
The Anatomy of High-Performance 2D Similarity Calculations

Imran S. Haque†, Vijay S. Pande†,‡, and W. Patrick Walters¶

Department of Computer Science, Department of Chemistry, Stanford University, Stanford, CA,
and Vertex Pharmaceuticals Inc., Cambridge, MA

W. Patrick Walters: pat_walters@vrtx.com

Abstract

Similarity measures based on the comparison of dense bit-vectors of two-dimensional chemical

features are a dominant method in chemical informatics. For large-scale problems, including

compound selection and machine learning, computing the intersection between two dense bit-

vectors is the overwhelming bottleneck. We describe efficient implementations of this primitive, as

well as example applications, using features of modern CPUs that allow 20-40x performance

increases relative to typical code. Specifically, we describe fast methods for population count on

modern x86 processors and cache-efficient matrix traversal and leader clustering algorithms that

alleviate memory bandwidth bottlenecks in similarity matrix construction and clustering. The

speed of our 2D comparison primitives is within a small factor of that obtained on GPUs, and does

not require specialized hardware.

Introduction

A large variety of methods in chemical informatics, including compound selection,1,2

clustering, and ligand-based virtual screening, depend on pairwise compound similarities as

a critical subroutine. Continuing increases in the size of chemical databases (e.g., 35 million

nominally-purchasable compounds in ZINC3 or nearly one billion possible compounds

under 13 heavy atoms in GDB-134) create immense demands on computer power to run

these algorithms. Consequently, there has been significant interest in the development of fast

methods to compute chemical similarity. Previous work has focused on the use of

specialized hardware,5–7 clever data structures,8 or approximation techniques9 to accelerate

large-scale pairwise similarity comparison using a variety of similarity methods.

So-called “two-dimensional” bit-vector Tanimoto similarities are particularly interesting by

virtue of their dominant position in terms of similarity metrics used in the field. These

similarity measures represent molecules by long (hundreds to thousands of bits long) binary

Correspondence to: W. Patrick Walters, pat_walters@vrtx.com.
†Stanford Computer Science
‡Stanford Chemistry
¶Vertex Pharmaceuticals Inc.

We have included implementations of our methods in the Supporting Information, as well as additional charts and benchmarking tools
for verifying the peak performance claims made in the paper. This information is available free of charge via the Internet at http://
pubs.acs.org/.

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

Published in final edited form as:
J Chem Inf Model. 2011 September 26; 51(9): 2345–2351. doi:10.1021/ci200235e.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/
http://pubs.acs.org/

vectors representing the presence or absence of chemical features and compute pairwise

compound similarity as a similarity coefficient between pairs of such vectors.

Past work has examined high-level algorithmic strategies to perform large-scale searches in

sublinear time, using complex data structures or bounds on the similarity measure to

eliminate many comparisons.8,10–12 However, in some cases these algorithms must still

evaluate the underlying similarity measure a large number of times, motivating fast direct

calculation of the 2D Tanimoto. Liao, Wang, and Watson recently reported that graphics

processing units (GPUs), a type of massively-parallel specialized hardware, achieved

73-143× speedup on common 2D Tanimoto-based compound selection algorithms, relative

to the same methods running on a conventional CPU.5 However, the reference CPU method

used in their work was not properly optimized.

In this paper, we discuss methods for the optimal implementation of 2D similarity

computations on modern CPUs. We combine architecture-specific fast implementations of

the population count primitive and architecture-agnostic algorithms for reducing memory

traffic that enable 20-40× speedup relative to traditional CPU methods and achieve 65% of

the theoretical peak machine performance. We demonstrate the performance of our methods

on two model problems, similarity matrix construction and leader clustering. Without using

specialized hardware, we achieve performance that is, at worst, within 5× that of GPU-based

code, and that at best beats the GPU. We include implementations of our high-speed

algorithms under a permissive open-source license.

