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Abstract

A widening gap exists between the best practices for RNA secondary structure prediction 

developed by computational researchers and the methods used in practice by experimentalists. 

Minimum free energy (MFE) predictions, although broadly used, are outperformed by methods 

which sample from the Boltzmann distribution and data mine the results. In particular, moving 

beyond the single structure prediction paradigm yields substantial gains in accuracy. Furthermore, 

the largest improvements in accuracy and precision come from viewing secondary structures not at 

the base pair level but at lower granularity/higher abstraction. This suggests that random errors 

affecting precision and systematic ones affecting accuracy are both reduced by this “fuzzier” view 

of secondary structures. Thus experimentalists who are willing to adopt a more rigorous, 

multilayered approach to secondary structure prediction by iterating through these levels of 

granularity will be much better able to capture fundamental aspects of RNA base pairing.
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2 Introduction

Computational methods for RNA secondary structure prediction have been an important 

resource for experimentalists since the early 1980’s [1, 2, 3]. Prediction of a single minimum 

free energy (MFE) structure as the native was one of the first approaches [2, 3] and remains 

the most popular. MFE prediction has enjoyed this remarkable longevity due to its degree of 

accuracy, especially for shorter sequences [4, 5], and the simplicity of dealing with a single 

structural prediction.

However, in the past three decades the RNA computational community has moved beyond 

the single MFE secondary structure prediction paradigm, yielding improvements to 
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prediction accuracy [6, 7, 8]. Moreover, mounting experimental evidence indicates that 

many critical cellular processes are mediated by changes in RNA (secondary) structure [9, 

10, 11, 12]. Hence, there are now strong biological, as well as computational, reasons for 

considering an ensemble of possible structures instead of just one.

In addition to new methods for generating possible secondary structures [13, 14, 15, 16, 17], 

significant advances have been made in refining approaches grounded in thermodyanmic 

optimization. Two critical enhancements to MFE predictions have included considering 

characteristics of individual base pairs [4, 18, 19, 20, 21, 22, 23, 24, 25] and of other low-

energy alternatives to the MFE prediction known as suboptimal structures [26, 27, 28]. 

Importantly, these two approaches are now unified by the methodology of sampling 

structures from the Boltzmann distribution for a given sequence [29] according to base pair 

probabilities [18].

Yet, despite the demonstrated improvements in prediction accuracy from Boltzmann 

sampling [30, 31, 32], in practice MFE prediction programs like Mfold [33] still dominate 

among experimentalists1. The purpose of this paper is to convince the reader that this gap 

can and should be bridged.

The power of the Boltzmann sampling approach rests on the ability to extract key structural 

information from a representative set (typically of size 1000) of suboptimal structures. This 

is achieved by a data mining technique known as cluster analysis [34] in which similar 

structures are grouped together to reveal underlying patterns. Currently, there are three 

programs, Sfold [35], RNAShapes [36], and RNA profiling [37], which implement different 

approaches to secondary structure cluster analysis. The crucial differences in methodology 

rest on how each defines “similar” structures. This, in turn, is fundamentally a function of 

the granularity of the given method. Thus, in the next section, we first summarize each of the 

three methods, along with a related deterministic approach (RNAHeliCes [38]), through the 

lens of structural granularity.

Next, we compare and contrast these methods with each other and with the MFE prediction 

based on accuracy, precision, size of results, and efficiency. We show that at the level of 

secondary structure prediction the differences between Boltzmann clustering programs are 

not significant. Moreover, the representative structure for the most probable cluster for any 

of the three programs is at least as good as the MFE prediction. Hence, experimentalists who 

wish to retain the simplicity of a single structural prediction should simply replace the MFE 

one with the most probable representative structure to achieve better accuracy on average.

Our analysis goes well beyond this, however. We show that there are significant gains in 

prediction accuracy to be obtained by moving beyond the single structure paradigm. In 

particular, there frequently exists a representative structure with markedly better accuracy 

among the other probable clusters. Hence, experimentalists who view secondary structure 

predictions as generating a small set of possible configurations, to be vetted by further 

1According to Google Scholar, Mfold citations since 2014 are easily double the next dozen or so competitors combined.
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computational analysis, experimental testing, and/or biological insight, will be well-

rewarded for their efforts.

Finally, we demonstrate that the largest improvements in accuracy and precision come from 

viewing secondary structures not at the base pair level but at lower granularity/higher 

abstraction. Along with a representative structure, methods which employ abstraction assign 

to each cluster a signature which captures the structural similarities at the chosen level of 

granularity. It is these signatures which truly harness the power of the Boltzmann sampling 

approach. Hence, experimentalists who are willing to begin with a “fuzzier” approach to 

understanding secondary structures will be much better able to capture fundamental aspects 

of RNA base pairing.

Because of the different granularity levels at which each method operates, from the fine-

grained base pairs of Sfold through the higher level helices of profiling to the most abstract 

“topologies” of RNAshapes, these cluster analyses are not merely competitors which each 

other in improving over the MFE prediction. Rather, they offer complementary approaches 

to representing, grouping, and comparing structures which can be used in conjunction to 

great advantage.

