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SUMMARY

Introduction: Resting-state functional magnetic resonance imaging (R-fMRI) is dynamic

in nature as neural activities constantly change over the time and are dominated by repeat-

ing brief activations and deactivations involving many brain regions. Each region partici-

pates in multiple brain functions and is part of various functionally distinct but spatially

overlapping networks. Functional connectivity computed as correlations over the entire

time series always overlooks interregion interactions that often occur repeatedly and

dynamically in time, limiting its application to disease diagnosis.Aims:We develop a novel

framework that uses short-time activation patterns of brain connectivity to better detect

subtle disease-induced disruptions of brain connectivity. A clustering algorithm is first used

to temporally decompose R-fMRI time series into distinct clusters with similar spatial distri-

bution of neural activity based on the assumption that functionally distinct networks should

be largely temporally distinct as brain states do not simultaneously coexist in general. A

Pearson correlation-based functional connectivity network is then constructed for each

cluster to allow for better exploration of spatiotemporal dynamics of individual neural activ-

ity. To reduce significant intersubject variability and to remove possible spurious connec-

tions, we use a group-constrained sparse regression model to construct a backbone sparse

network for each cluster and use it to weight the corresponding Pearson correlation net-

work. Results: The proposed method outperforms the conventional static, temporally

dependent fully connected correlation-based networks by at least 7% on a publicly avail-

able autism dataset. We were able to reproduce similar results using data from other centers.

Conclusions: By combining the advantages of temporal independence and group-con-

strained sparse regression, our method improves autism diagnosis.

Introduction

Autism spectrum disorders (ASD) is the fastest-growing neurode-

velopmental disorder of largely unknown etiology, characterized

by social communicative impairments, restricted interests, and

repetitive stereotyped behaviors [1–3]. In the latest report released

by Centers for Disease Control and Prevention (CDC) in 2014, an

estimate of 1 in 68 American children was affected by some forms

of ASD, reflecting a nearly 30% rate increase within the last

2 years [4]. Children with ASD usually require continual service

and support even when they grow older. Accurate diagnosis

allows early intervention for improving the development of a

child with ASD and for decreasing the reliance on support services

later in childhood [5,6].

Current diagnosis of ASD is solely behavioral-based and relies

entirely on the history, symptoms, and signs of the disorder

[2,7,8]. Moreover, retrospective accounts of past symptoms rely

heavily on an informant being both reliable and available [3], and

also the expertise and experience of physicians and psychologist.

This approach to diagnosis is subjective and vulnerable to environ-

mental factors. Combining biomedical information with behav-

ioral measurements will provide additional objectivity for more

efficient ASD diagnosis [9,10]. Evidence from neuroimaging and

postmortem studies suggests that ASD is associated with neu-

roanatomical abnormalities [1,9,12–14] and functional disrup-

tions [6,15–17] in a variety of brain regions. Inspired by these

findings, we propose in this article a novel neuroimaging-based

framework for ASD diagnosis using machine learning techniques.

Functional MRI (fMRI) holds great promises for exploring the

in vivo neuronal underpinnings of ASD, particularly during first

onslaughts of the symptoms. Brain network analysis, a newly

emerging field, can help characterize brain functions at a whole-

brain connectivity level [18–22], transcending the regional or

voxel level paradigms. Several pioneer studies have shown that

patients with ASD can be identified with 60% to 83% accuracy by

considering functional differences derived from resting-state fMRI
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data [6,15,23]. Despite the relatively high accuracy, the existing

resting-state fMRI (R-fMRI)-based ASD diagnosis frameworks

have several limitations. First, correlation-based methods, a com-

mon approach to functional connectivity analysis, produce a fully

connected network structure that is difficult to interpret due to

the many spurious connections that exist even after thresholding.

Second, functional connectivity is computed over the entire

R-fMRI time series, based on an assumption of temporally station-

arity [16,24–36], ignoring brain activations that occur within the

relatively brief periods. Third, most of the existing diagnosis

frameworks [6,15,23] were evaluated either using overly opti-

mistic approaches (e.g., leave-one-out cross-validation) or using a

small sample size, limiting the reliability and generalizability of

the outcomes.

