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Abstract

B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens).
BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that
enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a
process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding.
This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of
the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in
unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of
infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences.
Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving
pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However,
BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a
single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR rep-

ertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish.

Key words: molecular evolution, B-cell receptor, diversity, immunoglobulin, infection.

Introduction

The adaptive immune system ensures the survival of humans
and other vertebrates in the face of rapidly evolving and ge-
netically diverse infectious diseases. B lymphocytes are an
essential component of this system and express receptors
on their cell surface (B-cell receptors; BCRs) capable of specif-
ically binding foreign antigens. BCRs are membrane-bound
immunoglobulins composed of two large heavy chain mole-
cules and two smaller light chain molecules, encoded in hu-
mans by the genes IGH and IGL (or IGK), respectively. The
diversity of BCRs expressed by an individual’s B cells is vast,
and comprises both naive receptors that are randomly gen-
erated from the germline during development, as well as re-
ceptors that are retained after successfully binding antigen
during previous infections. Populations of BCRs can rapidly
improve antigen binding during infection through an evolu-
tionary process of mutation and selection known as affinity
maturation (Liu et al. 1991). Because BCR sequences are di-
verse and diverge rapidly, concepts from molecular evolution
should be beneficial in understanding the dynamics of the
adaptive immune system within individuals. T-cell receptors
(TCRs) are a second class of immune receptors that can bind
foreign antigen. Although diverse TCRs are also generated
randomly from germline gene sequences, and their compar-
ison with BCRs can be illuminating, TCRs do not undergo

affinity maturation nor exhibit rapid evolution during infec-
tion. Therefore in this review, we focus solely on BCR biology.

Apart from molecular assays that characterize sequence
length polymorphisms (e.g, TCR immunoscope assays; see
Bercovici et al. 2000) there was, until recently, a paucity of
data on within-individual BCR sequence diversity for re-
searchers to explore. That situation has now changed with
the application of next-generation sequencing to BCRs (Boyd
et al. 2009; Six et al. 2013). With this technique, researchers
can directly observe the somatic genetic changes that gener-
ate the diversity of the BCR repertoire, providing an unprec-
edented picture of the adaptive immune system as an
evolving population of cells. Analyses of these data from an
evolutionary perspective have led to insights into the aging of
the B-cell repertoire (Wang, Liu, Xu, et al. 2014) and into the
process of affinity maturation (Elhanati et al. 2015; Yaari et al.
2015), and have many applications across a broad range of
diseases (see table 1).

Despite these advances, there are important challenges in
applying models and methods from molecular evolution to
BCR sequences, which stem both from the complex biology
of B cells and the nature of available data. Unlike most
natural populations, naive BCR sequences do not descend
from a single common ancestor through a process of point
mutation, but are instead generated from a diverse set of
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Table 1. Applications of BCR Repertoire Sequencing.

Application Diseases/Infections

Significance

Challenges

Infection with rapidly evolving
pathogens such as HIV, Hepatitis
C virus, influenza viruses

Identification of broadly
neutralizing
antibodies (BNADbs)

Study of vaccine
responses

Any disease for which
vaccines are used or
being developed, e.g., Influenza,
typhoid, or Ebola

Autoimmune diseases such as
multiple
sclerosis; cancers

Tracking B-cell migration
and development
within the body

Autoimmune diseases such as mul-
tiple sclerosis and rheumatoid
arthritis; cancers, in particular
B-cell lymphoma

Disease diagnosis

Potential for use as vaccine
targets (Haynes et al. 2012)
Provide model system for un-
derstanding affinity maturation,
coevolution, and immune
development (e.g., Wu

et al. 2015)

A model system for

immune response with a known
stimulus (Galson et al. 2014)
Identifying correlates ofimmune
protection following vaccination

Identifies migration of B cells
between tissue compartments
(von Biidingen et al. 2012)

Can identify the sites at which B
cells mature (Stern et al. 2014)

