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The early detection of pathogens with epidemic potential is of
major importance to public health. Most emerging infections result
in dead-end “spillover” events in which a pathogen is transmitted
from an animal reservoir to a human but is unable to achieve the
sustained human-to-human transmission necessary for a full-blown
epidemic. It is therefore critical to determine why only some virus
infections are efficiently transmitted among humans whereas others
are not. We sought to determine which biological features best char-
acterized those viruses that have achieved sustained human trans-
mission. Accordingly, we compiled a database of 203 RNA and DNA
human viruses and used an information theoretic approach to assess
which of a set of key biological variables were the best predictors of
human-to-human transmission. The variables analyzed were as fol-
lows: taxonomic classification; genome length, type, and segmenta-
tion; the presence or absence of an outer envelope; recombination
frequency; duration of infection; host mortality; and whether or not a
virus exhibits vector-borne transmission. This comparative analysis
revealed multiple strong associations. In particular, we determined
that viruses with low host mortality, that establish long-term chronic
infections, and that are nonsegmented, nonenveloped, and, most
importantly, not transmitted by vectors were more likely to be trans-
missible among humans. In contrast, variables including genome
length, genome type, and recombination frequency had little predic-
tive power. In sum, we have identified multiple biological features
that seemingly determine the likelihood of interhuman viral trans-
missibility, in turn enabling general predictions of whether viruses of
a particular type will successfully emerge in human populations.
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The cross-species transmission of viruses from animals to hu-
mans is responsible for the vast majority of emerging infec-

tions, including some of the most devastating disease epidemics
on record. Important exemplars are the global HIV/AIDS pan-
demic, the continual appearance of novel subtypes and strains of
influenza A virus (1, 2), and the recent outbreak of Ebola in
West Africa (3). Despite the widespread mortality and morbidity
caused by emerging diseases, it is striking that the majority of
such emergence events result only in dead-end “spillover”
infections in which the virus is unable to establish stable on-
ward transmission in the novel (human) host. For example, both
the H5N1 and H7N9 subtypes of avian influenza virus have re-
peatedly spilled over from poultry to humans, but there is only
limited evidence of human-to-human transmission such that these
viruses are not adapted to spread within the human population
(4). In contrast, Ebola virus (EBOV), which likely originated in
fruit bats, and Middle East respiratory syndrome coronavirus
(MERS-CoV), which jumped from camels to humans, have been
able to establish transmission networks within human populations
(5, 6). Such different outcomes of cross-species transmission
highlight the importance of revealing the biological factors that
determine why only a subset of viruses are able to establish
productive infections in humans (7, 8).
Understanding the drivers and barriers to successful disease

emergence has been the subject of increasing research activity.

Previous studies have attempted to reveal the links between
disease emergence and a variety of socioeconomic factors, in-
cluding lack of sanitation, limited access to health care, and so-
cial and political instability, as well as ecological disruption and
climate change (9). More generally, it has been suggested that
collating data on the geographic occurrence and distribution of
emerging diseases could be used to identify “hot spots” where
emergence events are most likely to occur (10). Crucially, how-
ever, such models consider all emerging diseases in the same
manner, regardless of their transmissibility within human pop-
ulations, even though only a subset will establish endemic trans-
mission. Other studies have considered the “genetic” barriers to
emergence in both hosts and viruses (11), particularly the number
and origin of the mutations necessary to allow adaptation to hu-
man hosts (12), and the challenges of evolving new tissue tropisms
(13). Although of fundamental importance, such characteristics
are often highly pathogen-specific such that it is difficult to draw
generalities about the likelihood of successful emergence. Herein,
we address a more specific question: That is, how might we assess
the capability of a particular emerging virus to achieve interhuman
transmission using background knowledge of their biology?
Pathogen transmissibility is often quantified by the basic re-