In this study, we aim to develop an ASD diagnosis framework

using multiple short-time networks to explicitly model fluctua-

tions of large-scale functional connectivity derived from R-fMRI

data. The proposed framework is based on two assumptions on

resting-state functional connectivity: (1) functionally distinct net-

works should be largely temporally distinct as brain states do not

simultaneously coexist in general, and (2) brain networks are

intrinsically sparse, that is, a brain region is functionally

connected to a small number of other regions.

A common approach to determining functional connectivity

between a pair of regions is to use correlation-based methods [37],

for example, Pearson correlation (PC). Conventionally, functional

connectivity is computed as correlations of the entire R-fMRI ser-

ies, ignoring co-activations that may occur within the relatively

brief periods. Recent research has shown that the constituent

regions of a network may exhibit similar but brief traces of spatial

coherence at different times [38–40]. To capture this temporally

dynamic spatial coherence, we employ a clustering approach to

decompose the R-fMRI time series into several clusters with simi-

lar spatial activation patterns at a group level. Clustering time ser-

ies on the basis of temporal independence is motivated by the

rationale that functionally distinct networks should be largely

temporally distinct as brain states, products of brief spontaneous

interregion interactions, do not simultaneously coexist in general.

Also, a region’s activity pattern may reflect one network’s activity

some of the time, and another network’s activity at other time,

that is, brain regions playing unique roles within different func-

tional networks [39]. Therefore, R-fMRI volumes with similar

activity patterns can be considered as under the same brain state.

It is noteworthy that the brief interregion interactions of a brain

state may last from seconds to minutes and repeat multiple times

over the scanning period [37,40]. Hence, the sequential time

points (R-fMRI volumes) of the same brain state are normally

changing gradually and similar to each other, in which they tend

to be grouped together into the same cluster to represent the

interactions among regions of that brain state. As the sequence of

the R-fMRI volumes are preserved, the functional connectivity

computed based on the sequential time-subseries reflects, to some

extent, the interactions of brain regions across time at different

brain states. Additionally, as a relatively small number of clusters

are used in our framework, the time-subseries would not be too

short, thus preserving the temporal information of the functional

connectivity within a brain state. It has been reported recently

that abnormalities in terms of connectivity patterns have been

observed in some transient brain states but not in others in

patients with Schizophrenia [41]. Thus, by investigating changes

in these spatial correlations, we can detect disruptions of brain

functions that are associated with ASD with a greater granularity.

However, the resulting fully connected PC networks can be dif-

ficult to interpret due to many spurious or insignificant connec-

tions induced by spontaneous fluctuation of R-fMRI signals and

physiological noise. Considering the sparse nature of brain con-

nectivity, various sparse regression-based approaches have been

proposed to obtain sparse, yet biologically more meaningful, net-

work. However, simple sparse approaches such as the least abso-

lute shrinkage and selection operator (Lasso) [42] unfortunately

introduce unnecessary intersubject variability, often resulting in

drastically different network topologies across subjects. To miti-

gate this problem, several sparse representation-based approaches

based on group Lasso have been proposed [43,44]. In our previous

work [44], time series of each region-of-interest (ROI) is regarded

as a linear combination of the time series of other ROIs, and a

multitask learning approach is employed to ensure identical con-

nection topology across subjects, generating a backbone sparse

network that is robust to spurious intersubject variability. Our

current work described in this article is based on this sparse linear

regression model. But one important distinction is that this

approach is now applied to short-time functional time-subseries,

instead of the whole time series.

Materials and Methods

Participants

The ASD cohort used was selected from the publicly available

ABIDE database [45]. Specifically, we consider only R-fMRI data

acquired from 45 ASD and 47 socio-demographic-matched typi-

cally developing (TD) children with ages ranging from 7 to

15 years old from the New York University (NYU) Langone Medi-

cal Center. The demographic information is summarized in

Table 1. Diagnosis of ASD subjects was based on the autism crite-

ria sets in Diagnostic and Statistical Manual of Mental Disorders,

4th Edition, Text Revision (DSM-IV-TR) [46], the standard classi-

fication of mental disorders used by mental health professionals.