A direct and potentially cheap
diagnosis tool

Improved understanding of
disease

Provide clinical markers of
disease progression (Robinson
et al. 2013)

Lineages are often large and di-
verse, often with high levels of
hypermutation, long CDR3s, and
poly reactivity (Haynes et al.
2012)

Distinguishing vaccine-specific
changes to the BCR repertoire
from healthy repertoire diversity
Variable immune

responses among individuals to
the same stimulus (Ademokun
et al. 2011; Jiang et al. 2013)
Accurate B-cell lineage
assignment

Modeling potentially complex
migration patterns

Differential sampling

between tissues

Complex and multiple disease
epitopes induce complex
responses

Low level presence of B cells as-
sociated with disease

germline gene segments through a process of somatic re-
combination (see below). In addition, the mutation process
during affinity maturation is strongly dependent on the se-
quence context of flanking nucleotides (Yaari et al. 2013)
and selection on the resulting amino acid sequence is com-
plex and site-specific, driven by the need to avoid dangerous
self-reactivity while concurrently enhancing pathogen bind-
ing. Finally, BCRs are a complex of heavy and light chain
immunoglobulin molecules, and information from both is
necessary for a complete understanding of BCR evolution
and function. Here, we review the current literature on these
topics and explore how molecular evolution and phyloge-
netics may contribute to future BCR research.

B-Cell Development

The initial diversity of the BCR repertoire is the result of a
somatic recombination process called V(D)) recombination.
This process brings together one each of the variable (V),
diversity (D), and joining (J) segments of the IGH locus on
chromosome 14 to form an exon in the heavy chain immu-
noglobulin gene, and one each of the V and J segments of the
IGL (or IGK) locus to form the light chain. Not all gene seg-
ments are utilized. Of the 123-129 IGHV gene segments, 44
contain open reading frames (ORFs); further, 25 of the 27 D
segments and 6 of the 9 ] segments have been shown to be
used for somatic recombination in the heavy chain (Lefranc
M-P and Lefranc G 2001; Li 2004). During this process, addi-
tional sequence diversity is generated by random deletion or
insertion of nucleotides at segment junctions. This process
combines highly variable sequence regions that determine
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antigen binding (the complementarity determining regions;
CDRs) with more conserved framework regions (FWRs) that
provide structural support. Thus each naive B cell has its own
BCR sequence, and the number of possible BCR sequences is
huge, with models predicting at least 10'® (Elhanati et al.
2015), far greater than the number of B cells in the body.
The process may generate nonproductive (e.g, out-of-frame)
coding sequences; when this happens, the B cell may recom-
bine its second copy of the IGH gene. If this too fails to pro-
duce a viable recombinant sequence then the cell undergoes
apoptosis, which further modulates the background genetic
diversity of receptors (fig. 1). The surviving, naive B cells then
undergo an initial round of selection for lack of self-reactivity,
before they are released from the bone marrow into periph-
eral blood (Murphy et al. 2008).