Overview of 2D Similarity

“Two-dimensional” chemical similarity measures define the similarity between a pair of

compounds in terms of substructural similarities in their chemical graphs. Typical similarity

measures of this type (e.g., MDL keys and path-based fingerprints like Daylight

fingerprints)13,14) represent molecules as binary vectors of a user-defined length. In simple

fingerprints, such as MDL keys,13 each bit represents the presence or absence of a particular

chemical feature. Hashed fingerprints, such as the ECFP family,14 first compute a large

number of features (such as circular paths around each atom), hash these features, and then

“fold” the (potentially-large) hashed values into a fixed-length fingerprint by binary OR15

(sparse fingerprints like ECFP may be represented as a list of integers rather than a bit-

vector). The same fingerprint approach can also be used for 3D similarity measures; Haigh

and colleagues have described a “shape fingerprint” approach in which bits represent

similarity to particular reference shapes, allowing the machinery of 2D fingerprint

comparison to be used for shape comparison.16

Given fingerprint representations of a pair of molecules A and B, a number of different

similarity measures can be computed; popular examples include the Tanimoto, cosine, and

Dice similarity coefficients.17 Typically, the terms involved in the computation of such

similarity coefficients are the number of 1-bits set in either fingerprint, the number of 1-bits

in common between the two fingerprints, and the number of 1-bits present in either

fingerprint. In this paper we will specifically consider the computation of the bit-vector

Tanimoto, defined by the following equation:

Haque et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(1)

However, the techniques described here are applicable to all of the typical similarity

coefficients used on bit-vectors. In the next section we discuss two strategies that

dramatically improve performance on 2D similarity computation relative to typical existing

code, without the use of GPUs or other specialized hardware.

Fast Computation of the 2D Tanimoto

We describe two techniques for accelerating 2D Tanimoto calculations. The first method is

to accelerate the population count primitive (the |A∩B| term in equation 1), which is the

computational bottleneck in 2D similarity code) using features of modern CPUs; this is

useful even for single Tanimoto computations. Secondly, we show that careful optimization

of memory access patterns is necessary to achieve maximum performance.

Fast Population Count

Most of the computational expense of 2D similarity comparison comes from the need to

count the number of 1-bits set in a given bit-vector, the so called population count, popc, or

Hamming weight function. In the Tanimoto equation, this appears in two forms: |x|, the

number of 1s set in vector x (where x is A or B), and |A∩B|, the number of 1s set in the

binary-AND of vectors A and B.

A common way of computing the population count of a long bit-vector is to use a small

lookup table (LUT) to “compute” the population count of short subsections of the full vector

(e.g., 8 bits for a 256-entry table or 16 bits for a 65,536 entry table) and then sum all of these

values. The LUT contains at address i the population count of i represented in binary. This

method is conceptually simple, but a poor choice on modern hardware, especially for large

bit-vectors such as those encountered in 2D chemical fingerprints. The LUT lookup requires

one memory access for every table lookup; even if serviced from cache, these are an

inefficient use of CPU resources.

Modern CPUs have multiple parallel instruction pipelines per core, allowing them to

evaluate multiple independent logic instructions simultaneously, but usually only dedicate

one pipeline to memory reads (e.g., the Intel Nehalem architecture has 3 instruction issue

ports for logic, but only one for memory reads).18 Therefore, only one memory read

instruction can be processed per cycle (implying a peak population-count throughput of 8 or

16 bits per cycle, depending on LUT size). Furthermore, these LUT lookups must contend

for pipeline resources with reads of the actual fingerprints, meaning that throughput must be

lower than this upper bound. Thus, a memory-lookup-based algorithm will become quickly

bottlenecked by memory access, and will perform poorly; logic-based solutions are

preferable.

Very recent x86 CPUs (Intel processors since Nehalem; AMD processors since K10) support

a population count instruction (PoPCNT) in hardware with single-cycle throughput. This

allows computation of a population count on an entire 32- or 64-bit word in one instruction:

Haque et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a clear win over a small lookup table, which would require 4-8 lookups to process 64 bits.

However, a significant installed base of processors lack such an instruction, motivating other

fast population count algorithms. The two logic-based methods presented below rely on the

SSE (Streaming Single-instruction, multiple-data Extensions) vector extensions to x86,

implemented by both Intel and AMD. SSE exposes a set of 128-bit registers, which can be

interpreted (for our purposes) as vectors of four 32-bit, eight 16-bit, or sixteen 8-bit integers;

as well as vector arithmetic and logic instructions operating on these registers. We present

fast implementations of population count based on the SSE2 (SSE version 2) and SSSE3

(Supplemental SSE 3) versions of SSE, at least one of which is available on essentially any

x86 processor manufactured in the last decade.

Vectorized Lookup Table Method—Many processors that do not support the PoPCNT

instruction support the SSSE3 instruction set, including Intel CPUs since the Core 2

generation (still in widespread use in clusters). SSSE3 supports a byte-shuffle instruction

which selects bytes from one vector register based on half-bytes (4-bit nibbles) from another.