Psychopathology for differential diagnosis and comorbidity with

Axis-I disorders were assessed using: (1) parent interview using

the Schedule of Affective Disorders and Schizophrenia for Chil-

dren-Present and Lifetime Version (KSADS-PL) for children

Table 1 Group means (standard deviation) and cohort demographics

ASD (N = 45) TD (N = 47) P-value

Gender (M/F) 36/9 36/11 0.2135*

Age (year � SD) 11.1 � 2.3 11.0 � 2.3 0.7773†

FIQ (mean � SD) 106.8 � 17.4 113.3 � 14.1 0.0510

ADI-R (mean � SD) 32.2 � 14.3‡ – –

ADOS (mean � SD) 13.7 � 5.0 – –

ASD, Autism Spectrum Disorders; TD, Typically Developing; FIQ, Full

Intelligence Quotient; ADI-R, Autism Diagnostic Interview-Revised; ADOS,

Autism Diagnostic Observation Schedule). *The P-value was obtained by

chi-squared test. †The P-value was obtained by two-sample two-tailed

t-test. ‡Two patients do not have the ADI-R score.
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(<17.9 years old); (2) participant interview using the Structured

Clinical Interview for DSM-IV-TR Axis-I Disorders, Non-patient

Edition (SCID-I/NP), and the Adult ADHD Clinical Diagnostic

Scale (ACDS) for adults (>18.0 years old). Exclusion of comorbid

ADHD was based on meeting all criteria for ADHD except for crite-

rion E in the DSM-IV-TR. Inclusion as a TD was based on the

absence of any current Axis-I disorders based on KSADS-PL for

each child and his/her parent(s), and based on the SCID-I/NP and

ACDS interviews for adults.

Data Acquisition and Preprocessing

All subjects were scanned using a 3T Siemens Allegra scanner.

During the R-fMRI scan that lasted for 6 min, most participants

were asked to relax with their eyes open and stare at a white fixa-

tion cross in the middle of the black background screen projected

on a screen. Eye status during the MRI scan was monitored via an

eye tracker and is detailed for each participant. The images were

acquired using TR/TE = 2000/15 ms, flip angle = 90°, 33 slices,

180 volumes, and voxel thickness of 4.0 mm. Standard data pre-

processing was carried out using the statistical parametric map-

ping (SPM8) software, including the removal of the first 10 R-

fMRI images, normalization to the MNI space with resolution

3 9 3 9 3 mm3, regression of nuisance signals (ventricle, white

matter, global signals, and head motion with Friston 24-parameter

model [47]), signal de-trending, and band-pass filtering (0.01–

0.08 Hz). The brain was parcellated into 116 ROIs according to

the automated anatomical labeling (AAL) atlas [48].

Method Overview

The procedures involved in computing the temporally independent

dynamic networks are summarized in Figure 1 and as follows:

1. Cluster, concurrently for all subjects, the time series into

multiple clusters with similar spatial activation patterns.

2. For each subject and for each time-series cluster, construct a

PC network that is weighted by the corresponding sparse net-

work.

3. For each subject, concatenate the network matrices from all

clusters.

Temporal Decomposition of Functional Time
Series

For analysis of short-time interactive between brain regions, we

cluster the time series into subseries that exhibit similar spatial

patterns (Figure 2). Let f~xd 2 RMgd¼1;...;D0 be the set of R-fMRI time

series for a subject (D0 = number of time points, and M = number

of ROIs). We first concatenate the time series from all N subjects

into a matrix ~X ¼ ½~x1; . . .; ~xM � 2 RD�M where D = N 9 D0 and ~xd
denotes its d-th row vector. We then use a k-means clustering

algorithm to partition f~xdgd¼1;...;D into K clusters, each with index

set Jk, by minimizing the within-cluster sum of squared errors

arg min
Xk

k¼1

X
d2Jk k~xd � lkk22; (1)

where lk denotes the center of k-th cluster.