Once a naive B cell is activated by binding a foreign anti-
gen, it undergoes cell division (clonal expansion) and initiates
processes that somatically alter the BCR sequence and diver-
sify the clonal population. In parallel, a mechanism called class
switching alters the constant region of the heavy chain,
changing the type and function of the BCR and its interaction
with other molecules; although this does not affect its
antigen-binding properties, it does leave a molecular mark
that can be used to separate naive BCRs from those that
have undergone affinity maturation. Affinity maturation
modifies antigen binding through a process of random and
rapid sequence change, termed somatic hypermutation
(SHM), and by selection. SHM involves greatly increased mu-
tation rates of approximately 10~ > changes per nucleotide
per cell division, corresponding to approximately one muta-
tion per cell division in the relevant locus (Teng and
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Fic. 1. Chord diagrams showing the pairing of V and ] segments within (a) productive and (b) nonproductive IgM sequences from a single healthy
individual. Chord widths represent the proportion of sequences with a given V (colored) and ] (gray) segment pairing. The five most common V
segments in productive rearrangements (and all ] segments) are labelled. Note that IGHV3-23/IGHJ4 was significantly more common in productive
versus nonproductive rearrangements, which may indicate functional bias of that pairing. The figure was generated from data in Elhanati et al.
(2015), which was aligned to the IMGT reference (Lefranc et al. 2009) using IgBLAST (Ye et al. 2013). Productive rearrangements were subsampled
to the same read depth as nonproductive rearrangements (~2 x 10° reads); the values displayed in (a) are means of 100 subsampling repetitions.
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Papavasiliou 2007; Victora and Nussenzweig 2012).
Mechanistically, these mutations are induced by the enzyme
activation-induced cytodine deanimase (AID), which deami-
nates cytosine to uracil during transcription (Muramatsu
et al. 2000; Teng and Papavasiliou 2007; Peled et al. 2008).
Importantly, for evolutionary analysis, SHM is a random and
strongly nonuniform process, and clearly distinct from the
processes of germline mutation and evolution. In particular,
SHM is context-dependent such that the probability of mu-
tation at a site is strongly influenced by neighboring nucleo-
tides (Shapiro et al. 2003; Yaari et al. 2013; Elhanati 2015). The
resulting mutations are further shaped by a round of selec-
tion, in which B cells compete for survival and replication
signals by competitively binding to antigens (Peled et al.
2008). The combination of these processes shapes both the
type and rate of observed mutations across the IGH and IGL
loci.

Sequencing the BCR Repertoire

The extraordinary variability of BCR sequences poses chal-
lenges for targeted sequencing. We provide here only a brief
summary of current sequencing approaches, in particular as
they relate to the analysis of BCR diversity. Rearranged VD]
segments are flanked by introns, so targeting germline DNA
requires a cocktail of polymerase chain reaction (PCR) pri-
mers (Larimore et al. 2012). A challenge for this approach is to
control for PCR bias, which could skew the frequency of se-
quenced variants and obscure the signal of clonal expansion.
An alternative approach that can significantly reduce the
problem of PCR bias is to target expressed mRNA, in which
case the constant regions flanking the VD) segments in ma-
ture mRNA can be used for PCR priming (Galson et al. 2015).
In addition, different classes of B cells can be distinguished by
targeting different constant regions. The challenges for mRNA
sequencing are to 1) disentangle variation in sequence fre-
quency that is due to differential expression, which can be
extensive, from that due to clonal expansion; and 2) ensure
that sequencing error and subsequent bioinformatic process-
ing do not introduce systematic biases into subsequent evo-
lutionary analyses. For a more detailed discussion of BCR
repertoire sequencing, see the reviews by Benichou et al.
(2012) and Robins (2013).

Sequencing of the somatically altered heavy chain has the
potential to reveal the clonal structure and dynamics of the
B-cell population through time, and this review focuses on the
analysis of bulk sequence data from this region. However, al-
though the majority of variation in BCR sequences is concen-
trated in the heavy chain, and in particular the CDRs (Xu and
Davis 2000; Georgiou et al. 2014), the light chain also contains
mutations that may affect antigen binding. If one’s goal is to
characterize entire antibodies, or to understand the binding
properties of a given heavy chain sequence, then knowledge of
paired heavy and light chain sequences is required.
Computational approaches have previously sought to infer
how heavy and light chain sequences are paired from indepen-
dently sequenced sets of sequences by using relative frequen-
cies (Reddy et al. 2010), or the shapes of phylogenetic trees
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(Zhu et al. 2013) of heavy and light chain sequences. Recently,
single-cell technologies have enabled natively paired heavy and
light chains to be sequenced by attaching unique barcodes to
cDNA from individual cells (Busse et al. 2014; Lu et al. 2014;
Tan, Blum, et al. 2014 Tan, Kongpachith, et al. 2014).
Alternatively, oligo-dT beads that link heavy and light chains
from a single cell have been used (DeKosky et al. 2013, 2015).

