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The Microbiome
Microbiome research has greatly benefited from the 
technological breakthroughs that enabled the genomic char­
acterization of the human genome less than two decades ago. 
Soon after the deciphering of the human genome, attention 
has been shifting to the enormous genomic prokaryotic gene 
pool within the human body, which far exceeds that of the 
human eukaryotic genome, but whose contribution to human 
physiology remained elusive. The Nobel laureate Joshua Leder­
berg first termed microbiome as the combination of commen­
sal, symbiotic, and pathogenic microorganisms that colonize 
the human body.1 This microbial ecosystem is composed of 
bacteria, fungi, and viruses, with the predominant focus of 
study today being on the bacterial component of this com­
munity. In a tour de force effort, David Relman’s group first 
characterized the intestinal microbiome bacterial composition, 
extraordinarily without the use of next-generation sequencing 
but rather by the use of Sanger sequencing.2 Work by Gordon 
enabled an understanding of the factors affecting the bacterial 
community structure and the role this compositional struc­
ture may play in mammalian physiology and risk of disease.4,5 

The Human Microbiome Project and the European-based 
MetaHit project followed with a large-scale (and multicenter) 
effort to comprehensively characterize these microorganisms 
that are found on and in our bodies and to further determine 
their various roles.6,7

Collectively, these pioneering works led to the discovery 
that our microbiome consists of vast numbers of cells, with 
the latest estimates indicating approximately equal numbers 
between microbiota cells and our own cells,8 and express as 
many as 100 times more genes when compared to the human 
eukaryotic gene pool. A great deal of heterogeneity was shown 
to exist between individuals in their microbiome composi­
tion.6 While the basis to this heterogeneity is not entirely 
comprehended, human microbiome structure and stability is 
estimated to be influenced by a multifactorial array of host 
genetics and immune and environmental factors.6,9 Later, it 
was realized that healthy individuals harbor a core microbiota 
colonizing and characterizing various body habitats. For exam­
ple, the gut microbiome comprises more than 1,000 species of 
bacteria, but the most common phyla are Firmicutes, Bacte­
riodetes, Actinobacteria, and Proteobacteria.10 Similarly, the 
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female urogenital tract has its own microbiota profile with 
more than 150 species with a core microbiota of Firmicutes, 
Bacteriodetes, and Actinobacteria.11 In this review, the term 
core microbiota has been used to describe commonly observed 
bacterial phyla. It is worth noting that this term has been used 
by Gordon in a landmark study on obese and lean twins,12 to 
describe identifiable bacterial metabolic gene networks rather 
than characterized phyla.

The microbiota communities, of which the gut micro­
biome is the very best studied, play important multifactorial 
roles in human physiology. They are important in controlling 
pathogen colonization13 and in immune system development,14 
and they help us in our digestion by hydrolyzing the com­
pounds in our diet, which could not be broken down through 
enzyme production,15 and in the production of vitamins, such 
as vitamins B12, B5, and K.16 Changes in microbiota popula­
tions, termed dysbiosis, have been associated with a number 
of human conditions, such as inflammatory bowel disease,17 
obesity,12 and nonalcoholic fatty liver disease.18 Furthermore, 
dysbiosis has been shown to occur as a result of pathogen 
infections, such as Human Immunodeficiency Virus (HIV)19 
and influenza virus.20 Concise general reviews of microbiome 
functions and associations with disease are comprehensively 
described elsewhere.21–24

Characterization of the Microbiome
Characterizing the microbiota in terms of their taxonomy and 
phylogeny has been carried out in a large number of studies 
by sequencing of the 16S ribosomal RNA subunit gene.25–27 
This gene contains regions that are conserved throughout bacte­
rial species and hypervariable regions that are unique for specific 
genera, which are targeted for sequencing and used for taxo­
nomic characterization. The sequenced variable regions are then 
clustered into Operational Taxonomic Units, providing invalu­
able information on their taxonomic characterization.28–30

