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Abstract

Purpose

Vertebral fragility fractures are often treated by injecting bone cement into the collapsed ver-

tebral bodies (vertebroplasty). The mechanisms by which vertebroplasty induces pain relief

are not completely understood yet and recent debates cast doubt over the outcome of the

procedure. The controversy is intensified by inconsistent results of randomized clinical trials

and biomechanical studies that have investigated the effectiveness or the change in bio-

mechanical response due to the reinforcement. The purpose of this study was to evaluate

the effectiveness of vertebroplasty, by varying the relevant treatment parameters and (a)

computationally predicting the improvement of the fracture risk depending on the chosen

treatment strategy, and (b) identifying the determinants of a successful treatment.

Methods

A Finite Element model with a patient-specific failure criterion and direct simulation of

PMMA infiltration in four lumbar vertebrae was used to assess the condition of the bone

under compressive load before and after the virtual treatment, simulating in a total of 12000

virtual treatments.

Results

The results showed that vertebroplasty is capable of reducing the fracture risk by magni-

tudes, but can also have a detrimental effect. Effectiveness was strongly influenced by inter-

actions between local bone quality, cement volume and injection location. However, only a

moderate number of the investigated treatment strategies were able to achieve the neces-

sary improvement for preventing a fracture.
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Conclusions

We conclude that the effectiveness of vertebroplasty is sensitive to the patient’s condition

and the treatment strategy.

Introduction
Osteoporosis is a common disease that manifests itself in fractures occurring at different ana-
tomical sites, e.g. at the spine, the hip, or the wrist, with consequent morbidity and mortality
[1–3]. Augmentation through the injection of a reinforcing biomaterial (percutaneous verteb-
roplasty, PVP), is a popular, minimally invasive intervention for the stabilization of fractured
vertebral bodies. The utility and effectiveness of PVP is most often evaluated on the basis of
three measures: economic value (i.e. treatment and opportunity costs vs. effect, cost-effective-
ness), short- and long-term pain relief and the incidence of new fractures either at the treated,
adjacent or remote levels. Cost-effectiveness determines whether, given a cost level that society
is willing to spend per quality-adjusted life-year (QALY), PVP is an acceptable treatment strat-
egy or not. Hence, cost-effectiveness depends directly on the other two measures. Both were in
the past and more recently addressed by numerous studies, with controversial results and con-
clusions on the utility and effectiveness of PVP [4]. One potential cause of the discrepancy
might be the fact that these studies were driven by different objective targets. For example,
immediate pain relief in a short period of time is important for elderly patients while a sustain-
able treatment outcome is beneficial for younger patients with an acute vertebral fracture. Two
studies [5, 6] with a sham control intervention have reported clinical outcomes at one and six
months, respectively, in patients with osteoporotic compression fractures up to one year old
and cast doubts on the effectiveness of PVP.

In both studies, patients were randomized to undergo either a PVP or a sham procedure.
Buchbinder et al. [5] concluded that”similar improvements were seen in both groups with
respect to pain at night and at rest, physical functioning, quality of life, and perceived improve-
ment”. The study of Kallmes et al. [6] found similar results and showed that improved disability
and pain scores were noted immediately following both procedures however, a trend towards a
higher rate of clinically meaningful improvement in pain (30% decrease from the baseline) was
observable in the PVP group. These results have been met with some disbelief among physicians
treating patients with vertebral compression fractures, and concerns have been raised on the
design of both studies (ethical concerns, small sample size, crossover between the groups, i.e.
patients were able to guess they were being treated with the sham procedure, and the sham pro-
cedure could itself have promoted pain relief, inclusion of patients with subacute and chronic
fractures instead of acute fractures) [7–11]. The psychological effect of care and daily attention
are believed to account for the decrease of the visual analogue score in conservative treatment
groups during the first week of the treatment. Robinson and Olerud [4] concluded that PVP is
not better than placebo and PVP cannot be recommended as a standard treatment for vertebral
compression fractures. Conflicting with these results are other studies showing the utility and
cost-effectiveness [11–13] of PVP, demonstrating both short-term and sustainable pain relief
[14–22] and statistically significant differences in life expectancy in favour of PVP [23].