Measuring BCR Diversity

Once BCR sequences are generated, statistical and computa-
tional approaches are necessary to explore and summarize
their diversity, in order to reveal associations with immune
responses or disease status, or to identify BCR sequences of
specific interest. The exceptional diversity of the BCR reper-
toire, and its dynamic nature, makes comparative study
within and among individuals challenging.

Several different measures have been proposed, and can be
distinguished into those that characterize raw sequence var-
iability versus those that depend on the frequency of BCR
lineages, clones or clusters (i.e, groups of identical or similar
sequences; see next section). In the context of viral infection,
both the number of somatic mutations (Chen et al. 2012;
Wang, Liu, Xu, et al. 2014; Galson et al. 2015) and V, J gene
usage (Zhou et al. 2013) have proved useful. CDR3 sequence
length also has been used to distinguish repertoires after
pneumococcal vaccination (Ademokun et al. 2011; Chen
et al. 2012; Galson et al. 2015). Diversity statistics such as
the Gini index or mean clone size are also used to investigate
BCR diversity (Bashford-Rogers et al. 2013; Galson et al. 2015;
Hoehn et al. 2015). Figure 2 provides a graphical representa-
tion of BCR diversity under different conditions.

Other approaches seek to characterize BCR diversity using
statistical models. Mora et al. (2010) introduced a maximum
entropy model that characterizes the repertoire as a statistical
distribution, whereas Elhanati et al. (2015) used probabilistic
inference to quantify the process of VD) recombination and
SHM. Greiff et al. (2015) proposed employing entropy mea-
sures developed in ecology research, which unify a range of
diversity measures into a single profile.

A common assumption of these approaches is that clonal
expansions observed in infected individuals correspond to
B-cell responses against the pathogen under study. This may
not always be true, especially in instances of coinfection with
multiple pathogens. Further, some infections may manipulate
host immune responses through so-called superantigens (e.g,
staphylococcal protein A), which trigger large, nonspecific clo-
nal expansions that disrupt antigen-specific affinity maturation
(Thammavongsa et al. 2015). Such phenomena do not in gen-
eral prevent clonal expansions from being useful indicators of
immune dynamics, but require them to be carefully inter-
preted in the context of the particular host—pathogen system.

Comparison of BCR populations among individuals is of
interest because repertoires may become similar if individuals
are exposed to the same pathogen, giving rise to a shared,
“public” repertoire. Differences in BCR repertoires between
individuals are likely generated by many factors including age
(Wang, Liu, Xu, et al. 2014), germline genetics (Wang, Liu,
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Fic. 2. Network diagrams that visualize the diversity and clonal structure of BCR sequences. BCR sequences were obtained from (a) two healthy
people, (b) two individuals infected with HIV-1, sampled during early infection, and (c) two patients with chronic lymphocytic leukemia, a B-cell
cancer. Each point/circle represents a unique BCR sequence, the size of which is proportional to how common that sequence is. Edges are drawn
between pairs of sequences that differ by exactly one nucleotide change. Note that samples do differ by read depth (approximately 3.4 x 10% and
3.6 x 10% for part [a], 9.2 x 10%and 3.6 x 10° for part [b], 5.1 x 10% and 2.6 x 10° for part [c]). Parts (a) and (c) are reproduced with permission
from Bashford-Rogers et al. (2013) and part (b) from Hoehn et al. (2015).
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Cavanagh, et al. 2014), and infection history (Sasaki et al. 2008;
Wang, Liu, Xu, et al. 2014). Infectious diseases typically present
many epitopes, and even when different B cells target the
same epitope, it is possible for the different BCR sequences to
bind equally effectively. Despite these complexities, BCR con-
vergence following identical stimuli has been observed, and
has enabled the identification of antibodies reactive against
influenza vaccines (Jackson et al. 2014; Martins and Tsang
2014; Triick et al. 2015) and dengue virus vaccines
(Parameswaran et al. 2013). In addition, antibodies against
HIV that exhibit the same broadly neutralizing phenotype,
and which share some common sequence elements, have
evolved independently in different patients (Scheid et al.
2011; Zhou et al. 2013). It is currently an open question
whether convergent molecular evolution of BCR sequences
is a common or an exceptional phenomenon (Yaari and
Kleinstein 2015). Some tests of convergence have been devel-
oped in other contexts, such as Zhang and Kumar’s (1997)
convergent evolution hypothesis test, which directly compa-
res substitution models of convergent versus independent
evolution along preselected lineages. This and other methods
designed to detect convergence (e.g, Parker et al. 2013) may
improve our understanding.