productive number, R0, and, to successfully achieve onward
transmission in a host population, a virus must satisfy R0 > 1
(14). Given that natural selection will favor human-to-human
transmission to increase the number of secondary infections, an
accurate database of R0 estimates for individual viruses would
undoubtedly assist pandemic prediction. However, such estimates
are limited in number because they require sufficient incidence or
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sequence data and are strongly influenced by epidemiological
context, such as whether they are inferred using data from out-
breaks or periods of more endemic transmission.
Given these important limitations, we compiled and analyzed

a database of 203 human viruses and assessed whether viruses
exhibiting particular biological (i.e., virological) features were
more often associated with sustained transmission among hu-
mans. The biological features considered reflect key aspects of
virus life history and ecology and include the following: host
mortality rate; genome type (DNA or RNA); genome length
(number of nucleotides); the duration of infection (acute or chronic);
segmentation of the virus genome (segmented or nonsegmented);
frequency of recombination (classified as high or low); the pres-
ence or absence of an outer envelope (enveloped or non-
enveloped); and the mode of virus transmission (limiting this
variable to either vector-borne or non–vector-borne transmission
for ease of interpretation). Using an information theoretic ap-
proach, we then set out to determine which of these features,
singly or in combination, is most often associated with human-to-
human transmission, and thus what biological attributes of viruses
increase the likelihood of successful emergence.

Methods
Data Collection. We first created a catalog of all human viruses, using data
available at ViralZone (viralzone.expasy.org/all_by_species/678.html) sup-
plemented with human viruses described in the primary literature. This lit-
erature search resulted in a dataset of 203 human virus species from which
we determined the following biological properties from the literature: their
taxonomic information; genome type, length, and segmentation (i.e., seg-
mented versus nonsegmented); and the presence or absence of an outer en-
velope (as well as additional features such as duration of infection and host
mortality rate) (Dataset S1). To simplify the analysis, we estimated these fea-
tures assuming average disease progression in nonimmunocompromised hu-
man hosts in the absence of medical treatment or intervention. For the purposes
of this study, we defined durations of viral infection as either “acute” (i.e., a
short duration of infection lasting up to 4 wk) or “chronic” (i.e., an infection
of duration longer than 4 wk). Because estimates of recombination rate are
often difficult to obtain and sometimes contentious, we used two broad
categories of the frequency of intraspecific recombination (or reassortment)—
low and high—that reflect the average occurrence of recombination in these
viruses as taken from the literature (which also acts to minimize error). Where
data on recombination frequency was unavailable, we assumed that the virus
in question exhibited the same recombination rate as documented in other
members of its family (for example, although reassortment has not been
detected in Dhori virus because of small sample size, we assume that the
rate of assortment in this case is “high” because it occurs commonly in the
Orthomyxoviridae). Finally, we compiled data on the usual mode of trans-
mission (vector-borne, animal bite, direct/indirect contact, bodily fluids, re-
spiratory, fecal–oral, blood-borne, sexual, and unknown), but, due to the high
number of categories, we later limited this variable to either “vector-borne”
or “non–vector-borne” transmission. A list of the biological features and the
justification for their inclusion are given in Table S1.

The most important variable in our dataset is whether a specific virus is
transmissible between humans, such that it can be considered human-
“adapted.” We based this classification on the usual mode of transmission
for each virus as described above. For example, although there have been
documented cases of rabies virus being transmitted among human trans-
plant recipients (15), no cases of bite and nonbite exposures between hu-
mans have been reported, such that we regard this virus as not adapted to
human transmission. We also assumed that viral characteristics have remained
stable over time but noted that some, particularly host mortality rate, may have
evolved to their current state in some of the more established human viruses.
Overall, we make general classifications and have estimated these variables
using the most up-to-date information available in the literature. Importantly,
any errors should be random across the dataset, thus having little impact on
our results.

It is also important to note that our dataset comprises a wide variety of
both RNA and DNA viruses that often do not share homologous genetic
regions, preventing sequence alignment and thus phylogenetic inference. In
particular, RNA and DNA viruses have no genes in common. Although per-
haps unnecessary, this lack of common ancestry prohibited us from explicitly
including phylogeny (i.e., evolutionary relatedness) in the model, even
though it may in part explain why taxonomically related viruses share common
variables. Instead, we explored ancestral associations between viruses by

integrating a taxonomic variable at the family level, which is described in
detail in Statistical Analyses.