This instruction (PSHUFB, packed shuffle bytes) can be used to implement a 16-element

lookup table, where each table element is at most one byte. This can be used to implement a

parallel 4-bit population count in logic: 4 bits are sufficient to index into a sixteen-element

LUT, and each LUT element stores the number of set bits for that element's LUT index. This

leads to a parallel population count method.19 The input bit-vector to be counted is read in

128-bit chunks into a vector register, interpreted as a set of sixteen bytes. This is then split

into two registers: one containing the low nibble of each byte, and one containing the high

nibble, shifted to the right. These nibbles are then used as indices into a 16-byte register

containing a population count lookup table, using PSHUFB. Finally, adding the two shuffled

results produces a population count for each byte in the input chunk. This can be

accumulated over multiple input chunks, with some bookkeeping to avoid overflow of the

individual byte counters by occasionally accumulating byte counters into wider 16- or 32-bit

counters. Conceptually, this method is similar to the lookup-table based approach; however,

it is able to count sixteen bytes in parallel and is able to do so with no memory accesses in

the inner loop except the unavoidable loads of the input string.

Vectorized Parallel Reduction Method—If hardware or compiler support for SSE4

PoPCNT or SSSE3 PSHUFB are not available or are slow, it is possible to implement a fast

vectorized population count using a parallel bit reduction technique.20 Given instructions

that are atomic on N-bit words (i.e., up to 32- or 64-bit words on typical modern integer

hardware), this algorithm is able to count the number of set bits in an N-bit word in o(log N)

steps using a divide-and-conquer strategy. At each stage in the recurrence, the algorithm

sums up the population counts for two half-size chunks into one larger chunk. Figure 1

shows the operation of the algorithm on an 8-bit byte. The base case for the recurrence is a

single bit, which is its own population count. The first reduction step takes adjacent bits and

sums them to get a 2-bit population count for a set of two bits. Next, adjacent 2-bit chunks

are summed into a 4-bit result; finally, the same is done on each 4-bit half to get the

population count for the entire byte. While CPUs do not typically have sub-byte arithmetic

operations, these can be emulated using bit masks and shifts, as shown in the figure. To

achieve maximum performance, we implement this parallel reduction algorithm at the byte-

Haque et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

level, vectorized over sixteen simultaneous bytes in an SSE register. This reduces the

operation count per SSE register (3 reduction stages for an 8-bit PoPCNT, versus 4 or 5 for

16/32-bit), at the expense of requiring occasional external reduction stages to avoid

overflowing individual byte counters.

Cache-Efficient Methods for Large Similarity Matrices

The previous section discussed logic-efficient techniques for the population count operation

itself, to accelerate individual Tanimoto computations. However, large-scale similarity

problems often have memory bandwidth as a bottleneck, rather than logic performance. As

an example, consider the problem of taking the population count of a 2048-bit fingerprint

(typical in size for Daylight fingerprints) using the SSE4 hardware PoPCNT instruction.

Ignoring loop overhead, this would take 3 instructions (1 load, 1 PoPCNT, and 1 add into an

accumulator) per 64-bit chunk. However, assuming perfect superscalar instruction

scheduling by the CPU based on logic pipeline availability, these instructions can be issued

in parallel, for a total latency of 32 clock cycles. A four-core, 2.5GHz CPU (a typical mid-

range CPU of today) could thus compute over 312 million such population counts per

second (4×2.5 ×109/32) if arithmetic-limited. However, CPUs typically have memory

bandwidth only on the order of 20GB/s per socket; only 78 million fingerprints per second

could be read from memory at this rate. Thus, in the absence of data reuse, Tanimoto

computation will be memory-bound. Note that this applies even more strongly for GPUs:

while GPUs typically feature peak arithmetic performance 30-fold or more higher than the

peak performance of a CPU, their memory bandwidth advantage is typically only on the

order of 5-10×. Thus, on both CPUs and GPUs, making efficient use of caches to reuse data

is essential to high-performance Tanimoto computation. We describe methods of data reuse

in two algorithms to illustrate this principle.