Several biomechanical studies have investigated the consequences of the augmentation on
adjacent or remote, non-augmented levels. Most of them [24–32] concluded that new fractures
might be the consequence of an adjacent rigid reinforcement. However, new compression frac-
tures after the treatment could also be the consequence of the natural progression of the disease,
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since initial fractures are also a strong predictor of further vertebral fractures [33]. Inconsistently,
clinical studies [17, 20] reported that the incidence of new fractures was not different after PVP,
compared with conservative treatment after one year of follow-up. The major limitations of the
biomechanical studies that could explain these divergent conclusions were the limited number of
specimens and/or experimental trials (a problem generally associated with cadaveric testing) [25,
26, 28–32, 34–36] and Finite Element (FE) models that were limited to the study of a single case
[26, 29, 30], constructed on the basis of non-realistic, predefined cement distributions [24, 31,
37–39], cement distributions reconstructed from patient radiographs [40] or peripheral quantita-
tive computed tomography (pQCT) scans of human cadaveric specimens [41] with potentially
suboptimal cement placement and/or filling strategy. Furthermore, the complex composite prop-
erties of cement-augmented bone have been neglected. A fundamental limitation of such bio-
mechanical studies is the evaluation of physical units (endplate deflection [24, 30], failure load
[28], maximum principal strain [30], pressure [26, 29, 30], stresses [29, 37, 39, 41], stiffness [30,
31] or strength [34, 37, 38] that form the basis for the inference as to whether PVP induces adja-
cent fractures or is efficient from the biomechanical perspective. It has been shown that absolute
values alone, e.g. the bone mineral density (BMD), are often suboptimal predictors of osteopo-
rotic fractures [42–44], since the distributions of those values of the different populations can
overlap and do not allow sharp discrimination between the populations. The establishment of FE
models from computed tomography (CT) data has been successful to investigate patient specific
bone strength in-vitro and these perform better in the explanation of failure load variability
among different subjects [42, 45]. These models are considered capable of capturing most of the
tissue properties which contribute to bone strength and simulate the mechanical consequence of
general external boundary conditions. Therefore, an FE model with the material properties
derived from a clinical CT scan and an appropriate failure criterion is feasible to reflect and assess
the mechanical condition or stability of the individual patient’s vertebrae prior to treatment, i.e.
(a) how close a given vertebra is to failure or (b) the amount of mechanical stabilization needed
to prevent the failure. Extending the FEmodel and failure criterion with a constitutive law,
which describes accurately the response of the augmented bone cement composite, allows subse-
quently to locally predict the increase or decrease of fracture risk state induced by PVP and
whether the positive changes go far enough to prevent the subsequent fracture of the bone. Fur-
thermore, until now, no evidence has been provided as to which extent cement type, cement vol-
ume, cannula placement and other treatment parameters affect the aforementioned loading
pattern in the spine and the final outcome of the treatment. This study aims therefore to system-
atically investigate potential PVP strategies in an in-silico environment that allows for the crea-
tion of large set of virtually performed PVP treatment cases. Comparative values are used to
measure the change of the local factor of fracture risk and therefore give an indication, (a) if ver-
tebroplasty is an efficient treatment from the biomechanical point of view, and (b) what the
important determinants of a positive outcome are.

Methods

Specimens and μCT data
Four human vertebra (Table 1), provided by the International Institute for the Advancement
of Medicine (IIAM, 175 May Street, Edison, NJ 08837, http://www.iiam.org/), from two male
donors were used in this study. The specimens were scanned using a high resolution computed
tomography scanner (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland) at the Maas-
tricht University Medical Center. The scans, performed in air, were taken at a nominal isotro-
pic resolution of 41 μm and segmented using a global threshold. A mesh morphing technique
[46] was applied to map a template finite element (FE) mesh of a vertebra with 51119 elements
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onto the segmented CT data for each of the specimens. Following, for each element in the
mesh the density, trabecular spacing (Tb.Sp) and fabric were calculated for a 4 mm spherical
region centered at the element centroid from the original high-resolution images [47].

The meshes were then subsequently used to carry out a sequence of mechanical and flow FE
simulations as described in detail below.

FE simulations—pre-augmentation fracture risk
Heterogeneous, orthotropic material constants were mapped to the bone elements of the FE
meshes based on approach introduced by Zysset et al. [48]. The principal material directions of
the elements were assumed to be aligned with the fabric tensor of the elements. Orthotropic
elastic properties then were assigned for each element using a relationship based on density
and fabric [49]. The material response was assumed to be non-linear with a yield strain in com-
pression of 1.04%, in agreement with the study of [50] (Fig 1). Tension-compression symmetry
in the mechanical properties was assumed. A pressure of 1.09 MPa was applied on the superior

Table 1. Specimen data. The volumetric bone mineral density (vBMD) was estimated based on the bone mineral content and volume of the elements of the
FE meshes that did not have any nodes on the surface of the models in order not to include any cortical shell in the vBMD calculations.