Statistical Analyses. We used an information theoretic approach to assess
predictors of human-to-human transmission in all viruses compiled (Dataset
S1). For our purposes, multimodel information theoretic approaches offer
many advantages over competing approaches, such as stepwise model se-
lection based on statistical significance or a global model approach with
inference restricted to significant terms, both of which overlook model un-
certainty (for a discussion, see refs. 16–21). Therefore, generalized linear
models (GLMs) were implemented using the “glm” function in the base
package within the statistical programming environment R version 3.2.1
(22), which was used for all analyses. A global model was implemented with
a binary response variable denoting whether the virus was documented as
exhibiting human-to-human transmission, 1, or not, 0, and the model family
specified as “binomial” (i.e., a logit-link function). The predictors in the
global model were coded like the variables in Table S1 and fitted additively.

We explored taxonomic effects by fitting the family of the virus as a
random effect in a generalized linear mixed model (GLMM), along with the
aforementioned fixed factors using the “glmer” function in the package
lme4 (23). However, the variance component for the family effect in this
GLMM was small, and the model had a lower Akaike information criterion
corrected for small sample size (AICc) (24) than the global GLM. In addition,
the taxonomic GLMM produced fixed effect coefficients identical to the
global GLM. Accordingly, we proceeded with GLMs alone (see Tables S2 and
S3 for model estimates from the global GLM and GLMM).

From the global model, a set of candidate models was created using the
“dredge” function in the MuMIn package (25). Models were then ranked
based on AICc. Rather than restrict our inference to that based on a single
“best-fitting” model, which may be subject to model selection uncertainty
and model selection bias, we used multimodel inference (20). From the set of
candidate models, we obtained a top model set comprising those models
with an AICc within two of the top model. Model-averaged GLM coefficients
were then obtained using the “model.avg” function in MuMin. For each
coefficient, we report the relative importance (RI), adjusted SEs as produced
by MuMin (defined in ref. 20), associated 95% confidence intervals (CIs)
(1.96 × SE) (26), and the coefficient estimate with shrinkage (sometimes
called the “zero method”), which may be less upwardly biased for coef-
ficients with a relative importance less than 1. We note that information
theoretic approaches can potentially be misleading when global models
have an initially poor fit (20). Therefore, we calculated R2 for the global
model following equation 10 in Nakagawa and Schielzeth (27).

Results
A Dataset of Human Viruses. Our final dataset comprised 203
species of human virus, of which 105 (51.72%) exhibited human-
to-human transmission, with the remainder associated with only
transient spillover infections. These data contained 38 DNA
viruses and 165 RNA viruses from 25 different families, of which
the Bunyaviridae (negative-sense RNA) was the best repre-
sented, containing 37 species. The Flaviviridae and Picornaviridae
were also well-represented, containing 23 and 24 species, re-
spectively. The estimated mortality rates in the dataset range
from 0% (e.g., some herpes viruses) to 100% (lyssaviruses), and
69 viruses exhibited vector-borne transmission. Strikingly, all
viruses transmitted through blood and sexual contact resulted
in chronic infections and were transmissible between humans
(Fig. 1). In contrast, no viruses transmitted by animal bite were
transmissible between humans although we note that Nipah virus
has spread human-to-human via saliva after contamination of
raw date sap by bats (and subsequent consumption by humans),
rather than a bat bite (28).
An initial qualitative exploration of the dataset revealed that

all but one of the chronic viruses (25 virus species) exhibited
human-to-human transmission, with the single exception being
simian foamy virus (although foamy viruses likely codiverge with
other primate hosts) (29). In addition, it was notable that, of those
viruses that establish a chronic infection, all had nonsegmented
genomes and that the vast majority (20 species) had DNA ge-
nomes. Interestingly, the only (human-transmissible) chronic,
nonsegmented RNA viruses, excluding retroviruses (i.e., HIV-1,
HIV-2, and HTLV) and hepatitis D virus (a subviral satellite that
requires coinfection with hepatitis B virus), were hepatitis C and
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human pegiviruses (formally GB viruses), which are both
classified within the Flaviviridae. In contrast, only ∼45% of the
acute viruses were associated with successful human-to-
human transmission, again illustrating the importance of dura-
tion of infection in shaping the likelihood of successful viral
emergence.