Connection Strengths Based on Pearson
Correlation and Regression Analysis

After temporal decomposition, the time series from each ROI can

be seen as composed of a number of subseries from a number of

clusters. For each cluster, we have the data for N subjects, parcel-

lated intoM ROIs {xi}i=1,. . .,M, where xi 2 RDk with Dk as the length

of the subseries within the k-th cluster. Note that Dk can vary with

subjects and clusters. Thus, the symmetric connectivity matrix

C = {Cij}j=1,. . .,M 2 RM 9 M based on Pearson correlation is com-

puted as

time series time series time series

(A)

(B)

(C)

Figure 1 Method Overview. (A) Temporal

decomposition of R-fMRI time series into

several clusters based on spatial coherence

using k-means clustering, (B) computation of

PC and sparse network matrices for each

cluster, and (C) weighting the PC matrix with

the corresponding sparse matrix. C is the PC

matrix,W is the backbone sparse matrix, and
~C is the weighted sparse correlation matrix.
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Cij ¼ covðxi; xjÞ
rirj

; (2)

where cov(.,.) is the regional covariance, and ri and rij are the

standard deviations of xi and xj, respectively.

Brain networks are inherently sparse because neurologically a

brain region predominantly interacts with only a small number of

other regions. However, the PC networks computed using Eq. (2)

typically have dense connections, making them difficult to inter-

pret especially in the presence of spurious connections. Several

studies [43,44,49,50] have suggested that certain constraints can

be imposed on the networks to identify true connections from

noisy connections. The regional mean time-subseries of the i-th

ROI, out of M ROIs, yi, can be regarded as a targeted response vec-

tor, and the time-subseries of all other ROIs as predictors:

yi ¼ Xiwi þ �i; (3)

where �i is the error vector, yi ¼ Xi 2 RDk , Xi ¼ ½x1; . . .; xi�1; 0;

xiþ1; . . .; xM� 2 RDk�M is the data matrix with the i-th column set

to zero, and wi = [w1,. . .,wi-1,0,wi+1,. . .,wM]
T2 RM is the weight

coefficient vector that quantifies how related the other ROIs are

to the i-th ROI.

Construction of Backbone Sparse Network

To obtain a common backbone network topology across subjects,

we impose group sparsity in estimating the connection architecture

[44,51]. This is accomplished for the i-th ROI by solving for each

cluster a least-squares problem that is penalized by l2,1-norm:

minwið1Þ;...;wiðNÞ
XN

n¼1
kyiðnÞ � XiðnÞwiðnÞk2F

þ kkwið1Þ; . . .;wiðNÞk2;1; (4)

where n = 1,. . .,N is the subject index, and k > 0 is the sparsity

tuning parameter.

This sparse regression model is applied to each ROI separately to

produce a sparse coefficient matrix W(n) = [w1(n),. . .,wM(n)]T

2RM9M. The locations of nonzero elements of W are identical for

all subjects, hence giving a backbone network topology. The non-

zero elements (i.e., wij 6¼ 0) indicate that the i-th and the j-th ROIs

are functionally connected, whereas the zero elements indicate

the absence of connections between ROIs. While sharing a com-

mon network topology, subject-specific information is encoded by

the actual values of the nonzero elements in W [44]. As W is not

necessarily symmetric, we symmetrize the backbone network as

done in our previous work [44].

Sparse Weighted Functional Connectivity
Networks

For each subject and each cluster, a PC network matrix C and a

sparse network matrix W are computed. Matrix W discards spuri-

ous connections and retains prominent connections. For each

ROI, each nonzero value in the associated row ofW is an indicator

of how well the time series in the ROI can be explained by the

time series in each of the other ROIs. Unlike the PC network, con-

nections in the sparse network are computed by considering all

ROIs concurrently. We use W to weight C so that the degree of

coherence of the functional time series as measured by PC can be

modulated by the strength of the connections as given by the

sparse network:

~C ¼ W � C; (5)

where ○ denotes the Hadamard (or element-wise) product oper-

ator. Grouping the weighted network matrices for all clusters,

we have for each subject a family of connectivity matrices

f~CðkÞgk¼1;...;K ; which can reflect dynamic network change with

greater granularity.