Specimen Level Donor Age (years) Gender vBMD (g/cm3)

1 L1 I 88 M 0.187

2 T12 I 88 M 0.360

3 L1 II 70 M 0.113

4 T12 II 70 M 0.187

doi:10.1371/journal.pone.0151680.t001

Fig 1. Finite Element Analysis setup. (a) Principal material direction stress-strain response mapped to the elements of the FEmeshes. Themi is the
normalized eigenvalue of the fabric tensor corresponding to the specific orthotropic plane. The modulus-BVF-fabric relationship was introduced by Garcia
et al. [49]. The yield strain, 1.04%, is in accordance with the study of Bayrakhtar et al. [50]. The corresponding yield stress (σy) was determined based on a
0.2% offset rule. Ultimate stress was set to 1.1σy in accordance with the study of Helgason et al. [53]. (b) A compressive load of fc = 1.09 MPa was evenly
distributed over the estimated nucleus pulposus contact area of the FEmodels. The models were constrained against displacement in all directions on the
inferior side of the vertebrae.

doi:10.1371/journal.pone.0151680.g001
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end-plate, uniformly distributed over the nucleus pulposus area, occupying 43% of the disc
area [51] as shown in Fig 1. The inferior end-plate of the FE models was constrained against
translation in all directions. The rationale of this was to mimic a high nucleus pressure during
moderate daily activities, e.g. as observed in a healthy male subject when lifting a 20 kg weight
and holding it close to the body [52].

Failure in the bone elements was assumed to occur if principal strains in tension (εb,t) or
compression (εb,c) exceeded 1.5% and -2.0% respectively. The factor of fracture risk (FFR) was
computed for each element (i) as the maximum of the ratio between the element principal
strains (ε1,i or ε3,i) and the corresponding principal strain threshold (εb,t or εb,c) i.e.:

FFRpre;i ¼ max
ε1;i
εb;t

;
ε3;i
εb;c

 !
ð1Þ

FE simulations—cement flow
After calculating the pre-augmentation fracture risk, flow simulations were carried out to simu-
late the distribution of cement within the specimens during vertebroplasty using different can-
nula placements, cement types and cement volumes. To this end the local heterogeneous
hydraulic permeability of the cancellous bone was predicted by the FE bone volume fraction
(BVF), the degree of anisotropy (DA) and the trabecular spacing (Tb.Sp) [54]. The flow behav-
ior was governed by a mixed-boundary Darcy formulation [55]. The rheology of the bone
cements was experimentally determined in a plate rheometer setup [56]. The deformation rate
of a fluid that is infiltrating a porous medium such as the cancellous bone cannot be estimated
or predicted at the continuum length scale, however it is an important determinant of the fluid
rheology. Therefore, a numerical upscaling scheme was applied to relate the pore-scale viscos-
ity of the cement, which is governed by the fluid deformation rate, to the apparent or Darcy vis-
cosity at the continuum length scale [56]. In the simulations the infiltration of the vertebral
body and displacement of the bone marrow by the virtually injected cement, i.e. the multicom-
ponent flow of the bone cement and marrow was simulated. The cement injections were virtu-
ally performed at 50 randomly chosen locations within each of the FE models. The assumed
locations of the injection device cannula were kept consistent according to the mesh morphing
procedure across all four vertebrae specimens. Simulations were carried out for ten different
clinically relevant cement volumes (V = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mL).

FE simulations—post-augmentation fracture risk
After the flow simulations, the material properties of the augmented elements in the FE models
were mapped using the lookup Table approach introduced by Helgason et al. [57]. The rule of
mixture in the present study was extended to the rule of mixture in Helgason et al. [57], to take
into account that some elements of the FE meshes have their pore space only partially filled
after the flow simulations. A reduction factor, ξ = 10%, was introduced to capture the fact that
PMMA has lower strength at body temperature than when tested at room temperature [58].
The extended rule of mixture used in the present study was thus:

si ¼ FjsULðZi; BVFi; εi; xÞ þ ð1� FjÞsLLðZi;BVFi; εi; xÞ
¼ cFjðCVFið1� xÞsc;j þ BVFisbÞ þ ð1� cFjÞðsLL;bðZi;BVFi; εi; xÞ