Speculative computation in the leader algorithm—The leader clustering

algorithm,21 given a set of molecules, a similarity distance, and a threshold, clusters the data

set according to the following procedure:

1. Choose an unassigned molecule to be a cluster center

2. Compare all remaining unassigned molecules to the new center chosen in step 1

3. Assign to that center any molecules above the threshold similarity

4. If any molecules are still unassigned, return to step 1

Note that in the second step of the algorithm, all unassigned molecules must be streamed

from memory through the processor to be compared against the current cluster center. If the

similarity threshold is very high, then on most iterations, very few molecules will be

removed from the active data set (most molecules will not be assigned). For large data sets

(those which do not fit entirely within the cache) this means that almost the entire set of

fingerprints will have to be streamed from memory into the processor on every iteration,

making the caches useless and making memory bandwidth the limiting factor. In this case, a

strategy which we call speculation can produce a significant speedup. The speculative leader

clustering algorithm is parameterized by a degree of speculation D; for D = 1, it reduces to

the standard leader method described above:

Haque et al. Page 5

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1. Choose at most D unassigned molecules as candidate cluster centers

2. Compute all pairwise similarities among the ≤ D candidates; if any candidates are

within threshold similarity to another candidate, assign them to the first candidate

to which they are within threshold and remove them from the current pool of

centers

3. Compare all unassigned molecules to the pool of centers chosen in step 2

4. For each molecule, if it is above the similarity threshold to any center in the pool,

assign it to the first center for which it is above threshold

5. If any molecules remain unassigned, return to step 1

The speculative leader algorithm is optimized for the case in which most clusters will be

small, so that on average, most molecules will end up being compared to many centers. It

guesses (speculates) that given two centers, the database will have to be compared to both

anyway. Thus, in step 3, when each database molecule is read in from memory, it is

compared to all candidate centers in the pool. Because (given a reasonable size for D) the

candidates can be stored in cache over the entire iteration, the cost of loading database

fingerprints from memory is effectively amortized over the pool size. We have implemented

and benchmarked the speculative leader algorithm for D = 2 to illustrate the performance

benefit from reduced memory traffic relative to non-speculative (D = 1) leader clustering.

Cache-oblivious algorithms for similarity matrix construction—Large similarity

matrix construction faces the same bandwidth limitation as the leader algorithm, but the

greater regularity of its computational structure admits a more elegant solution to optimizing

cache utilization. The family of methods known as cache-oblivious algorithms rely on

recursive subdivision of a large problem into a hierarchy of smaller problems such that, at

some level in the recursion, each small problem will fit completely into the processor cache.

Careful design of the recursion order can then optimize cache usage between recursive

subproblems (to prevent or delay eviction between subproblem evaluations). These

algorithms are described as cache-oblivious because they are intended to reduce hardware-

specific parametrization: rather than having to be reoptimized for processors with 4MB vs

2MB caches, the cache-oblivious method will naturally take advantage of a differing cache

size through its recursive structure.

The computational structure of fingerprint matrix construction is similar to that of standard

(cubic-complexity) matrix multiplication. Specifically, multiplication of M×K and K × N
matrices takes o(MNK) time: one o(K) dot product must be computed for each of the M × N
output elements. Similarly, computing an M × N similarity matrix on fingerprints of length

K also takes o(MNK) time: o(K) work must be done for each output location to compute the

Tanimoto on K words of fingerprint. Since K ≪ M and K ≪ N for typical large-scale

similarity computations, similarity matrix construction is analogous to the multiplication of

rectangular matrices.

Certain self-similar space-filling curves provide a natural hierarchy and iteration order to

optimize locality in a cache-oblivious algorithm. In particular, Morton ordering, based on the

Haque et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

hierarchical Z-order curve, has been previously used to optimize cache locality in matrix

multiplication,22 suggesting that it may also be useful for similarity matrices. Figure 2

contrasts the order in which similarity matrix elements are computed in Morton order versus

standard row-major order. The Z-shaped order in which each sub-block is computed ensures

that at some level of recursion, the fingerprints for an entire tile will fit in memory. Other

space-filling curves, such as the Hilbert curve, also have excellent cache-locality properties;

however, the calculations required to implement the Z-order curve are particularly simple.

Given a linear index i along the curve, the X and Y coordinates of the point are given by,

respectively, the odd and even bits of the binary representation of i.

To understand the memory bandwidth impact of Morton ordering, consider Figure 2 and a

hypothetical machine with enough cache space to store eight fingerprints (in actual usage,

the cache would be much larger, but the similarity matrix would also be larger than 8×8). In

row-major order, the machine would achieve no benefit from its cache between rows of the

matrix: one cache slot would be used to store the row fingerprint; additional slots would be

allocated for each column fingerprint in order, but since there are eight of these and only

seven free slots in the cache, they will evict each other before they are reused in the next

row. In contrast, in Morton order, each 4×4 block (e.g., the highlighted red block) could be

processed entirely within the cache. Furthermore, this ordering is cache-oblivious. If the

algorithm were instead run on a machine with half the cache size, 2×2 blocks would still

benefit from having their fingerprints entirely within cache (e.g., the blue block). We have

implemented a Morton/Z-ordered method to compute a similarity matrix and demonstrate its

performance in the results.