Clonal Lineage Assignment and Clustering

Molecular phylogenetics is an undeniably powerful tool for
analysis of sequence diversity. However, its application to BCR
repertoires is impeded by the V(D)) recombination process,
the existence of which means that not all BCR sequence dif-
ferences are due to point mutation through descent from a
common ancestor. Consequently, sequences must be
grouped by lineage, each representing sequences that de-
scend from a single ancestral B cell, before they can be
analyzed phylogenetically (Hershberg and Luning Prak 2015).

A key step in this process is the alignment of BCR se-
quences to reference data sets of V, D, and ] gene segments,
in order to determine their germline origin. Several such align-
ment methods are available: IMGT/High-V-Quest (Alamyar
et al. 2012) is popular and provides a well-curated reference
data set; IgBLAST (Ye et al. 2013) can be run with a user-
specified reference data set, and IgSCUEAL uses phylogenetic
relationships between germline genes to increase the accu-
racy of assignment (Frost et al. 2015). Other tools include
iHMM-Align (Gaeta et al. 2007) that implements a hidden
Markov model, and VBASE2 (Retter et al. 2005) that uses a
reference data set provided by Ensembl. Other techniques,
using methods adopted from phylogenetic ancestral state
reconstruction, assign V(D)) segments while also quantifying
uncertainty in assignment (Kepler 2013). However, germline
V, D, and ] segments vary considerably among individuals and
new alleles are still being discovered, so the reference data set
may be inaccurate (Gadala-Maria et al. 2015). Segment sim-
ilarity, junctional diversity, SHM, and sequencing errors all
further increase the difficulty of unambiguously assigning
BCR sequences to specific germline segments. This is partic-
ularly true for D segments, due to their short length (11-37
nucleotides; Lefranc M-P and Lefranc G 20071; Giudicelli et al.
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2005) and the frequent occurrence of deletions during V(D))
recombination, which may remove part or all of a D segment
(Elhanati et al. 2015).

Several studies sidestep the problem of germline assign-
ment, and instead use clustering approaches to group similar
BCR sequences by using either the entire V(D)) region se-
quence (fig. 2; Bashford-Rogers et al. 2013; Hoehn et al.
2015) or the CDR3 region (Jiang et al. 2013; Sok et al. 2013;
Laserson et al. 2014). A threshold number of differences (edit-
distance) is often used to determine whether sequences be-
long to the same or different clusters. One difficulty with this
approach is the choice of threshold. Some studies address this
by exploring multiple thresholds; edit-distances of three to
five differences have been chosen by looking at how cluster
numbers and sizes change as the threshold is increased (Yaari
et al. 2013; Laserson et al. 2014). However, a more principled
approach is clearly needed to test how closely these clustering
techniques reconstruct the true clonal structure of the B-cell
population. At present they appear well suited for the de-
tailed analysis of recently diverged clones (Laserson et al.
2014), and for quantifying the diversity of the BCR repertoire
in general (Bashford-Rogers et al. 2013; Hoehn et al. 2015;
Triick et al. 2015). However, it is unlikely that clustering
approaches based on edit-distances will be effective in accu-
rately identifying large, diverse lineages. For example, broadly
neutralizing HIV lineages often show high levels of genetic
diversity (fig. 3; Wu et al. 2015), and the intermediate (i.e,
ancestral) sequences necessary for accurate clustering may
not be available in many cases, because affinity maturation
occurs in the germinal centers rather than in peripheral blood
(Parham 2009). Studies that have successfully isolated large
and diverse B-cell lineages from HIV-infected patients have
generally done so using by combining sequence analysis with
detailed experimental work (Zhou et al. 2013).