þ cð1� xÞsLL;cðZi;BVFi; εi; xÞÞ ð2Þ

Where:
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i: refers to the element number
j: refers to the cement type (see Table 2).
BVFi: bone volume fraction
CVFi: cement volume fraction
ηi = anisotropy ratio
Fj = cement specific rule of mixture constant (see Table 2).
CVFi�(1-ξ)�σc,j + BVFi�σb: is an approximation for the temperature adjusted upper limit

response (σUL) for an augmented element where σc,j and σb are the uniaxial stress response of a
given cement (j) and the tissue level properties of bone respectively.

c = CVFi/(1-BVFi) is a constant that adjusts the uniaxial stress response of the augmented
elements to take incomplete augmentation of an element after flow simulations into account. If
the pore space is completely filled after the flow simulations CVF is equal to the pore space =
1-BVF and thus c = 1.

The moduli of elasticity of the evaluated cements encompassed a range of E = 0.5 − 5.2 GPa,
as defined in Table 2. The properties of the augmented elements were assumed to be orthotro-
pic with the same principal material axes as the native bone only elements. The specimens were
loaded and supported in the same manner as in the pre-augmentation simulation case and the
post-augmentation risk of fracture for the augmented elements was calculated using:

FFRpost;i ¼ max
ε1;i

εcomp;t

;
ε3;i

εcomp;c

 !
ð3Þ

Where εcomp,t and εcomp,c are the strain thresholds assumed to apply for each augmented ele-
ment. These thresholds were defined with the following rule of mixture:

εcomp;t ¼ CVFi � εcem þ BVFi � εb;t ð4Þ

εcomp;c ¼ CVFi � εcem þ BVFi � εb;c ð5Þ

The FFRpost for bone bone elements was calculated using Eq 1.

Table 2. Properties related to the mechanical response of the PMMA cements used in present study.
E: Modulus of elasticity;Φ: rule of mixture constant. The cements were selected from a range of commercial
products (Simplex P; Stryker Howmedica Osteonics, Mahwah, NJ. Vertecem; Synthes GmbH, Solothurn,
Switzerland. Active OS; Kyphon, Sunnyvale, CA), where the liquid phase was modified in our lab, in some
cases, for the purpose of getting a wide range of stiffness for the cements used in the study;A:modified Sim-
plex P. B:modified Simplex P.C:Modified Vertecem. D: Vertecem. E: Simplex P. F: Active OS.

Cement E (MPa) εcem (%) Φ (-)

A 510 7.00 0.40

B 1434 7.10 0.40

C 2003 5.44 0.40

D 2697 5.10 0.29

E 2869 5.00 0.29

F 5193 3.93 0.15

doi:10.1371/journal.pone.0151680.t002
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Post-processing of data
To quantify the effect of a given treatment strategy an organ fracture risk improvement factor
(OFRI) was calculated according to:

OFRI ¼ maxOðFFRpreÞ
maxOðFFRpostÞ

ð6Þ

Where O refers to all elements of the FE model and FFRpre and FFRpost refer to the pre- and
post-augmentation factor of fracture risk indicators, respectively. The OFRI is a measure of
change in peak factor of fracture risk due to the treatment. A value for OFRI below unity indi-
cates that a given treatment strategy increases the calculated risk of fracture compared to the
FFRpre risk but a value of OFRI above unity indicates a reduced calculated risk of fracture after
the treatment.

For each specimen an N-way ANOVA (MATLAB R2012b, The Mathworks, Natick, USA),
with the study parameters as the analysis factors, was performed to identify the effect of the
treatments. p-values for the linear, two- and three-factor interactions were computed. p< 0.05
was considered as statistically significant.

Results
The local distribution of FFRpre for all the specimens is illustrated in Fig 2. All of the specimens
have a maximum predicted FFRpre higher than one (Table 3) indicating that fracture is pre-
dicted for all the specimens prior to the augmentation. Sample simulated cement spreading
patterns and local FFRpost -distributions for two cannula placement trials and two injection vol-
umes are shown in Fig 3. The results for predicted values of FFR for pre and post-augmentation
risk of fracture, as well as fracture risk improvement indicator (OFRI), are listed in Table 3.
The organ fracture risk improvement indicator (OFRI) ranged from 0.47 to 37.23 depending

Fig 2. Pre-treatment initial factor of fracture risk (FFRpre). Distribution according to FE simulations for all
of the specimens.

doi:10.1371/journal.pone.0151680.g002
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on specimen, position, injected volume and cement type (Fig 4). Out of all treatments across all
specimens, 76.6% resulted in an improved predicted fracture risk (OFRI> 1), 1.5% in no-effect
(OFRI = 1) and 21.8% in a negative effect (OFRI< 1). Approximately 40% of the treatment
strategies resulted in FFRpost being lower than unity but this number varied considerably
between specimens, being 21, 74, 3, and 68% for specimens 1 to 4, respectively.