Feature Selection and Classifier Learning

We employ the support vector machine (SVM) implemented

using the LIBSVM package [52] as our classifier. The optimal SVM

models are learned via a nested cross-validation scheme. Specifi-

cally, we randomly partition the subjects in the ASD and TD

Figure 2 Temporal Decomposition. Temporal

decomposition of R-fMRI time series into

subseries with similar patterns of spatial

coherence. The colors indicate clusters with

similar patterns of spatial activation.
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groups into 10 sets with approximately equal size without overlap.

One set is first left out as testing set, and the rest are used as the

training set to learn a SVM model. Using the training set, sparse

weighted functional connectivity networks are constructed. We

then compute, for each ROI, the local clustering coefficient [53], a

measure of node cliquishness, from the weighted connectivity

matrices as a network summary statistic. As AAL atlas with

M = 116 ROIs was utilized to parcellate the brain, a feature vector

consisting of 116 clustering coefficients, one for each ROI, can be

generated from each network matrix. For each subject, the feature

vectors from all clusters are concatenated to generate a long fea-

ture vector with K 9 M elements. We then utilize Lasso [42] to

select a small subset of features that are discriminative for ASD

diagnosis. The optimal tuning parameters for Lasso and SVM are

selected via grid search based on the training set. Parameter com-

bination that gives the best performance is used to construct the

optimal SVM model for performance evaluation using the left out

testing set. This procedure is repeated ten times, once for each of

the 10 training sets to compute the overall cross-validation classi-

fication performance.

Results

Diagnostic Performance

We compared the performance of the proposed method,

short-time sparse regression with Pearson correlation weighting

(ST-SR-PC), with the methods based on single- and multi-network

methods. The single-network methods are based on the entire

time series with connections computed based on (1) Pearson cor-

relation (PC), (2) Sparse regression (SR) [44] and (3) Sparse

regression with Pearson correlation weighting (SR-PC). The multi-

network methods are based on short-time clusters and (1) short-

time PC (ST-PC) and (2) short-time sparse regression (ST-SR). For

the multiple network-based approach, we evaluated the perfor-

mance over K = 2,. . .,7. A linear kernel SVM with trade-off

parameters C = [�5.00, �4.25,. . ., 10.00] was used in the compar-

ison. The feature selection step was performed by setting the tun-

ing parameter of Lasso k = [0.05, 0.10,. . .,0.5]. The combination

of parameters, that is, K, C, and k, that achieved the best classifica-

tion accuracy based on the training sets was applied to the testing

set to compute the final cross-validation classification perfor-

mance. We evaluated the diagnostic power of the competing

methods using several statistical metrics, that is, the predictive

ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), Positive

Predictive Value (PPV), and Negative Predictive Value (NPV).

Figure 3 summarizes ASD diagnostic performances of the com-

pared methods obtained based on SVM with linear kernel. The

proposed method (ST-SR-PC) consistently performs better than

the competing methods for most of the evaluation metrics. Specif-

ically, the proposed method always achieved the highest ACC,

SEN, and PPV values, indicating its superiority over the single-

network and multinetwork approaches.

To evaluate the reproducibility and reliability of our proposed

framework, we repeated the experiments using data of 4 other

centers (namely Stanford, UCLA-1, UM-1, and Yale) from ABIDE

that contain a reasonably large number of subjects with ages rang-

ing from 7 to 15 years old. The ASD diagnostic performance of the

compared methods obtained based on linear SVM was illustrated

in Figure 4. Our proposed framework consistently achieved

higher diagnostic accuracy than the competing methods for the

data from all 4 centers, indicating reproducibility of our frame-

work to other similar datasets.