Results

To demonstrate our high-performance CPU 2D similarity methods, we have implemented

serial and parallel versions of similarity matrix construction and leader clustering.21 our

similarity matrix code is derived from internal code developed at Vertex. Both our serial and

parallel leader clustering programs are based on the serial leader code written by Liao and

colleagues.5 We diverge from Liao et al. by using openMP, a multi-vendor standard for

language-level parallelism in C and FoRTRAN, to parallelize the similarity matrix and

leader methods, rather than Intel's Threading Building Blocks. Additionally, we have

changed the representation of fingerprints in memory by coalescing all fingerprints into one

large memory allocation and keeping counts of number of bits set in arrays separate from the

fingerprint array to enhance memory locality. We tested the original Liao et al. serial CPU

code on selected examples and found no significant performance difference versus our code

using one thread with their 8-bit lookup table population count; thus, our results using the

“LUT” method without the speculative algorithm stand in for comparison with the earlier

CPU code.

Benchmarking Methodology

To compare performance between the CPU and GPU, we have also measured the

performance of the Liao et al. GPU leader code on a pair of GPUs: an NVIDIA GeForce

GTX 480 and a GeForce GTX 260. We made one change to the Liao code: standard CUDA

Haque et al. Page 7

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

floating-point division (the ‘/’ operator) was replaced with IEEE 754-compliant round-to-

nearest floating-point division (__fdiv_rn). This change resolves the slight discrepancy

between CPU and GPU Tanimotos noted by Liao and colleagues and had negligible

performance impact in informal benchmarks.

Our test data for leader clustering are 100,000, 500,000, and 1,000,000-molecule subsets of

the PubChem compound database,23 drawn uniformly at random. We generated 2048-bit

path fingerprints using the oEGraphSim toolkit version 1.7.2.4 from openEye Scientific

Software (Santa Fe, NM) using a maximum path distance of 5 and default atom and bond

typing. For similarity matrix construction, we drew random sets of 32,768 and 131,072

molecules from PubChem and used 1024-bit path fingerprints generated using the same

settings as for the leader clustering.

Our benchmark machine was equipped with an Intel Core i7-920 CPU (2.66-2.93 GHz, 4

cores, Nehalem architecture), 12 GB of DDR3-1066 memory, and two GPUs: an Nvidia

GeForce GTX 480 (480 SP @ 1.40GHz, GF100/Fermi architecture) and a GeForce GTX

260 (192 SP @ 1.08 GHz, GT200 architecture). CPU code was compiled using gcc and g+

+ 4.3 with the following performance-relevant compiler options: -fno-strict-aliasing -

fopenmp -o3 -ffast-math. We built GPU code using CUDA toolkit version 4.0 release

candidate 2 and Thrust 1.3.0, using NVIDIA driver version 270.40.

Similarity Matrix Construction

To measure raw Tanimoto throughput, we benchmarked the performance of similarity matrix

construction on 1024-bit fingerprints on the GPU vs the CPU, using the SSE4 algorithm

both with and without Morton-order-based cache blocking. The benchmark program,

modeling a compound selection exercise, took two sets of molecules: the “database” and

“vendor” sets. It computes the database × vendor Tanimoto matrix and counts for each

vendor molecule how many database molecules are within a threshold Tanimoto similarity.

The threshold has a negligible effect on runtime; calculation of the Tanimotos dominates the

computational expense. For the GPU code, only the count of molecules-within-threshold is

transferred back to the CPU, not the entire Tanimoto matrix. We used the same set of

molecules for both vendor and database sets in this benchmark.

Table 1 shows the result of the Tanimoto matrix benchmark. The GPU code, processing over

one billion 1024-bit Tanimotos per second, is only around five times faster than the best

CPU code, which uses SSE4 64-bit population count and Morton ordering on the matrix

blocks.

The theoretical limit for the CPU, assuming perfect superscalar instruction scheduling to

parallelize population counts, adds, and loads, is bound by the memory read pipeline. Every

64 bits of fingerprint requires two memory reads (one for each fingerprint), and only one

read may be issued per clock cycle.18 Thus, the theoretical limit (estimated using the method

described in the section on cache optimization) is approximately 330 million Tanimotos/sec;

we reach 65% of this limit.