Untangling Mutation and Selection

The enzyme-driven nature of SHM poses a challenge for study-
ing the molecular evolution of BCRs. Standard nucleotide sub-
stitution models typically assume that sites (either nucleotides
or codons) evolve independently (Felsenstein 1981). However,
SHM is strongly context dependent, to the extent that ob-
served mutation rates vary more than 10-fold across sites
(see fig. 4) (Elhanati et al. 2015). Consequently, traditional
methods for identifying positive and negative selection that
rely on uniform-rate independent-site models can generate
false positives when applied to BCR sequences, for example,
within nonproductive (out-of-frame) sequences that are not
subject to selection (Dunn-Walters and Spencer 1998).

Models of SHM based on empirical data have been devel-
oped and include di-, tri-, penta-, and hepta-nucleotide models
(Smith et al. 1996; Shapiro et al. 2002, 2003; Yaari et al. 2013;
Elhanati et al. 2015), and have been used to investigate selection
on the naive B-cell repertoire (Elhanati et al. 2015). Selection
has been explored using the “focused” binomial test, which
determines whether the observed number of replacement mu-
tations is significantly different from that expected under a null
model of biased mutation but no selection (Hershberg et al.
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2001-2002
2006-2007
I 2008-2009

H
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Fic. 3. Maximum-likelihood phylogenetic tree of the VRCO1 BNAD lineage sampled at ten time points over 15 years of diversification within a
single individual infected with HIV-1. Each tip represents a BCR heavy chain sequence; terminal branches are colored by time point of sampling (see
key). The red circle at the root represents the germline sequence (IGHV1-2*02 and IGH)1*01, D region left unassigned). Note the general, but not
complete, trend of increasing genetic divergence from the root with sampling time. Late-sampled sequences near the root indicate very high rate
heterogeneity among lineages; these sequences might represent inactive memory B cells. BNAb sequences were obtained through cell sorting (Wu
et al. 2010) followed by high-throughput sequencing data to identify related BCRs (Zhou et al. 2013). See Wu et al. (2015) for full experimental
details. Sequences for this tree were obtained from GenBank (Wu et al. 2015) and aligned using MUSCLE (Edgar 2004). A maximum-likelihood
phylogeny was estimated using the GTRGAMMA substitution model in RAXML (Stamatakis 2014), and rerooted to position the germline
sequence at the root with a divergence of zero. Scale bar represents genetic distance (expected changes per nucleotide site).
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Observed mutation frequency
o
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0.00
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V gene nucleotide position

Fic. 4. Observed mutation (sequence difference from germline) frequency among productive heavy chain immunoglobulin sequences across the
V-gene sequence (horizontal axis, IMGT unique numbering). The distribution of mutations across the region is strongly nonuniform, with
mutations more likely to occur at certain positions. The CDR2 region (middle shaded box) has a high rate of observed mutations and is thought
to be more important in antigen binding than the surrounding framework regions (FWR2 and FWR3). This figure was generated from the same
data set as figure 1.
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2008). This framework has subsequently been extended using
Bayesian inference (BASELINe; Yaari et al. 2012). In common
with other components of the acquired immune system (e.g,
class I and Il MHC glycoproteins; Yang and Swanson 2002;
Furlong and Yang 2008), analyses indicate that BCR sequences
are a mosaic of regions under a mixture of positive and puri-
fying selection (i.e, CDRs) and structural regions whose evolu-
tion is highly constrained by purifying selection (i.e, FWRs)
(Yaari et al. 2012, 2015; McCoy et al. 2015).