Effects of SVM Kernel Types

We evaluated the performance of the proposed method when dif-

ferent SVM kernels (linear, radial basis function (RBF), and poly-

nomial) are used. The range for the width parameter of the RBF

kernel is c = [10�16, 10�14,. . .,10�6]. The range for the degree

parameter of the polynomial kernel is b = [2,. . .,8]. Two different

sets of tradeoff parameters were used for the RBF and polynomial

kernels: (1) default trade-off parameter, C = 1, and (2) optimal

parameter determined via grid search using C = [�5.00,�4.25,. . .,

10.00]. The latter was used for the linear kernel. The results are

summarized in Figure 5. For varied C, the linear and RBF kernels

performed similarly whereas the polynomial kernel performed

slightly worse. For the default C, the linear kernel gives relatively

stable results compared with the RBF and polynomial kernels.

The Most Discriminative Regions

We define the most discriminative regions as the regions that were

selected with the highest frequencies during the ten-fold cross-

validation. Specifically, we first computed the frequency of a fea-

ture been selected and used for constructing SVM classifier during

training process. We then computed the selection frequency of a

region as the summation of selection frequencies of all features

Figure 3 Performance Evaluation.

Performance comparison for single- and

multinetwork approaches using data from NYU.

(ACC = ACCuracy, SEN = SENsitivity,

SPE = SPEcificity, PPV = Positive Predictive

Value, NPV = Negative Predictive Value).
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that correspond to the same region. Brain regions with the highest

final selection frequencies were regarded as the most discrimina-

tive regions in this study. Figure 6 graphically shows the top

selected regions, which are located on both brain hemispheres

and all four lobes, indicating the spread of functional connectivity

disruptions throughout the autistic brain. These regions include

the subcortical and limbic structures (amygdala, putamen, middle

cingulate gyrus, and parahippocampal), frontal (precentral gyrus,

middle, superior, and inferior frontal gyri), parietal (superior

parietal gyrus, inferior parietal lobule, and precuneus), occipital

(cenues, lingual gyrus, and superior occipital gyrus), and temporal

(superior and middle temporal poles, and middle temporal gyrus)

lobes.

Discussion

The human brain is constantly active, even at rest, and neural

interactions consistently occur at shorter timescales than an R-

fMRI scanning session of 6–12 min [39,54–57]. In conventional

stationary temporal correlation analysis, one connectivity net-

work is computed per R-fMRI scan, ignoring dynamic and recur-

ring brain activation patterns. In this work, we suggest to

construct multiple functional connectivity networks based on

short-time functional time-subseries. We cluster the functional

time series based on spatial activation patterns into different sub-

series. A connectivity network is then computed for each cluster

to characterize the dynamically varying co-activation and

co-deactivation patterns among brain regions, allowing a more

fine-grained analysis of brain functional dynamics. On the other

hand, fully connected connectivity networks with many spurious

connections unable to provide robust and accurate characteriza-

tion of brain states due to large amount of noise. We thus suggest

to construct a more meaningful functional network by weighting

the PC with a backbone sparse network derived using all subjects.

By considering both temporal coherence and network sparsity,

the proposed method ST-SR-PC outperforms the second best

method, SR-PC, by 7% in ACC, 14% in SEN, 14% in PPV, and

Figure 5 Effects of SVM Kernels. Performance

evaluation using different SVM kernels

(ACC = ACCuracy, SEN = SENsitivity,

SPE = SPEcificity, PPV = Positive Predictive

Value, NPV = Negative Predictive Value).

Figure 4 Multi-site Performance. Performance

comparison for single- and multinetwork

approaches using data from multiple centers.

Figure 6 Most discriminative regions. Regions that were selected with

the highest frequencies.