Whole genome shotgun sequencing followed by meta­
genomic analysis adds a more detailed layer of information 
to the taxonomical characterization of a sample, by gener­
ating information on the gene composition of the bacteria 
present.31 This information can in turn be used to discover 
new genes and to formulate putative functional pathways and 
modules, thus providing insight into functional and genetic 
microbiome variability.32 Metagenomic analysis is carried out 
on genomic DNA isolated from the environment under study, 
but it does not distinguish whether this genomic DNA comes 
from cells that are viable or not or whether the predicted 
genes are actually expressed and under what conditions.33 In 
addition, other -omics approaches, namely metaproteomics 
and metabolomics, are increasingly being implemented and 
are contributing to the understanding of microbiota com­
munity function. Metaproteomics provides an image into 
the entire protein complement of the microbiota communi­
ties studied under different conditions and an insight into the 
genes expressed and the key metabolic activities characterizing  

the bacterial communities.34,35 Metabolomics provides 
information on the secreted or modulated metabolite com­
position of the microbiota community, thereby enabling an 
understanding of the functional dynamics influencing com­
munity and host interactions.36–38 Together, these nonge­
nomic-based approaches may complement metagenomics and 
metatranscriptomics data and altogether add to our under­
standing of the complex pathways at play in the dynamic 
environment of microbiota communities.

Characterization of the Metatranscriptome
Recent advances in sequencing technologies that have revo­
lutionized metagenomic analyses have also advanced the 
approaches aimed at studying and understanding gene expres­
sion on a global scale. Understanding the critical roles that 
host gene expression plays on a cellular or tissue level has 
come a long way from the elegantly described differential 
display approach in the early days39 to a global transcriptome 
approach through the use of microarrays.40 In recent years, 
the advent of massively parallel sequencing and RNA-seq 
has provided new and exciting opportunities in the area of 
transcriptome analysis, providing insight and dynamic range 
previously unimaginable.41 In addition to the insights gained 
from elucidation of host gene expression profile, we are now in 
a position to also study the gene expression of complex bacte­
rial communities at a given environment (be it in the gut, oral 
cavity, or respiratory tract) that includes the gene expression 
profile of bacteria that can or cannot be cultured. Data from 
metatranscriptome analyses, thus, complement metagenomics 
data by elucidating accurately which of the genes that were 
annotated in the metagenomic analysis are transcribed and to 
what extent,42 thereby enabling to demonstrate the functions 
from a potential repertoire of bacteria that are actually in use 
at a given context. From such functional data, active metabolic 
pathways can be identified in the bacterial communities and 
can be associated to particular environmental conditions.43 
Therefore, metatranscriptomics offer a more informative per­
spective compared with metagenomics, as it can reveal details 
about populations that are transcriptionally active and not just 
identify the genetic content of bacterial populations as shown 
in metagenomic analysis. This is of utmost importance, as elu­
sive, and clinically important differences in distinct groups of 
active bacteria often occur between human individuals.42,44

Isolation and Processing of Microbiome mRNA
Typically, a metatranscriptome experiment of the microbiome 
involves isolation of total RNA from bacteria colonizing the 
area of interest (eg, gut, skin, and oral cavity). In eukaryotes, 
mRNA can be selected by synthesizing cDNA using oligo-
d(T) primers, therefore taking advantage of the poly-A tail 
characterizing mRNA species. Prokaryotic mRNA makes up 
only 1%–5% of total RNA species, with the majority being 
16S and 23S rRNAs as well as tRNAs.45 However, in con­
trast to eukaryotic mRNA, prokaryotic mRNA lacks a poly-A 
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tail, making its selection during cDNA synthesis inapplicable. 
Therefore, various approaches have been developed and imple­
mented to address this issue.46–48 Removal of rRNA with 
the use of probes targeting specific rRNA regions that are 
attached to magnetic beads represents an attractive option. 
The process involves annealing of probes to target sequences 
(rRNA) followed by their removal with the use of a magnet.46 
As with all methods involving RNA manipulation, the chal­
lenge of avoiding degradation by contaminating ribonucleases 
is also presented in this approach. Maintaining the commonly 
implemented laboratory practices for these types of sensitive 
protocols to avoid introduction of contaminating ribonucleases 
is important, and the incorporation of RNase inhibitors into 
the procedure can represent an effective protection strategy. 
What remains is an enriched population of other mRNAs 
that are representative of transcriptionally active genes. For 
massively parallel sequence analysis, these RNAs are fraction­
ated, cDNA is synthesized, and adapters are ligated to the 
cDNA ends (following end repair) generating a library that 
is amplified and then sequenced. Sequence reads are mapped 
to reference genomes, and the expressed genes are identified 
based on the sequence reads covering these regions.49