It should also be possible to detect the action of antigen-
driven selection from the shape of BCR lineage phylogenies,
which represent the common ancestry of a sample of se-
quences from a lineage of clonally related B cells (Dunn-
Walters et al. 2002). Computer simulation of lineage trees
generated by affinity maturation under a variety of scenarios
found seven measures of tree shape that correlated
strongly with immunological parameters (Shahaf et al.
2008). However, recent analyses using these measures con-
cluded that they are affected by experimental factors that are
difficult to control, such as the number of sequences sampled
from a lineage and the number of cell divisions since initial
VD) rearrangement (Uduman et al. 2014). Utilizing lineage
information, such as excluding terminal branch mutations,
has been shown to increase the sensitivity of methods based
on the expected number of replacement mutations
(Uduman et al. 2014). It is interesting to note that very similar
approaches were developed independently in viral phyloge-
netics, specifically in studies of HIV-1 and influenza popula-
tions under strong positive selection (e.g, Bush et al. 1999;
Lemey et al. 2007).

Recently, two further approaches to analyzing B-cell selec-
tion have been developed. Kepler et al. (2014) used a statis-
tical model of selection and an empirical model of sequence
mutability to study their interplay along the BCR sequences of
an antibody lineage. Alternatively, one can adjust and control
for the motif-targeted nature of SHM by studying and com-
paring productive and nonproductive BCR rearrangements
within a given data set (see “B-Cell Development”; Larimore
et al. 2012; Elhanati et al. 2015; McCoy et al. 2015). McCoy
et al. (2015) combined this information with a statistical
model of trait evolution (Lemey et al. 2012) in order to derive
a per-residue map of natural selection along the BCR.

Although antigen-driven positive selection is of great in-
terest, of equal importance to the evolution of antigen-
specific BCR sequences is the influence of purifying selection,
which results from the removal of self-reactive and nonpro-
ductive receptors and which partly precedes the affinity mat-
uration stage (see B-Cell Development). This initial selection
can be studied by comparing the mutation profiles of
nonproductive and productive BCR sequences; the latter of-
ten have shorter CDR3 sequences postselection, and exhibit
complex and position-dependent selection for and against
particular amino acids (Elhanati et al. 2015).

BCR Phylogenetics

The process of affinity maturation generates rapid sequence
evolution, so it is unsurprising that phylogenetic approaches
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are now routinely used to visualize how B-cell lineages un-
dergo diversification and divergence in response to an antigen.
Phylogenies have been used to address important problems,
such as reconstructing ancestral BCR sequences within a lin-
eage (Kepler 2013; Sok et al. 2013), detecting and measuring
selection on B-cell populations (Uduman et al. 2014), and
studying how broadly neutralizing antibodies sometimes
evolve in response to HIV infection (Wu et al. 2015). Further
integration of phylogenetic concepts, including those from
fields such as viral phylodynamics (Grenfell et al. 2004; Volz
et al. 2013), may improve our understanding of affinity mat-
uration dynamics during infection. For example, the rate of
SHM evolution in a lineage over time (and its variability
among lineages) could, in theory, be revealed by using molec-
ular clock models to analyze BCR sequences sampled at dif-
ferent times. Further, asymmetric tree shapes might help to
identify the action of strong positive selection on serially sam-
pled antibody lineages (fig. 3), analogous to phylogenetic
footprint left by recurrent selection on some influenza virus
lineages (Grenfell et al. 2004). However, as noted in the previ-
ous section, BCR lineage tree shapes may be subject to
biases that are not yet fully understood (Uduman et al.
2014), so for the time being they should be interpreted with
caution.