Model Selection and Model Averaging. Our global GLM that con-
tained all recorded predictors of human-to-human transmission
in all viruses as fixed effects had R2 = 0.446, a value that is rel-
atively high for an evolutionary or ecological study (30). A model
incorporating duration of infection, outer envelope status, seg-
mentation (i.e., segmented or nonsegmented), mode of trans-
mission, and mortality rate had the lowest AICc (Table 1).
However, four other models, including those models that con-
tained genome length and recombination frequency, were within
2 AICc of the favored model (Table 1). The type of genome
(DNA or RNA) of the virus was absent from all models in the
top model set. Duration of infection, segmentation, mode of
transmission, and mortality rate all had a relative importance of
1. In contrast, outer envelope status had a moderate relative
importance (0.62) whereas genome length and recombination
frequency had a lower relative importance (Table 2).
Model-averaged coefficients are given in Table 2. Notably,

vector-borne viruses were considerably less likely to exhibit human-
to-human transmission compared to viruses not transmitted by
vectors, and segmented viruses were estimated to be less likely
to be associated with human-to-human transmission than non-
segmented viruses. Our models also revealed that increases in
host mortality rates were associated with a lower probability of
human-to-human transmission. Similarly, viruses with acute du-
rations of infection were estimated to have a lower probability of
establishing human-to-human transmission compared to viruses

with longer (i.e., chronic) infection although this effect was
estimated with poor precision and the 95% CI included zero
(Table 2). Three other traits had relative importance less
than 0.65, and again the coefficients were estimated with a
95% CI including zero (Table 2). First, enveloped viruses
were observed to be less likely to display human-to-human
transmission than those viruses that are nonenveloped. Sec-
ond, viruses with low recombination frequency were less likely
to achieve human transmission than viruses that recombine
frequently. Finally, increases in genome length, once corrected
for genome type, were associated with a marginally decreased
probability of human-to-human transmission. Coefficients from
the global model and also the single model with the lowest AICc
produced the same qualitative conclusions as the multimodel
approach, demonstrating that our conclusions are not solely
driven by model averaging (Tables S2 and S4).
Next, we illustrated the best predictors of human-to-human

transmission as a function of mortality rate because the latter is
clearly a key determinant of human-to-human transmission (Fig.
2). Specifically, using the model-averaged coefficients, we gen-
erated predicted values for a subset of various trait combinations
(i.e., those traits estimated to be the strongest predictors of
human transmissibility): genome segmentation and duration
of infection, for both outer envelope status and mode of
transmission. This model averaging demonstrated that the esti-
mated probability of human-to-human transmission decreased as
mortality rate increased for all combinations of variables. In
addition, the effect of mortality rate differed substantially be-
tween vector-borne and non–vector-borne viruses. Chronic,
nonsegmented, nonenveloped, non–vector-borne viruses (Fig.
2A, solid, black line) showed the least decline in probability of
human-to-human transmission, with a probability of ∼0.8 even
with very high mortality (100%). Conversely, acute, enveloped,

Fig. 1. The proportion of human virus species con-
tained in our dataset within each category that have
established human-to-human transmission as a func-
tion of (A) mortality rate, (B) genome segmentation,
(C) recombination frequency, (D) genome type
(DNA or RNA), (E) duration of infection (acute versus
chronic), (F) envelope status, (G) genome length, and
(H) mode of transmission. A line of best-fit is plotted
for continuous variables (mortality rate and genome
length), along with the raw data, and sample sizes for
each categorical variable are shown.