The N-way ANOVA indicated that 9.9% of the variance in OFRI is explained by specimen
variability, 22.8% of the variance in OFRI is explained by cement volume, 0.2% of the variance
in OFRI explained by cement type, 47.2% of the variance in OFRI explained by cannula posi-
tion and 19.9% of the variance is unexplained. All the variability was found to be significant
(p< 0.05).

Discussion
The aim of this study was to systematically investigate potential percutaneous vertebroplasty
strategies in an in-silico environment to establish whether the treatment is efficient from a bio-
mechanical point of view, and what the important determinants of a positive outcome are.

Table 3. Pre- and post-augmentation risk for fracture (FFRpre and FFRpost) and fracture risk improve-
ment indicator (OFRI).

Specimen FFRpre FFRpost OFRI

1 1.95 0.29–3.43 0.57–6.76

2 1.08 0.03–2.28 0.47–37.23

3 6.41 0.29–11.60 0.55–22.44

4 1.06 0.17–1.79 0.59–6.21

doi:10.1371/journal.pone.0151680.t003

Fig 3. Comparison of pre- and post-augmentation fracture risk. The local change of the fracture risk following two treatment strategies and cannula
placement trials with cement type F. The blue markers indicate the location of maximum fracture risk occurrence. (a) The asymmetric cement placement
leads to a detrimental effect with a cement volume of V = 5.00 mL and even a large cement volume (V = 10.0 mL) is incapable of preventing a fracture (c). (b)
A more centrally placed cement volume of V = 5.00 mL is nearly adequate to prevent the organ from overloading. (d) Injecting a volume of V = 10.0 mL
prevents the organ from overloading.

doi:10.1371/journal.pone.0151680.g003

The Effectiveness of Percutaneous Vertebroplasty

PLOS ONE | DOI:10.1371/journal.pone.0151680 April 21, 2016 8 / 14



The findings of this study demonstrate that the outcome of vertebroplasty from a bio-
mechanical perspective is complex and dependent on multiple factors. We found that PVP
considerably improved the strength and reduced the calculated fracture risk in 76.8% of the
treatment strategies simulated, but that the largest contributor to variation in outcome is asso-
ciated with the cannula placement. However, a treatment can increase the predicted fracture
risk and highlights that PVP can even have a detrimental effect. This has also been reported by
Higgins et al. [36]. Generally, a good treatment outcome is associated with a cannula placed
close to the central aspect of the vertebral body. This finding is consistent with the conclusions
of other studies, where asymmetric placement of cement has been shown to reduce the bio-
mechanical stability of osteoporotic vertebra [24, 31].

Biomechanical studies have reported that small amounts of cement resulted in a statistically
significant increase in terms of strength [25, 36, 41] or stiffness [31, 35], compared to untreated
vertebrae. Our data support this hypothesis only partially. For all cement volumes, we found
treatment strategies that affected fracture risk both positively and negatively; however, with a
clear trend towards higher cement volumes resulting in lower predicted fracture risk. Although
our data suggests that large injection volumes are beneficial, it has been proposed that subse-
quent vertebral compression fractures of adjacent or remote levels may be caused by the
increased stiffness of the treated vertebrae as a result of the amount of cement injected [28–30,
59] and are biomechanically not optimal [31]. The in-silico models in the present study how-
ever, are not capable of predicting the fracture risk in adjacent or remote levels. Therefore, this

Fig 4. Post-augmentation fracture risk. The organ fracture risk improvement as a function of the injection volume (a), the cement type (b) and cannula
position (c). The cannula position explains 47.2% of the variation in fracture risk reduction after treatment, and also highlights that a poorly planned
intervention can even have a detrimental effect. The treatment outcome is also strongly related to cement volume (22.8% of the variability). The cement type
only has a marginal influence on the overall effect (0.2% of the variability).

doi:10.1371/journal.pone.0151680.g004
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risk is not included in our models, but although indicated, large cement volumes do not have
to be implicitly beneficial. Additionally, other biomechanical [60] and clinical studies [17, 61]
found no statistically significant correlation between cement volume and pain relief. Therefore,
large cement volumes should not be injected on a routine basis. Furthermore, the potential bio-
mechanical benefits of increased cement volumes should be considered against the risks of
cement or marrow extravasation.