ª 2016 John Wiley & Sons Ltd CNS Neuroscience & Therapeutics 22 (2016) 212–219 217

C.-Y. Wee et al. ASD Diagnosis via Temporally Independent Networks



3% in NPV. Although the classification accuracy of 71% by the

proposed method is not high, our result was achieved via a more

reliable 10-fold nested cross-validation approach, compared to

[23], which used the more optimistic leave-one-out approach. A

recent study [6], which used the similar NYU dataset, achieved an

accuracy of 65% when using thresholded networks and a leave-

one-out cross-validation. It is also reported that there is no signifi-

cant difference in terms of classification accuracy between using

the full time series and motion scrubbed time series (>50% vol-

umes remained) for this dataset [6].

To evaluate the reproducibility and generalizability of our pro-

posed framework, we have performed ASD diagnosis using the

same settings on the data of 4 other centers (namely Stanford,

UCLA-1, UM-1, and Yale) from ABIDE. Our proposed framework

consistently outperformed the competing methods, based on

either single network or multiple networks, in all 4 centers. Large

heterogeneities in scanning protocols, imaging sequences, acquisi-

tion parameters, and subject populations will definitely limit the

sensitivity for detecting abnormalities induced by ASD and thus

the diagnosis accuracy. The relatively good and consistent perfor-

mances achieved by the proposed framework on multicenter data,

although different classifiers were constructed for different

centers, suggest that the multiple network-based dynamic connec-

tivity approach is relatively robust in identifying subtle disease-

induced neuro-functional wiring disruptions and can potentially

be an effective biomarker for brain disease diagnosis.

In our framework, SVM with linear kernel performs the best,

followed by RBF kernel and polynomial kernel. Linear kernel

gives the best stability with respect to variation of tradeoff parame-

ter C. With the linear kernel, the classification accuracy varies

from 68% to 71%. The nonlinear kernels, on the other hand,

experience significant performance drop, that is, more than 5%

for the polynomial kernel and more than 10% for the RBF kernel.

It has been shown that the linear kernel is more effective than the

RBF kernel when the number of features is significantly greater

than the number of subjects [58], as in our case. When using the

optimal C determined via grid search, our method outperforms all

competing methods for all kernels.

Encephalic regions that are associated with ASD pathology have

already been extensively reported in previous studies, either based

on group-level comparison [59–62] or individual-level discrimina-

tive analysis [3,6,9,13,16,63,64]. Most of the regions selected by

our method have been reported in previous studies to be highly

associated with ASD pathologies, particularly the subcortical and

limbic structures, which serve as hubs for most connection path-

ways. It is interesting to observe that several components in the

limbic system have been selected in the proposed framework as

important features for ASD classification. This may suggest that

our framework is able to extract and reflect the relationships

between behavioral impairments and functional abnormalities

occur in ASD.

The limitations of this work are discussed as follows:

1. We used l2,1-norm regularization (group Lasso) to estimate

the group-level backbone sparse connectivity matrix. If

highly similar connections exist, the l2,1-norm solution will

be unstable and will tend to retain only one of these connec-

tions and discard the others [65]. To overcome this limita-

tion, the elastic net, which adds a ridge regression (‖w‖2)

term to the original Lasso, can be used to stabilize the solu-

tion. Our future work may include the development and

application of ‘group elastic net’ for this purpose.

2. In our current work, the number of clusters, K, needs to be

predetermined. To avoid this, a data-driven approach, for

example, affinity propagation algorithm [66], can be used to

automatically determine the appropriate number of clusters.

3. Recent findings [67] indicate that one obvious source of

heterogeneity in ASD is the gender. As in this work the ratio

of male-to-female subjects is approximately 5 to 1, the results

may be disproportionately skewed. Future research should

take into account this issue to reduce the effects of hetero-

geneity for improving classification performance.

Conclusions

We have presented an effective ASD diagnosis framework that

harnesses the short-time spatiotemporal coherence of func-

tional time series and the sparse nature of brain connectivity.

By constructing connectivity networks based on short-time

functional time series, we are able to extract network dynamics

that are elusive when the time series is treated as an undi-

vided whole. Imposing group sparsity on the estimated net-

works trims spurious connections that might confound

classification. The combination of these strategies results in

improved classification performance, as supported by the

experimental results.
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