Computational Analysis of Metatranscriptomics Data
A typical metatranscriptome dataset contains many millions 
of sequenced mRNA molecules, termed RNA-seq reads. 
Moreover, as metatranscriptome experiments are consistently 
increasing in size and number, automated, efficient, high-
throughput analyses are essential to infer the biological mean­
ing from these datasets.33,50 Several comprehensive analysis 
suites (eg, HUMAnN51 and MG-RAST52) have been devel­
oped over the past few years, are extensively used, and provide 
an end-to-end solution. These are applied alongside the com­
binations of specialized bioinformatic tools (eg, BOWTIE53 
and GEM54 for mapping, Trimmomatic55 for quality filtering, 
and CuffDuff56 for differential gene expression) to achieve 
the same overall goal of inferring the gene expression levels 
and changes in gene expression levels, from the raw sequenced 
mRNA reads. A few analytic steps are essential in this pro­
cess and are, therefore, present uniformly exist in all meta­
transcriptome analyses. These steps consist of the filtering 
of non-mRNA reads, and as well as the host reads, filtering 
and trimming low-quality reads and nucleotides (similar 
to the quality control process in high-throughput metag­
enomic analysis), identifying the open-reading frames, map­
ping the reads to a reference database, normalization, and 
calculations of the gene expression levels along with other 
summarizing statistics.41

An analytic step that is optional is the assembly of the 
reads into contigs, which can be executed after the initial 
filtering. If executed, the assembly step is followed by map­
ping the contigs to reference genomes, when these are avail­
able. While an assembly step is challenging computationally 
and requires higher quality experimental sequencing data, 

it holds the potential to uncover information regarding the 
gene expressions that is not attainable without it, such as the 
relation between adjacent genes and the start and stop sites. 
Experimentally, to enable the assembly, deeper sequencing 
is required, and therefore, commonly only highly abundant 
regions can be assembled from a larger set of reads.57 An 
assembly step is essential in cases in which a reference genome 
and subsequent gene annotations are not available. This is 
less common in the context of the gut microbiota but is rel­
evant in RNA-seq of nonmodel organisms. In the event that 
a reference genome is not available, the annotations of the 
sequenced transcripts are usually obtained by sequence simi­
larity to sequenced and annotated proteins. In other words, 
the assembled transcripts are aligned against large annotated 
protein databases with software, such as Blast2GO,58 and if 
highly similar proteins are found, a similar biological function 
is usually inferred. Some suites for full transcriptome recon­
struction have been developed and are based on extensive 
computational techniques, usually relying on graph-theoretic 
concepts (eg, Trinity).59

Another important issue in the analysis and inference of 
biological information from metatranscriptomics data is com­
bining the analysis of the RNA-seq data and the whole DNA 
data, ie metagenomics. Analyzing these two types of data 
simultaneously for a sample enables us to conclude the actual 
expressed genes vs the potentially existing genes.43 Regardless 
of the existence of the assembly step, at the end of the RNA-
seq analysis and the postnormalization process, a summary of 
the data is converted into relative gene expression values and 
can then be further analyzed similar to the statistical analyses 
seen in 16S and metagenomic sequencing (eg, gene expression 
level within a sample, richness within samples, and similarity 
between samples).

Utilization of Metatranscriptomics in Health and 
Disease

Assessment of microbial activity. Identifying func­
tionally active bacteria within a mixed bacterial microbiome 
may highlight the disease-driving bacteria within a gener­
ally inactive microbial pool. Several strategies of determin­
ing transcriptionally active bacteria have been described.33,60 
Gosalbes et al.33 utilized the presence of 16S rRNA transcript 
as a way to determine the phylogenetic structure of active bac­
teria in the gastrointestinal tract (finding the phyla Firmicutes 
as predominantly active followed by Bacteroidetes). In healthy 
individuals, characterization of mRNA revealed activation of 
pathways involved in carbohydrate metabolism, cell compo­
nent synthesis, and energy production.