Although many phylogenetic analyses focus exclusively on
BCR heavy chain sequences, the light chain may also be in-
cluded, for example, by concatenating the two gene se-
quences together (Wu et al. 2015). As both chains are
inherited together during B-cell replication, they should share
the same phylogenetic topology. By adding more sites to the
alignment, concatenation may improve the accuracy of phy-
logeny estimation (Huelsenbeck et al. 1996; Gadagkar et al.
2005). However, if the mode or tempo of molecular evolution
differs between heavy and light chains, then it may be advis-
able to divide the concatenated sequences into separate par-
titions, each with its own molecular clock and nucleotide
substitution model (e.g, Nylander et al. 2004)

However, current phylogenetic models may not represent
adequately the particular processes of growth and mutation
that generate BCR lineages and therefore they should be ap-
plied with caution. For example, Wu et al (2015) recently used
a relaxed molecular clock model to analyze the evolution of a
broadly neutralizing antibody lineage (VRC01) sampled over
15 years of HIV-1 infection. The estimated date of the com-
mon ancestor of the lineage was implausibly old, which led
the authors to conclude that the molecular clock model used
was unrealistic. Specifically, they concluded that the mean
rate of BCR evolution of VRCO1 and other lineages (Liao
et al. 2013; Doria-Rose et al. 2014) slowed over the course
of lineage development. This work poses interesting avenues
for future research, as it should be possible to test the slow-
down hypothesis directly using a time-dependent molecular
clock model. Alternatively, the apparent slowdown could be
caused by the AID motif-driven nature of BCR mutation, in
which case fundamental assumptions of the nucleotide sub-
stitution model (e.g, independence among site and time-
reversibility) may be inappropriate. It is likely that current
evolutionary models will need to be substantially modified
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or carefully selected before we can be confident in evolution-
ary inferences from BCR sequence data.

Conclusion

BCR sequence data contain a wealth of novel immunological
information and have the potential to improve our observa-
tion and understanding of the mechanisms of autoimmune
disease and acquired immunity (table 1). However, the dy-
namic processes that determine the response of B-cell pop-
ulations to diverse antigens differ from other forms of
biological evolution in key ways, some of which are currently
poorly understood. We conclude by outlining four important
challenges facing the molecular evolutionary analysis of BCR
sequences.

(1) Distinguishing between biological signal and exper-
imental error or bias. Many aspects of experimental
protocol may have an effect on observed sequence
diversity, including read depth and length, PCR condi-
tions and primers, and cell sorting. Close collaboration
between experimentalists and analysts is needed to
ensure that experimental choices are appropriate for
subsequent evolutionary analyses.

(2) Identifying clonally related cells/sequences. For evo-
lutionary methods to be maximally informative, it is
necessary to distinguish within-individual BCR se-
quence differences caused by SHM from those derived
from V(D)) recombination. Advances here might in-
clude improvements in sequencing or experimental
protocols; development of methods to probabilistically
cluster into clonal lineages; and the creation of a “gold
standard” test data set allowing evaluation of methods
for determining clonal lineages.

(3) Detecting convergent evolution among B cells re-
sponding to the same stimulus. The prevalence and
importance of this process, and its utility for under-
standing the underlying biology of BCRs, is currently
under debate. Improved understanding of the fre-
quency distribution of naive BCR sequences should
help to estimate the fraction of the public, shared rep-
ertoire that occurs by random chance. In addition, it
may be possible to adapt methods from molecular
evolution and phylogenetics to make progress in this
area.

(4) Models to describe the process of BCR affinity mat-
uration. Although descriptive summary statistics have
proven useful for the visualization and qualitative anal-
ysis of BCR repertoires, further understanding will be
gained by developing stochastic process models that
embody the known mechanisms of SHM and B-cell
proliferation, and by the application of such models to
empirical data. Finally, it is important to understand
the potential biases arising from applying standard
phylogenetic and molecular evolutionary models to
BCR sequences. These could be investigated by analy-
zing artificial BCR data sets simulated under complex
and biologically realistic models of sequence evolution.
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