.010 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
2 0.234 0.966 0.043 0.003 <0.001 <0.001 <0.001 <0.001
3 0.010 0.966 0.171 0.016 <0.001 <0.001 0.001 <0.001
4 <0.001 0.043 0.171 0.973 0.038 0.006 0.041 <0.001
5 <0.001 0.003 0.016 0.973 0.400 0.030 0.094 0.001
6 <0.001 <0.001 <0.001 0.038 0.400 0.360 0.906 0.012
7 <0.001 <0.001 <0.001 0.006 0.030 0.360 1.000 0.943
8 <0.001 <0.001 0.001 0.041 0.094 0.906 1.000 0.695
9 <0.001 <0.001 <0.001 <0.001 0.001 0.012 0.943 0.695

Table 4: Scanpath patterns identified during IGS.

Participant Extracted scanpath pattern Fundamental scanpath pattern
Low Moderate High Low Moderate High

1 Other Mixed Linear Linear Mixed Linear
2 Other Mixed Mixed Circular Mixed Mixed
3 Other Circular Mixed Other Circular Circular
4 Circular Circular Circular Circular Circular Circular
5 N/A N/A Linear N/A N/A Linear
6 Other Other Other Circular Other Other
7 Mixed Linear Linear Mixed Linear Linear
8 Other Mixed Other Mixed Mixed Mixed
9 Mixed Linear Linear Mixed Linear Linear
10 Mixed Other Circular Linear Mixed Circular
11 Other Circular Other Linear Circular Linear
12 Circular Other Other Circular Circular Other
13 Other Other Circular Other Circular Circular
14 Circular Other Circular Circular Mixed Circular
15 Other Circular Mixed Mixed Circular Mixed
16 Other Mixed Mixed Circular Circular Mixed
17 Linear Mixed Linear Linear Linear Linear
18 Linear Mixed Other Linear Other Other
19 Other Mixed Other Circular Mixed Other
20 Linear Linear Other Mixed Linear Other
21 Linear Other Other Linear Circular Linear
22 Other Other N/A Other Other N/A
23 Circular Circular Circular Circular Circular Mixed
24 Circular Other Other Circular Other Other
25 Mixed Other Circular Mixed Other Circular

comparisons); consequently the scanpath does not return
to aircraft already scanned. Usually the patterns observed
in the fundamental scanpaths were the same or simpler
than the extracted patterns, although that was not always
the case; there were 3 exceptions (low scenario participant
20, moderate scenario participant 18, and high scenario
participant 23). N/A indicates substantial loss of eye tracking
data not included in the analysis.

Figure 10 illustrates the fundamental scanpaths. Each
black dot represents an aircraft and the starting and end-
ing aircraft are marked with a green star and red square,
respectively. They are grouped into the categories exactly as

indicated from Table 4 (C, L, M, or O) and the participant
number is on the top left of each scanpath. The classification
was chosen based on Procedures 2–4 provided above and
then interrater agreement to reassign any exceptions. Note
that the fundamental scanpaths are a still image drawn based
on the initial location of each aircraft to provide better
insights to the visual patterns. In reality, each aircraft is in
movement during the IGS of ATCs. However, the movement
of each aircraft was substantially small during the IGS (e.g.,
approximately 95 pixels or 0.25 cm of movement on the
display every 5 seconds when flying at 300 knots). Therefore,
it was determined that it was sufficient to use a single figure
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Figure 9: Number of participants classified with given scanpath patterns for extracted IGS (blue dashed line) and fundamental IGS (orange
solid line). (a) Low congestion scenario. (b) Moderate congestion scenario. (c) High congestion scenario.

with initial aircraft location overlaid with the scanpath, rather
than having to show multiple screenshots of different aircraft
locations during the IGS.

Extracted scanpaths are not graphically displayed because
they depended on the raters’ cognitive ability of watching
the IGS and disregarding any comparisons, similar to the
previous method used for identifying scanpath patterns.
Nonetheless, examples of identified global scanpaths from
collected data are shown in Figure 11 when definite circular
or linear patterns occurred. The aircraft and data tags are
in green, the white numbered circles show the sequential
eye fixations, and each line represents a saccade between
fixations. Rater judgement was made on extracted scanpaths
by observing the IGSs similar to global scanpaths displayed
in Figure 11, cognitively neglecting comparisons, and then
determining the classification based on the scanpath pattern.

The obtained results were compared to the ATCs’ lin-
guistic inputs from [21] in Table 5. The verbal inputs were
applied to 26 low congestion scenario cases and only con-
sisted of circular (C), linear (L), or other (O) patterns. The

fundamental and extracted pattern results were applied to all
scenarios and consisted of 24 cases each, with an additional
mixed (M) category. As the table indicates, the low congestion
fundamental patterns are most consistent with the ATCs’
inputs. The occurrences from the results were expected to
differ because of the added presence of a mixed category,
but most of the trends are similar. If the mixed category
was removed causing mixed scanpaths in the low scenario
of fundamental patterns to instead be classified as 5 other
patterns and 1 circular pattern, those findings would match
the verbal inputs as much as possible given the unequal
participant numbers.