The value of characterizing microbiota in a combined 
metagenomics–metranscriptomics approach is highlighted by 
the effect of commensal bacteria on xenobiotics. As discussed 
earlier, gut microbiota plays an important role in metaboliz­
ing carbohydrates and proteins by producing and secreting an 
array of enzymes. These metabolic activities can potentially 
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affect xenobiotic stability when the xenobiotics are substrates 
of these enzymes. There are over 40 xenobiotics (that are or 
have been on the market) that are affected by the gut micro­
biota without the underlining mechanisms being fully under­
stood.61 This effect is best shown in a tragic turn of events where 
an antiviral drug marketed under the generic name sorivudine 
was converted by the gut microbiota into a compound that 
inhibited the metabolism of the anticancer drug 5-fluorouracil 
causing its accumulation leading to toxicity. Within a short 
period of time, 18 patients who were prescribed a combination 
of sorivudine and 5-fluorouracil died.62 Although it is estab­
lished that gut bacteria are responsible for the metabolism of 
many drugs, the exact bacteria involved and the molecular 
pathways implicated are frequently unknown. Recent studies 
are beginning to unravel the microbiota metabolic processes 
that influence drug metabolism. An elegant study by Maurice 
et  al.60 implemented a flow cytometry approach to isolate 
active bacterial populations from the gut that were then char­
acterized by 16S rRNA gene sequencing and metatranscrip­
tomics to determine the gene expression profiles in response 
to xenobiotics. This study showed that there are distinct sets 
of active bacteria in the gut (composed mainly of Firmicutes) 
and that over half the gut microbiota showed a high level of 
metabolic activity. They also showed that approximately one-
third of the gut microbiota were damaged cells (not active but 
gene composition can be detected by metagenomics analysis). 
Exposure to xenobiotics was seen to have an effect on the 
active gut microbiome’s structure as well as on its gene expres­
sion profile.60 These types of studies show that moving beyond 
determining the phylogenetic community profile and delving 
into understanding the active gut microbiome metabolic activ­
ity involved in xenobiotic metabolism and resistance will have 
important repercussions in understanding interpatient varia­
tions in drug efficacy and toxicity.

Another important example can be seen in the case 
of the cardiac drug digoxin that can be inactivated by gut 
microbiome metabolism. Transcriptional profiling revealed 
that specific strains of the gut bacteria, Eggerthella lenta, 
have a cytochrome-encoding operon that is upregulated by 
digoxin and is predictive of the cardiac drug inactivation.61 
Using gnotobiotic mice, it was shown that increasing dietary 
protein could significantly reduce digoxin microbial metabo­
lism and result in increased concentrations of the drug pres­
ent in serum.61 Overall, this highlights the importance of 
taking into consideration the gut microbiome with respect to 
drug efficacy.

Assessment of microbiome–immune interactions. The 
effects of microbiome on the mucosal immune system are 
considered pivotal in affecting host physiology. Studies focus­
ing on toll-like receptor 5 (TLR5) knockout (KO) mice are 
an interesting example of the use of metatranscriptomics to 
complement metagenomics and 16S rRNA characterization 
of such microbiota–immune interactions. TLR5 is expressed 
in the intestinal mucosa and recognizes flagellin, the principal 

component of the bacterial flagella. Mice lacking TLR5 were 
shown to develop metabolic syndrome63 and colitis64 and were 
characterized by dysbiosis of the gut microbiota.63,65 Another 
impairment noted in TLR5-deficient mice relates to the 
maintenance of barrier function. Indeed, the mucosal innate 
immune system plays diverse roles in microbial containment 
through mechanisms, such as regulation of protective mucus 
production66 and secretion of high concentrations of IgA 
enabling coating of locally invasive commensal bacteria, thereby 
dampening inflammatory responses.67 In the absence of innate 
recognition of flagellin, there is a reduction in the concentra­
tion of antiflagellin antibodies that play a role in containing 
the microbiota, which can have an overall effect on microbiota 
and mucosal barrier functionality.68 Gut dysbiosis in mice that 
lack TLR5 (and display metabolic syndrome) was character­
ized through a 16S rRNA sequencing approach.63,65 Although 
dysbiosis was indicated by bacterial phylogenetic analysis of 
stool samples, the underlying mechanism affecting and taking 
place within the bacterial community in the absence of TLR5 
was only enabled using a metatranscriptomics approach. Meta­
genomics analysis of TLR5 KO mice showed that there was no 
significant difference in the presence of microbiota functional 
genes between these mice and wild-type mice.69 In contrast, 
metatranscriptomics analysis revealed an upregulation in fla­
gella motility-associated genes of commensal microbiota in the 
TLR5 KO mice compared to wild-type mice.69 In this model, 
TLR5 flagellin recognition brings about antiflagellin antibody 
production that leads to a downregulation of flagellar motility 
genes from a variety of bacteria, keeping the microbiota con­
tained. Absence of TLR5 has, as a consequence, a reduction in 
antiflagellin antibody production, causing upregulation of bac­
terial flagellar motility genes and, therefore, increasing bacterial 
motility in the gastrointestinal tract environment, resulting in a 
breach of the mucosal barrier.69