We found that only 40% of the treatment strategies across all specimens resulted in a post
treatment fracture risk (FFRpost) below unity. However, the absolute values of the FFR factor
have to be interpreted with care because the current in-silico prediction of the fracture risk is
based on a single simplified load case. In addition, it is unknown to which extent bone can be
loaded without causing pain, therefore we defined relatively conservative strain thresholds for
defining failure from a biomechanical point of view. The specimen variability in the predicted
fracture risk after treatment is of interest. Only 3% of the treatment strategies resulted in a
FFRpost factor below unity for specimen 3 but 67% for specimen 4 from the same donor. This
could, in our opinion, further support the conclusion that the treatment of osteoporotic verte-
brae needs to be carefully planned in order to capture all the weaknesses when augmenting the
cancellous compartment. These results thus only conditionally support the statement that
small cement volumes on the order of 30% (4–8 mL, [60]) are sufficient to achieve good out-
comes [17, 25, 31, 35] because by studying our data in more detail we found e.g. that no can-
nula positions would produce a FFRpost below unity with a cement volume smaller than 6 ml
for specimen 3.

It has been reported that highly osteoporotic patients may receive the least amount of
improvement in vertebral mechanical strength after vertebroplasty [62] and PVP is unneces-
sary for a subgroup of patients with osteoporotic fractures [9]. Moreover, the data of this study
highlight the sensitivity of the mechanical response on the treatment parameters [31, 61];
critics would say that pain relief by vertebroplasty can only be achieved by chance, whereas
optimists argue that the uncertainty can be eliminated by optimization techniques. The
computational model presented in this study is a first attempt to solve this optimization prob-
lem by considering the individual patient’s local bone condition prior to treatment and investi-
gating different treatment strategies with the novelty of a rapid, patient-specific prediction of
the ultimate bone strength and cement spreading pattern. The advantage and importance of a
patient-specific procedure to maximize the mechanical benefits while minimizing the risk of
complications have been pointed out by Higgins et al. [36]. Furthermore, the cement spreading
pattern is said to be influential on the stiffening and strengthening of the vertebral body [24,
31]. The FE model incorporates a simplified but patient-specific mechanical model of the verte-
bra, with only compressive loading and prophylactic vertebroplasty simulated. This has the
advantage that multiple treatment scenarios can be rapidly computed and compared, which is
considered valid and well-accepted for the accurate prediction of compressive strength and
fracture risk [39, 63]. It is recommended, however, that a conclusive assessment of treatment
effectiveness be verified through the simulation of functional spinal units (FSUs) including
fractured vertebrae in order to assess fracture risk at adjacent or remote levels, incorporating
spectra of multi-axial loading and age-related daily activities.

There are several limitations in our study that need to be addressed. First, we are using intact
specimens in our simulations, whereas PVP is generally performed to treat fractured vertebrae
in the clinic. The FE models would thus only directly simulate the prophylactic augmentation
of vertebrae at risk, which is a potential future development of clinical procedures. Neverthe-
less, we believe that carrying this study out on fractured specimens would only further
strengthen our main conclusion from this work, which is that treatment needs to be carefully
planned in order to have a biomechanical effect, as fractured vertebrae demonstrate a high
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degree of heterogeneity in the local bone properties. We believe that the added complexity of
fracture patterns in the specimens would most likely contribute to increase the number of
unsuccessful treatment outcomes. Second, we are only simulating unipedicular injection of
cement but bi-pedicular injection procedures are also used in clinical practice. However, the
goal of the present study was not to find out which treatment strategy to use, which could be
subject specific anyway, but rather to determine which treatment parameters the outcome is
most sensitive to.

In summary our results suggest that: (a) the outcome and effectiveness of vertebroplasty is
strongly determined the patient’s bone condition prior to treatment, which defines the baseline
and the amount of mechanical stabilization required for the prevention of subsequent frac-
tures; (b) not all treatment strategies are suitable for accomplishing this mechanical stabiliza-
tion; and (c) the risk of treatment complications (subsequent fractures in adjacent or remote
levels, cement leakage) might be a limiting factor for a treatment success. Whilst the latter has
been recognized and thoroughly discussed in literature, until now the first two aspects were
not given enough attention and might at least partially explain the controversial conclusions
drawn from the randomized controlled trials that support or question the effectiveness of
vertebroplasty.

Supporting Information
S1 Data. Risk of fracture results. This Matlab file contains the predicted risk of fracture before
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