Table 1. GLM top model set

Model form df logLik AICc ΔAICc Weight

Duration of infection + outer envelope status + segmentation + mode of
transmission + mortality rate

6 −78.603 169.635 0.000 0.355

Duration of infection + segmentation + mode of transmission + mortality
rate

5 −80.044 170.393 0.758 0.243

Duration of infection + outer envelope status + segmentation + mode of
transmission + genome length + mortality rate

7 −78.488 171.550 1.915 0.136

Duration of infection + segmentation + mode of transmission + genome
length + mortality rate

6 −79.579 171.586 1.951 0.134

Duration of infection + outer envelope status + recombination frequency +
segmentation + mode of transmission + mortality rate

7 −78.527 171.628 1.993 0.131

Top model set based on the Akaike information criterion corrected for small sample size (AICc), the log likelihood of those models
(logLik), the difference in AICc between each model and the AICc favored model (ΔAICc), and the model weights.
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segmented, vector-borne viruses (Fig. 2D, dashed, red line)
showed a very low probability of human-to-human transmission
across all mortality rates.
Finally, it is noteworthy that the full dataset contains a number

of viruses (n = 26) that have occurred only rarely in human
populations (i.e., fewer than 10 reported human cases) (Dataset
S1). For example, only three human cases of Bas-Congo virus
have been reported (31), resulting in two deaths, giving a mor-
tality rate of 67%. To assess whether the inclusion of these viruses
had biased our analysis, we performed model averaging on a subset
of the data containing only those viruses that are more commonly
observed: i.e., 10 or more reported cases of human infection (177
virus species) (see Table S5 for model-averaged coefficients based
on this data subset). In this reduced dataset, the duration of the
infection and mortality rate had very low relative importance, and
model-averaged coefficients for these traits were associated with
wide 95% CIs. This analysis indicates that many of the uncommon
viruses have similar (acute) durations of infection and/or are
associated with high human mortality such that they are poor

predictors. In contrast, the strong predictive effects of segmen-
tation and mode of transmission remained consistent between
the full and reduced datasets.

Discussion
We have revealed those biological features of viruses that
show the strongest association with sustained transmission
among humans, establishing a framework that can be used to
help predict the general types of viruses that may be most
likely to successfully emerge in the future. This analysis suggests
that the best predictors of transmissibility among humans are the
duration of infection, genome segmentation (i.e., segmented or
nonsegmented), mode of transmission (i.e., vector-borne or non–
vector-borne), mortality rate, and, to a lesser extent, the presence
or absence of an outer envelope. In contrast, the frequency of
recombination and genome length were less important predic-
tors of transmission success, and, strikingly, genome type (i.e.,
DNA or RNA) had essentially no predictive power (i.e., appeared
in no models in the top model set). Overall, we found that chronic,

Table 2. GLM model-averaged coefficients

Coefficient RI Est. SE LCI UCI Est. (shrinkage)

Intercept 3.673 1.134 1.450 5.895 3.673
Segmentationsegmented 1 −1.742 0.477 −2.677 −0.807 −1.742
Mode of transmissionvector-borne 1 −3.143 0.545 −4.212 −2.075 −3.143
Mortality rate 1 −0.992 0.386 −1.748 −0.237 −0.992
Duration of infectionacute 1 −1.817 1.092 −3.958 0.323 −1.817
Outer envelope statusenveloped 0.62 −0.873 0.553 −1.957 0.211 −0.544
Genome length 0.27 −0.317 0.447 −1.192 0.559 −0.086
Recombination frequencylow 0.13 −0.226 0.582 −1.368 0.915 −0.030

Model-averaged generalized linear model estimates (Est.) along with their SE and lower to upper 95%
confidence interval (LCI to UCI), and their relative importance (RI). The estimate with shrinkage is also given.
Subscripts denote the contrast category for categorical predictors.