Haque et al. Page 8

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To estimate the GPU theoretical peak, we assume the inner block of the fingerprint

calculation requires two load instructions (one for each fingerprint, because the GPU is a

load-store architecture), a bitwise AND, a population count, and an integer add; these steps

must be repeated 32 times for a 1024-bit fingerprint since the GPU has a 32-bit native word

length. Based on GPU microbenchmarks,24 we estimate each operation as 1 clock cycle,

except for population count, which takes 2 clock cycles; no operations overlap since the

shader processor in the GTX 480 is not superscalar. The GTX 480 has 480 shader processors

running at 1.401 GHz; the theoretical throughput is thus ≈ 3500

million Tanimotos/sec. Therefore, the Liao GPU code (1157 million Tanimoto/sec) runs

around 33% of theoretical peak.

Leader Clustering

To measure application-level performance of our fast Tanimoto methods, we modified the

leader clustering code of Liao et al.5 to use openMP multithreading, several fast population

count methods, and the speculative leader algorithm to optimize memory bandwidth.

Figure 3 shows the results of the leader clustering benchmark on representative database

sizes and threshold values. Note that the plots show throughput (inverse runtime),

normalized to the performance of the fastest GPU. The leftmost black bar, labeled “LUT

(NS)”, represents the performance of the original leader algorithm reported by Liao et al.,

using the 8-bit lookup table population count and no speculation. Black and red bars show

the performance of various CPU methods using one and four threads, respectively. The blue

bars show the performance of the Liao GPU code on our two test GPUs.

Perhaps the most striking result is that on the small distance threshold cases (many clusters),

the best CPU code is a factor of 20 to 40 faster than naïve single-threaded CPU code.

Consequently, even on the faster of our GPUs, the GPU advantage in this problem versus a

properly optimized CPU code is only a factor of two to four. This indicates that prior reports

of over a hundredfold speedup do not accurately measure the GPU's true relative advantage.

Indeed, on small problems (100k-500k molecules and large distance thresholds), the CPU

methods are actually faster, as they have less overhead in GPU initialization and transfer.

The other interesting aspect of the plots in Figure 3 is the performance comparison among

the high-speed CPU techniques. All of the methods are much faster than the LUT technique;

the SSSE3 vectorized lookup table is competitive with the SSE4 hardware population count.

Furthermore, the speculative leader algorithm significantly boosts performance, both for fast

algorithms (SSE4 (S) vs SSE4 (NS)) and for slow ones (LUT (S) vs LUT (NS)): the

performance increase for the SSE4 population count method is approximately 30-40%.

Conclusion

We have described a collection of techniques to enable high-performance 2D Tanimoto

computation on conventional CPUs. Extensions to the x86 instruction set allow the

computation of bit-vector Tanimotos 20-40x faster than with architecture-neutral CPU code

used for this purpose. Additionally, we have described two algorithmic schemes to reduce

Haque et al. Page 9

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

memory bandwidth, which is often the limiting factor (rather than logic performance) in

large-scale similarity matrix and clustering applications. The combination of these methods

is able to bring the 2D Tanimoto performance of a modern four-core CPU to within a factor

of two to five of a high-end GPU for large-scale problems, and faster than a GPU for smaller

problems. Indeed, the ready availability of six- and eight-core CPUs (rather than the

relatively old four-core CPU used in this test) implies that GPUs and CPUs are near parity

on this problem; perhaps within a factor of two. We have included the code used in this

paper in the hopes that it will enable more efficient use of existing hardware for these

industrially-significant calculations.

Our results suggest a performance/labor tradeoff in high-performance algorithms. Simple

CPU methods (here exemplified by the lookup table-based population count) are very simple

to code, but may have correspondingly low performance. Two possible paths for

optimization are the use of better CPU methods or full-scale ports to the GPU, using CUDA

or openCL. Historically, CPU optimization (in particular, parallelization) has been an

arduous task. However, recent language-level constructs (in particular, OpenMP for

language-level parallelism) make it much easier to exploit the performance of modern

multicore processors.