Studying microbiome antisense RNA. Although tra­
ditional metatranscriptome analysis involves characterizing 
the mRNA transcripts under specific environmental condi­
tions, and from this data determining metabolic pathways 
that are activated, the bacterial transcriptome represents a 
high level of complexity.70 As RNA-seq methods matured 
allowing for strand-specific libraries to be constructed, it 
was revealed that the bacterial transcriptome encodes a 
surprisingly large number of cis-encoded RNAs denoted as 
antisense transcripts that are transcribed from the opposite 
strand of DNA-encoding genes.71 Through base pair interac­
tion, these have the potential to interact with the sense tran­
script acting as a regulator of mRNA.71 This interaction has 
been shown experimentally, for example, in the case of the 
cyanobacteria Synechocystis sp.72 and the bacterium Listeria 
monocytogenes.73 In fact, it has been proposed that these anti­
sense RNAs may not only target their corresponding sense 
RNA but also mRNAs in other locations.74 The numbers of 
antisense RNAs identified vary between bacterial species. 
For example, Escherichia coli was reported to have antisense 
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transcripts for 22% of its genes75 whereas Staphylococcus aureus 
was reported to have antisense transcripts for just over 1% 
of genes.76 Antisense transcripts are involved in a wide vari­
ety of regulatory roles, such as modulation of transcription 
regulators and toxic protein synthesis repression.71 It appears 
that antisense RNAs play an important role in prokaryotic 
gene regulation that can further enrich our understanding of 
underlying mechanisms of microbiota gene expression and its 
regulation. Although many studies on prokaryotic antisense 
RNAs were predominantly carried out on single-cultured 
strains, implementing such analyses on a global microbiota 
scale can complement traditional metatranscriptomics analy­
sis of mRNAs and provide a greater depth of understanding 
into the regulatory mechanisms affecting these expression 
profiles. An example of such a global approach can be seen 
in the analysis of antisense RNAs in the human gut micro­
biota that showed a significant and dynamic presence.77 There 
was variation in the transcription of antisense RNA between 
individuals (the number of strain-specific antisense RNAs) 
as well as between individuals in the genes that had anti­
sense RNA. Common genes with antisense RNA transcripts 
included transposases, defense mechanism genes, as well as 
bacterial house-keeping genes.77

Studying microbiome small noncoding RNAs. The 
bacterial transcriptome includes small noncoding RNAs 
(sRNAs) that are generally between 50 and 500  bp in size 
and are involved in gene regulation.70 They do so by interact­
ing, through base pairing, with the 5′-Untranslated Region 
(UTR) of target mRNA sequences regulating the translation 
or stability of the transcript.70 They are involved in regulat­
ing important processes in bacteria, such as iron metabolism,78 
virulence,73 and quorum sensing,79 and are important as they 
allow for rapid adaptation to changing environments.80 sRNAs 
have been identified in multiple bacterial species.81 The advent 
of next-generation sequencing methods has accelerated their 
identification for various bacterial species, such as Salmonella81 
and Bacillus subtilis.82 Next-generation sequencing methods 
have also presented the opportunity to study bacterial sRNAs 
on a community level. For example, metatranscriptomics anal­
ysis of bacteria in the ocean at various depths has shown the 
potential role of sRNAs in niche adaptation.83 Metatranscrip­
tomics of the human active gut microbiota identified a number 
of sRNAs, although their role in the gut microbial community 
was not elucidated.33 Analysis of sRNAs has generally been 
limited to single bacterial species, and metatranscriptom­
ics approaches of community-based analysis are limited. An 
interesting example of following a global metatranscriptom­
ics approach to analyze sRNA in a complex community was 
carried out in the oral cavity.80 In this study, interestingly, 
community mRNA expression profiles were combined with 
sRNA profiles to understand the active metabolic pathways 
and the underlying regulatory mechanisms influencing oral 
microbiome dynamics in periodontitis. Periodontitis is a 
biofilm-induced inflammatory disease that affects the tissues 

surrounding the teeth (periodontium) and is characterized by 
dysbiosis of the bacterial community that is considered to be 
causative in the disease.84 The microbiome of the oral cavity 
represents a complex microbiota community that is exposed 
to a frequent alteration in environment brought about by 
ingested food that requires rapid microbiota adaptation to 
these fluctuating environmental conditions. This is enabled 
through adaptation of metabolic processes to these environ­
mental fluctuations, and sRNAs play an important regula­
tory role in enabling this.80 Metatranscriptomics approaches 
have been implemented on subgingival biofilms in an effort 
to understand the regulatory mechanisms potentially facilitat­
ing dysbiosis that is characteristic of periodontitis.85 Commu­
nity mRNA expression profiles identified specific metabolic 
signatures defining disease progression and interestingly 
indicate that not only known periodontal pathogens but also 
bacteria, which are not normally associated with the disease, 
show an increase in virulence leading to disease progression.85 
Associating microbial community sRNA expression profiles 
with mRNA expression data showed that sRNAs are poten­
tially involved in regulating the oral microbiome community 
metabolic activities and, in this way, the transition of the oral 
microbiome from commensal to dysbiotic.80