Fig. 2. Predicted probability of human-to-human
transmission based on model-averaged coefficients
for duration of infection (black lines for chronic in-
fections; red lines for acute infections) and genome
segmentation (solid line for nonsegmented viruses;
dashed line for segmented viruses), as a function of
the estimated effect of mortality rate. (A and B)
Nonenveloped viruses. (C and D) Enveloped viruses.
(A and C) Non–vector-borne viruses. (B and D) Vector-
borne viruses. All data have been adjusted for frequency
of occurrence, and a correction for recombination fre-
quency has been made based on the model-averaged
estimate with shrinkage. For coefficients with a
relative importance less than 1, the estimate with
shrinkage was used.
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nonsegmented, non– viruses with low host mortality were most
likely to exhibit human-to-human transmission (Fig. 3).
Given that natural selection should always act to increase R0,

individual viruses will evidently possess specific biological traits
that increase their probability of interhost transmission. On that
basis, we aim to offer working hypotheses as to why the traits
identified here—particularly low host mortality, chronic infection,
non–vector-borne, nonsegmented, and nonenveloped—might facili-
tate human-to-human transmission. However, we recognize that
some of these traits are likely to be confounding, such that they
are not independent of each other or additional viral features,
and we provide clarifications where such associations might
exist.
Our results strongly indicate that human transmissibility de-

creases as host mortality rate increases. Although the relation-
ship between virulence and transmission is complex (32), the
notion that low host mortality will generally allow more time for
interhost transmission seems well-founded (33) because, the lower
the mortality rate, the fewer the susceptible hosts required to
achieve R0 > 1 (34). However, an important caveat is that esti-
mates of host mortality rate rely heavily on precise diagnosis and
accurate reporting. Therefore, in the case of rare viruses that are
often underreported (e.g., Bas-Congo virus) or those viruses that
can establish asymptomatic infections (e.g., enterovirus A71), the
mortality rate may be vastly overstated. Indeed, we found that
uncommon viruses were often associated with high mortality rates
in humans. Despite these shortcomings, our results are clearly in
conflict with the theory that vector-borne pathogens have a higher
host mortality rate compared with non–vector-borne pathogens
(35). In particular, whereas many non–vector-borne viruses

exhibited >80% human mortality, the highest human mor-
tality rate in a vector-borne virus was 52% in Chandipura virus
(36). Overall, we observed that the average host mortality
rate in non–vector-borne viruses was ∼12%, compared with
∼6% for vector-borne viruses, although this difference was not
statistically significant.
Our analysis also reveals that the length of time a virus is able

to replicate within an individual human host, quantified here as
the duration of infection, is an important parameter in determining
whether a virus is able to evolve human-to-human transmission.
Specifically, chronic viruses were more likely to be transmissible
between humans, clearly because extended durations of infection
increase the chance of secondary transmission to a new host. In-
deed, viruses with long durations of infection, such as retroviruses
and some DNA viruses, seem more likely to codiverge with their
hosts over evolutionary timescales and thus are often strongly host
species-specific (37–39).
Although vector-borne transmission is of equal importance in

the model compared to the other predictors discussed here (be-
cause they all have a relative importance of 1), it has a much larger
overall effect (Table 2). Indeed, of the 69 vector-transmitted viruses
in our list, only 6 are transmissible between humans. That vector-
borne viruses are less likely to jump to a new host and successfully
establish an infection is to be expected, given the complexity of
zoonotic transmission cycles that involve invertebrate vectors and
vertebrate hosts (8, 39). Remarkably, Zika virus is the only vector-
borne virus in our dataset where onward human transmission may
not involve the usual zoonotic cycle because sexual transmission has
been reported (40). Birds are the most common vertebrate reservoir
host for vector-borne viruses in our dataset whereas humans are
usually dead-end hosts, presumably because viral loads are in-
sufficient to allow onward transmission through a biting vector (41).
In addition, multihost viruses, such as those viruses that are vector-
borne, may experience antagonistic pleiotropy (42), which will also
act to reduce adaptability in new hosts (43).
A more puzzling observation is that nonsegmented viruses