5. Discussion

The scanpaths were characterized based on (1) oculomotor
trends including raw scanpath completion time, IGS time,
and number of comparisons for differing aircraft congestion
scenarios and (2) extracted and fundamental IGS patterns.
Not all of the patterns that ATCs self-reported in [21]
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Figure 10: Illustrated fundamental IGSs grouped in their pattern classifications. (a) Low congestion scenario. (b) Moderate congestion
scenario. (c) High congestion scenario.

were identified, although similar patterns were found from
observing the scans, without considering the linguistic input
from the ATCs.

The oculomotor trends in Figure 8 showed that there
were significant differences between congestion levels when

examining total raw scanpath time or initial global scanpath
(IGS) time. The scan times significantly increased as the
congestion increased; however the amount of increase in the
IGS time based on congestion was not proportionally linear
to the amount of increase in total scan time. It appears that
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Figure 11: Examples of global scanpaths overlaid on the radar display. (a) Circular scanpath in low congestion scenario. (b) Circular scanpath
in moderate congestion scenario with three complete revolutions. (c) Circular scanpath in moderate congestion scenario. (d) Circular
scanpath in high congestion scenario. (e) Linear scanpath in moderate congestion scenario. (f) Linear scanpath in high congestion scenario.

the ATCs tookmuchmore time to detect the aircraft conflicts
as the congestion level increased but tried to complete the
IGS as quickly as possible. This reasoning is supported by
the average rate of increase of the total raw scanpath time
being higher than the average rate of increase of the IGS time.
This is most likely due to the average number of comparisons
during the IGS moving from only 2 (low congestion) to 3
(moderate congestion) to 4 (high congestion) comparisons;
only 1 more comparison was used each time the congestion
scenario increased, but the total number of comparisons
probably increased much more across the scenarios which
resulted in the total scan time rate increasingmuch faster than
the IGS rate.

The visual scanning strategies show that the most dom-
inant patterns used by expert ATCs were circular method
followed by linear method, followed by other methods,
which accords with the ATCs’ linguistic inputs that were
provided in [21]. An important finding was that the fun-
damental scanpaths showed more consistent matching with
the ATCs’ linguistic inputs compared to those identified
from the extracted scanpaths. In Figure 9, similar trends
can be viewed between circular, linear, and mixed patterns,
but extracted scanpaths have much more “other” patterns
than fundamental scanpaths. This indicates that the “other”
patterns in extracted scanpaths were classified as being either
circular, linear, ormixed in the fundamental scanpaths.When
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Table 5: Pattern occurrence from ATCs’ linguistic inputs compared to fundamental and extracted scanpaths.

ATCs’ inputs Fundamental patterns Extracted patterns
Low Low Moderate High Low Moderate High

C 11 42% 9 38% 9 38% 6 25% 5 21% 5 21% 6 25%
L 6 23% 6 25% 4 17% 7 29% 4 17% 3 13% 5 21%
M N/A N/A 6 25% 6 25% 5 21% 4 17% 7 29% 4 17%
O 9 35% 3 13% 5 21% 6 25% 11 46% 9 38% 9 38%

observing the individual trends in Table 4, approximately
68% of the classifications were identically matched between
those scanpaths, and the remaining 32% of pattern classifi-
cations consisted of the mentioned differences between the
scanpaths.

Interestingly, there was a slight increase in the frequency
of the linear search patterns when the congestion level was
high, and possible reason for that could be due to the
initial spatial layout of the multiple aircraft in that scenario
which seemed to be dominantly linear. Based on the multiple
observations of the ATCs’ visual scanning patterns, the ATCs
seem to apply an overall scan pattern (such as circular or
linear), but it also seems that they move from one aircraft to
another in close (or closest) proximity. If the spatial layout is
somewhat linear, then even if an ATC has a circular search
strategy in mind, the visual scanpath may result in a linear
pattern and that could explain the higher number of linear
patterns used in the high congestion scenario that can be seen
Figure 9(c).

Another explanation could be that the ATCs may have
changed their strategies from circular to linear as the con-
gestion level increased. It may have been easier for the
ATCs to use a linear scanning strategy to keep track of the
observed aircraft as the scenarios became more complex.
Individual scanpath pattern comparisons in Table 4 show
that many ATCs were consistent with their visual scanning
strategies across the scenarios (e.g., participants 4, 23, and
17); however, some ATCs showed different patterns among
different congestion levels (e.g., participants 10, 11, and 25).
However, the amount of change from circular to linear was
not drastic, and it is challenging to identify the possible
reasons of the individual inconsistencies by only examining
the scanning patterns.

Figure 10 illustrates the categorized fundamental IGSs
that were judged and agreed upon the interraters based on
the developed processes. The result shows that scans can be
classified by simply observing their filtered representations
and applying definitive procedures without any follow-up
validations by the ATCs. The obtained results could not be
100% mapped to the ATCs’ linguistic inputs but showed
high promise with similar mapping percentages, as shown
in Table 5. Note that perfection was not expected since the
results included an extra classification category (mixed) as
opposed to those verbally expressed by ATCs, but the trends
are similar in which circular patterns are more popular than
linear patterns.