Of course, as demonstrated in the population count section, reaching maximum performance

on a CPU requires careful consideration of deep architecture-level details and significant

work. Thus, for many problems, GPU coding is useful as a middle ground: GPUs require

some architecture-awareness and knowledge of parallelism, but relatively simple ports can

achieve large speedups relative to simple CPU code. GPU codes can serve as middle ground

not only symbolically in terms of performance/labor tradeoff, but literally as well. Once a

program has been ported to run well on the GPU (using many independent cores, coherent

memory access, good use of shared memory caches, etc.), a direct execution of that program

on the CPU will typically also perform better than the naïve CPU version. Language features

make this simple: the biggest change in our parallel leader code from the Liao et al. serial

code was a change in the memory layout of fingerprints, very similar to that used in their

GPU code. Once this was done, making the program run over multiple cores was a single-

line change: the addition of an openMP parallel-for pragma. For GPU programs written in

openCL, the situation is even simpler, as openCL runtimes for the CPU are widely available.

In a nutshell: GPU coding requires one to think of the hardware, but high speed CPU

programming is the same; spending time optimizing CPU code at the same level of

architectural complexity that would be used on the GPU often allows one to do quite well.

Algorithmic strategies based on bounding the range of possible similarity coefficients have

been used to implement search primitives that are, in some cases, asymptotically more

efficient than the methods implemented here (e.g., sublinear for query-vs-database

search).10–12 This prior work does not negate the value of the methods we have presented

here: we, like GPU implementors, focus on improvements in the constant factor hidden in

Big-o notation. Our fast population count primitives are directly usable by codes

implementing sublinear search (and should offer a speedup). Making sublinear search cache-

oblivious is an interesting direction for future research.

Haque et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We have included the code used in this paper in the hopes that it will enable more efficient

use of existing hardware for the industrially-significant 2D Tanimoto calculation and serve

as a demonstration for CPU optimization techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Trevor Kramer and Brian McClain of Vertex Pharmaceuticals for developing the initial version of the
similarity matrix benchmark. ISH and VSP acknowledge support from Simbios (NIH Roadmap GM072970).

References

1. Olah MM, Bologa CG, Oprea TI. Strategies for compound selection. Curr Drug Discov Technol.
2004; 1:211–220. [PubMed: 16472248]

2. Gorse AD. Diversity in medicinal chemistry space. Curr Top Med Chem. 2006; 6:3–18. [PubMed:
16454754]

3. Irwin JJ, Shoichet BK. ZINC — A Free Database of Commercially Available Compounds for
Virtual Screening. J Chem Inf Model. 2005; 45:177–182. [PubMed: 15667143]

4. Blum LC, Reymond JL. 970 Million Druglike Small Molecules for Virtual Screening in the
Chemical Universe Database GDB-13. J Am Chem Soc. 2009; 131:8732–8733. [PubMed:
19505099]

5. Liao Q, Wang J, Watson IA. Accelerating Two Algorithms for Large-Scale Compound Selection on
GPUs. J Chem Inf Model. 2011; 51:1017–1024. [PubMed: 21526799]

6. Haque IS, Pande VS. PAPER — Accelerating parallel evaluations of RoCS. J Comput Chem. 2009;
31:117–132. [PubMed: 19421991]

7. Haque IS, Pande VS, Walters WP. SIML: A Fast SIMD Algorithm for Calculating LINGo Chemical
Similarities on GPUs and CPUs. J Chem Inf Model. 2010; 50:560–564. [PubMed: 20218693]

8. Kristensen TG, Nielsen J, Pedersen CNS. Using Inverted Indices for Accelerating LINGo
Calculations. J Chem Inf Model. 2011; 51:597–600. [PubMed: 21332133]

9. Haque IS, Pande VS. SCISSORS: A Linear-Algebraical Technique to Rapidly Approximate
Chemical Similarities. J Chem Inf Model. 2010; 50:1075–1088. [PubMed: 20509629]

10. Swamidass SJ, Baldi P. Bounds and Algorithms for Fast Exact Searches of Chemical Fingerprints
in Linear and Sublinear Time. Journal of Chemical Information and Modeling. 2007; 47:302–317.
[PubMed: 17326616]

11. Smellie A. Accelerated K-Means Clustering in Metric Spaces. Journal of Chemical Information
and Computer Sciences. 2004; 44:1929–1935. [PubMed: 15554661]

12. Smellie A. Compressed Binary Bit Trees: A New Data Structure For Accelerating Database
Searching. Journal of Chemical Information and Modeling. 2009; 49:257–262. [PubMed:
19434827]

13. Durant JL, Leland BA, Henry DR, Nourse JG. Reoptimization of MDL Keys for Use in Drug
Discovery. J Chem Inf Comput Sci. 2002; 42:1273–1280. [PubMed: 12444722]

14. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010; 50:742–754.
[PubMed: 20426451]

15. Daylight Chemical Information Systems, Inc. [accessed 1 May 2011] Fingerprints - Screening and
Similarity. 2008. http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

16. Haigh JA, Pickup BT, Grant JA, Nicholls A. Small Molecule Shape-Fingerprints. J Chem Inf
Model. 2005; 45:673–684. [PubMed: 15921457]

17. Maldonado A, Doucet J, Petitjean M, Fan BT. Molecular similarity and diversity in
chemoinformatics: From theory to applications. Molec Divers. 2006; 10:39–79. [PubMed:
16404528]

Haque et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

18. Fog, A. [accessed 1 May 2011] 4 Instruction tables: Lists of instruction latencies, through-puts and
micro-operation breakdowns for Intel, AMD and VIA CPUs. 2011. http://www.agner.org/optimize/
instruction_tables.pdf

19. Mula, W. [accessed 1 May 2011] SSSE3: fast popcount. 2010. http://wm.ite.pl/articles/sse-
popcount.html

20. Oram, A.; Wilson, G., editors. Beautiful Code: Leading Programmers Explain How They Think.
O'Reilly Media; Sebastopol, CA, USA: 2007.

21. Hodes L. Clustering a large number of compounds. 1. Establishing the method on an initial sample.
J Chem Inf Comput Sci. 1989; 29:66–71. [PubMed: 2745581]

22. Chatterjee S, Lebeck AR, Patnala PK, Thottethodi M. Recursive array layouts and fast matrix
multiplication. IEEE Trans Par Distrib Syst. 2002; 13:1105–1123.

23. Sayers EW, et al. Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res. 2011; 39:38–51.

24. Wong, H.; Papadopoulou, MM.; Sadooghi-Alvandi, M.; Moshovos, A. 2010 IEEE Intl Symp Perf
Anal Syst & Softw (ISPASS). 2010. Demystifying GPU microarchitecture through
microbenchmarking; p. 235-246.

Haque et al. Page 12

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://wm.ite.pl/articles/sse-popcount.html
http://wm.ite.pl/articles/sse-popcount.html

Figure 1.
Parallel reduction population count of a byte in three stages. We wish to count the number of

1-bits in the byte 11001001 (base-2). In the first reduction stage, pairs of adjacent bits are

summed to form counts of the number of bits set in each two-bit chunk. Pairs of 2-bit chunks

are then summed into 4-bit chunks, and the 4-bit halves are then summed into the final 8-bit

population count 00000100 = 4 bits set (base 10). These sub-byte operations can be

implemented in software using shifts, masks, and bytewise addition, as shown in the

equations in the right column.

Haque et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Row-major-order versus Morton order for similarity matrix construction

Haque et al. Page 14

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Leader clustering benchmark: throughput (1/runtime) normalized to performance of

GeForce GTX480 GPU. Black bars are single-threaded CPU methods; red bars are CPU

methods with 4 threads; blue bars are the Liao et al. GPU code run on a GeForce GTX 480

or GTX 260 GPU. CPU methods suffixed with (NS) use the standard leader algorithm; those

suffixed with (S) use the speculative leader algorithm. Key to CPU methods: LUT = Liao et

al. 8-bit lookup table; SSE2 8b = Bytewise parallel reduction using SSE2; SSSE3 =

Vectorized 4-bit lookup table using SSSE3; SSE4 = SSE4 hardware PoPCNT instruction.

Haque et al. Page 15

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Haque et al. Page 16

Table 1

Similarity matrix construction throughput for CPU (SSE4 population count algorithm with row-major and

Morton-order) vs GPU (GeForce GTX 480), 1024-bit fingerprints. Similarity matrix for N molecules had

shape N×N.

molecules Method Time (s) Throughput (Tan/s * 106)

SSE4 6.36 174.3

32,768 SSE4-Morton 5.2 214.8

GPU 1.19 1088

SSE4 124.1 139.4

131,072 SSE4-Morton 79.98 217.0

GPU 15.6 1157

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.

	Abstract
	Introduction
	Overview of 2D Similarity
	Fast Computation of the 2D Tanimoto
	Fast Population Count
	Vectorized Lookup Table Method
	Vectorized Parallel Reduction Method

	Cache-Efficient Methods for Large Similarity Matrices
	Speculative computation in the leader algorithm
	Cache-oblivious algorithms for similarity matrix construction

	Results
	Benchmarking Methodology
	Similarity Matrix Construction
	Leader Clustering

	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