seem more able to be transmitted among humans compared to
viruses with segmented genomes. In this context it is important
to note that none of the positive-sense single-stranded RNA
(+ssRNA) viruses in our dataset possess segmented genomes.
Accordingly, the true cause of the predictive power of non-
segmented viruses may reflect the preponderance of +ssRNA
compared with negative-sense (–ssRNA) viruses among the hu-
man-transmitted set. Indeed, the replication cycle of +ssRNA
viruses can be considered simpler than that of –ssRNA viruses,
with the positive-sense RNA acting as an mRNA from which
translation can proceed immediately after infection whereas
–ssRNA viruses are required to go through an additional tran-
scription step before translation. It is therefore possible that this
simpler, and presumably quicker, replication process may benefit
host adaptation. However, our analysis also revealed that the dis-
tinction between DNA and RNA genomes is only a weak predictor
of the likelihood of establishing human-to-human transmission. A
similar confounding association is that all of the segmented viruses
in our dataset develop acute infections, which is itself associated
with a decreased probability of human-to-human transmission. In
addition, many DNA viruses establish a chronic infection and are
never segmented. Elucidating the apparently increased ability for
nonsegmented viruses to generate sustained infections in humans is
clearly an important area for future study.
Finally, we observed that nonenveloped viruses were more

likely to establish human-to-human transmission than enveloped
viruses; only ∼39% of the enveloped viruses in our dataset were
transmissible between humans, compared with 83% of the non-
enveloped viruses. It is possible that nonenveloped viruses are
more environmentally stable than their enveloped counterparts
(44) because the glycoproteins and lipids that comprise the en-
velope are easily degradable, which in turn increases the prob-
ability of interhost transmission through contact with exposed
surfaces. Indeed, nonenveloped viruses are resistant to common
ethanol disinfectant, and this resistance is associated with epidemics

Fig. 3. Schematic overview of those biological variables associated with an
increase (red arrows) and decrease (gray arrows) in the likelihood of a virus
establishing human-to-human transmission. The transparency of red arrows
indicates the importance of the specific variable in its predictive power (i.e.,
more important variables are illustrated by a more opaque arrow).
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in areas with abundant human interaction, especially institutional
settings such as schools or hospitals (45) [for example, outbreaks of
human norovirus (46)]. The frequency with which nonenveloped
viruses are found in “extreme” environments, such as oceans (47),
and preserved intact in ice cores (48) is further evidence for their
stability. However, the majority of viruses in our dataset are envel-
oped (144, compared with 59 nonenveloped), indicating that viruses
of this type possess additional beneficial characteristics, such as an
enhanced ability to evade the host immune response. Indeed, the
ability to evade the adaptive immune response may have been a key
selection pressure for the origin of the viral envelope (49).
In marked contrast, our analysis reveals that the frequency

with which viruses recombine has little predictive power for
interhuman transmissibility. Recombination rates vary extensively
among RNA viruses, from seemingly clonal in nonsegmented
negative-sense RNA viruses (i.e., the order Mononegavirales) to
per site rates that are greater than that of mutation in the case of
HIV-1 and that undoubtedly have a major impact on their evo-
lution and epidemiology (39). Although recombination has the
potential to facilitate transmissibility by accelerating the rate at
which advantageous genetic combinations are produced compared
with mutation alone, frequent recombination will also break up
beneficial genetic configurations, and clonal viruses like those
species of the Mononegavirales are readily able to emerge in new

hosts (for example, Ebola virus) (50). Indeed, there are few cases
in which recombination has been shown to underpin successful
cross-species transmission and emergence (39).
Until recently, the focus of much research on new emerging

diseases was to reveal the processes that lead to pathogen emer-
gence, both the ecological factors that precipitate emergence and
the genetic factors that enable host adaptation (or the host bar-
riers to this process), rather than the subsequent transmissibility of
pathogens in the new host species (11). Herein, we have revealed
factors that may explain why some viruses are more readily trans-
mitted among the human population than others. More generally,
our work offers a framework for predicting the transmissibility of
emerging pathogens among humans. By identifying the major bi-
ological features of successfully emerging viruses, our analysis can
be used to generate broad-scale predictions of the likelihood that
a virus of a specific family will achieve human-to-human trans-
mission and thus epidemic spread.
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