Limitations and Challenges of Metatranscriptomics 
Analysis
Several challenges associated with metatranscriptome analy­
sis merit mentioning. The isolation of high-quality RNA 
samples from some biological samples (such as feces) can be 
a difficult if not daunting task. Experimental strategies have 
been developed to tackle some of these issues42; nevertheless, 
significant challenges do remain. The potential of host RNA 
contamination in the sample that can occur to various degrees 
depending on the sample (eg, contamination is high in biopsy 
samples) can prove to be problematic. In these cases, rRNA 
from the host cannot be removed by following a strategy of 
annealing probes to target bacterial rRNA sequences followed 
by their removal with the use of a magnet, and they remain 
as contaminants that can increase the overall processing costs 
and complicate downstream analysis of data. Another issue to 
consider is that mRNA has a short half-life and thus it may 
be hard to detect rapid/short-lived responses to environmental 
stimuli.43 Furthermore, the presence of mRNA is not always 
synonymous with the presence of protein (or protein activity 
for that matter). As such, pipelines integrating metagenom­
ics, metatranscriptomics, metabolomics, and metaproteomics 
datasets may potentially enable to gain a holistic view of micro­
biome composition and function at multiple layers. Finally, at 
present, multiple metagenomic analysis methods may at times 
produce variable results, even if identical databases are used in 
the analysis. Thus, standardization of RNA isolation, process­
ing, sequencing, and analysis is warranted to enable further 
dissemination of metatranscriptomics methods and their inte­
gration into microbiome research.
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On a final note, traditionally, large-scale expression 
studies using methods, such as microarrays and serial analy­
sis of gene expression, have been accompanied by validation 
of results by an independent technique, Quantitative Poly­
merase Chain Reaction (qPCR) being considered as the gold 
standard.86,87 Now that large-scale expression approaches 
have shifted toward utilizing Next Generation Sequencing 
(NGS) approaches, namely RNA-seq, validation of discover­
ies using this technology with the use of qPCR should not 
be overlooked and can provide added value to the observed 
expression patterns.88

Conclusion
Metatranscriptomics holds great potential to uncover bio­
logical information that may be otherwise obscured by other 
genomic methodologies. It provides an accurate snapshot, 
at a given moment in time and under specific conditions, of 
the actual gene expression profile rather than its potential, as 
inferred from DNA-based shotgun metagenomic sequencing. 
As such, deciphering microbiome metatranscriptomics may 
better enable the elucidation of functional changes that dic­
tates the microbiome functions at given contexts, its interac­
tions with the host, and functional alteration that accompany 
the conversion of a healthy microbiome toward a disease-
driving configuration. Moreover, metatranscriptomics may 
open a window into discovering the regulatory mechanisms 
orchestrating observed gene expressions, thereby uncovering 
how host–microbe and microbe–microbe interactions regu­
late microbiome activity. The integration of various micro­
biome analysis approaches can each contribute a single piece 
toward completing a large and complex puzzle. Taking a 
global integrated approach of 16S rRNA characterization, 
shotgun metagenomics, metatranscriptomics, metaproteom­
ics, and metabolomics may merit careful consideration in 
cases where budget constraints and sample availability are 
not prohibitive.

While metatranscriptomics microbiome analysis holds 
promise in enhancing our understanding of the complex com­
munity behavior of the microbiome, several challenges need 
to be met in order to enhance the reproducibility and gen­
eral applicability of metatranscriptome analysis. Despite these 
challenges, metatranscriptomics analysis of the microbiome 
may be of great value in moving from a descriptive micro­
biome facet to a deeper understanding of causality in micro­
bial contribution to homeostasis and disease susceptibility. 
As such, integration of metatranscriptomics into microbiome 
research may enable to gain better understanding of its diverse 
roles in mammalian physiology and integrate these data into 
the clinical world.
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