As previously mentioned, fundamental and extracted
patterns differ mainly in the other category; other pattern

is the most popular pattern for extracted scanpaths, but
they are less frequent than circular patterns for fundamental
scanpaths. The mapping percentages were closest to ATCs’
inputs for the fundamental scanpath during the low conges-
tion scenario. If the 6 occurrences that were judged mixed
in that case were instead classified as 5 other and 1 circular,
the trend would have matched the ATCs’ inputs as much
as possible (note that the ATCs’ inputs total 26 while each
fundamental and extracted scenario total 24). In fact, if all 6
of the mixed patterns were classified instead as other, the low
congestion fundamental case would be consistent with the
inputs provided in [21].This consistency indicates promise in
utilizing the classificationmethod on fundamental scanpaths.

Limitations and Future Directions. Scanpath patterns used by
ATCs can be unintended, incomplete, and limited to local
scans, or overlapping with other categories which makes
classification challenging. Circular and linear scans were the
easiest to identify because they are independent of the above
limitations mentioned; they depend on shape and follow
certain procedures. However, regional, augmented, density-
based, and proximity-based scans are considered difficult to
identify since they do not depend on shape. At this time,
they lack confident identification from the eye tracking data
alone unlike circular and linear scans; therefore they hold too
much uncertainty for current identification and are classified
as other scans. Other and mixed scans are subjectively the
most difficult to recognize, with other scans ranking as most
difficult. Although the remaining patterns increase in classifi-
cation difficulty, it remains useful to develop algorithms that
can encapsulate all strategies mentioned by ATCs.

The effects of several variables have been studied in this
work and in previous research, such as scenario congestion
and difficulty. Spatial layout also needs to be investigated
to determine how different layouts can influence the visual
scanning patterns and analysis of them. In an extreme case, if
all aircraft were aligned into a single line, the visual scanning
pattern would always be linear even if the ATC attempted a
circular strategy.

Perhaps the most difficult aspect of this research was
in identifying the cognitive reasons to the observed visual
scanning patterns under different aircraft congestion levels.
The visual scanpaths provide different types of search meth-
ods but do not necessarily show the rationale underlying
the search pattern. Therefore, a mixed method approach was
required to validate the classified visual scanning patterns
through the ATCs’ follow-up confirmation on the classified
patterns.
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Based on this research, it seems that the ATCs’ intended
strategies are composed of 3 parts: (1) aircraft are searched
with a pattern to complete a global scan, (2) aircraft in
potential conflict are selected with local scans, and (3)
comparisons are made between aircraft to solve conflicts
[21]. The order in which these steps occur and whether
they overlap differ with individual ATCs. For example, some
ATCs completed a global scan before using local scans and
then start comparisons, and others use local scans with
comparisons to eventually form their global scan. If an ATC
decides how to complete each step and in which order, it may
be possible to define the ATC’s intended strategy leading to
better mapping the visual scanpaths to each ATC’s intended
strategy.

The goals in analyzing expert ATC scanpaths are to (1)
develop high quality training programs for novices and (2)
use automation to aid ATCs as their jobs grow more difficult
with increased aircraft traffic. CharacterizingATCs’ strategies
observed during complex and critical situations can be used
to better aid novice ATCs during training. Automation can
be applied in many ways, such as informing ATCs when
multiple aircraft were not scanned in an effective manner
or when possible conflicting aircraft were not adequately
identified. The succeeding step of this research is to compare
the results obtained using the procedures on fundamental
scanpaths with ATCs’ inputs to test methodology accuracy
through implementing the procedures into robust computer
algorithms. Furthermore, in the long term, we should be able
to support multimodal input analysis, such as corroborating
EEG analysis with eye tracking analysis [36] to better support
our goals.

6. Conclusion

Finding similar visual scanpath patterns that map with the
ATCs’ linguistic inputs were accomplished by selectively
using the IGS, extracting the fundamental representation,
and applying Procedures 2–4 for classification that allowed
less reliability on rater judgement. The development and
classification of the fundamental scanpaths showed promise
in better mapping the visual scanning patterns to the ATC
linguistic inputs; it was found that the mixed patterns should
instead bemost likely classified as “other” patterns.Moreover,
oculomotor trends revealed the effects of different aircraft
congestion; as congestion increased, scan time and number
of comparisons increased as well. Scanpath patterns were
also affected by increasing aircraft congestion by a higher
occurrence of “other” patterns in the fundamental scanpaths,
although more studies are required to determine the cause.
Improving the classification procedures and developing algo-
rithms would be highly useful for identifying scanpath
patterns more accurately. Once appropriate algorithms are
generated, pattern identification can be automated and uti-
lized in further understanding of ATC cognitive processes,
effective training methods, and improvements of the ATC
interface.
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