To illustrate the advantages offered by a more iterative approach to RNA structure prediction 

via the power of Boltzmann sampling and cluster analysis, we discuss the challenge of 

aptamer design. In this way, we show that ad-hoc comparisons of single MFE structure 

predictions can yield to a more rigorous, multilayered approach which draws on a wealth of 

computational advances.

3 Methods

While the cluster analysis methods all vary in their details, the critical difference is their 

level of structural granularity. The granularity used by each method informs its clustering 

approach, illuminates the differences between the methods, and highlights the utility of each 

method for different applications.

Hence, granularity is the organizing principle of this paper. In particular for this section, we 

describe the granularity of each method, and its ramifications for (1) structure 

representation, (2) clustering method, (3) representative structure, and (4) cluster signature. 

(Granularity also has ramifications for the type of scenario most appropriate for each 

method, which will be addressed in the Discussion section.) We use the example sequence 

given by each method to illustrate both their granularity choice and the original issue it was 

designed to address.

3.1 Sfold: at the base pair level

Having pioneered Boltzmann sampling for RNA secondary structures, Sfold was the first to 

tackle the challenge of data mining a set of suboptimal structures. Sfold recognized that the 

sample contains important information beyond the MFE structure, particularly when the 

native structure is not the MFE structure. One example is the A. tumefaciens 5S sequence, 

whose native conformation is markedly different from the predicted MFE (Figure 1). 
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Accordingly, Sfold [35] identifies different viable low energy structures from a Boltzmann 

sample.

Sfold represents one end of the granularity spectrum by operating at the finest level of 

resolution: the base pair level. This fine-grained approach is reflected in its representation of 

structures as a set of base pairs (i.e. a set of canonical pairs of nucleotides according to the 

allowed pairings A ↔ U, C ↔ G or G ↔ U). Sfold also compares structures in these terms, 

defining the distance between two structures as the number of base pairs in either one but 

not in both (the symmetric difference of the two sets of base pairs).

With this well-defined metric, classic clustering algorithms can now be employed to group 

suboptimal structures together [39]. Sfold uses a divisive hierarchical clustering algorithm 

[34], beginning with all elements in a single cluster. Successive steps divide the cluster with 

largest diameter (maximum base pair distance between any two elements). Sfold computes 

twenty clusters before determining which division is optimal.

At each step, the quality of clustering is assessed with the Calinski-Harabasz (CH) index 

[40], a data mining metric previously used to good effect in microarray analysis [41]. The 

CH index calculates the ratio of distances between clusters over distances within clusters; 

the higher the ratio, the better the clustering. Sfold selects the clustering division between 

two and twenty with the highest CH index as the optimum.

These clusters capture critical information about the Boltzmann ensemble, namely that there 

may be more than one significant energy well present. This information is embodied in the 

structure chosen to represent each cluster, called the centroid structure. The centroid by 

definition minimizes the total base pair distance to all structures in the cluster [30]. 

Qualitatively, centroids reflect the high frequency base pairs of the sample, which have been 

shown to have higher positive predictive value (PPV) [25]. Quantitatively, centroids show 

improvements in sensitivity and PPV over the MFE when compared against the native [30].

This is the case with the A. tumefaciens 5S sequence, whose native structure is not the MFE 

but a low energy alternative. Thus, its Boltzmann sample yields two centroids (Figure 1), 

one for the MFE energy well and the other for the native one. By broadening the search 

beyond a single MFE structure, Sfold’s analysis identifies a major structural group with 

almost the same frequency as the MFE cluster, and substantially more accuracy.

3.2 RNAshapes: at the branching pattern level

Developed around the same time as Sfold, RNAshapes operates at the other end of the 

granularity spectrum. While Sfold represents and clusters its structures at a base pair 

resolution, RNAshapes does so with respect to gross morphology. Its high level of 

abstraction serves as an intuitive way to cluster and manage a large number of low-energy 

suboptimal structures [32].

RNAshapes represents structures in terms of their topology, or shape, by abstracting away 

internal loops, bulges, and the location and length of helices. Nesting and adjacency 

information are preserved, and embodied in its abstract shape, as denoted by pairs of well-
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formed brackets. By representing structures with their abstract shapes, RNAshapes then 

clusters structures with the same shape together.

Each cluster has the common shape as its signature, and the number of constituent structures 

as its frequency. To enable structure prediction, each group is also represented by the 

structure with the lowest free energy of the group, known as its shrep.

Like Sfold’s clustering, shape analysis reveals patterns in a sample about which nothing is 

known. Additionally, this abstraction is particularly useful when a general topology is 

suspected a priori concerning the sequence, e.g. when the sequence is related to other 

characterized sequences by homology or experimental data. By grouping structures with a 

common shape, RNAshapes enables researchers to zero in on a topology of interest [32].

An example of this discussed by RNAshapes and reprised here is the sequence N. pharaonis 
tRNA-ala [32], whose native structure is the well-known tRNA cloverleaf. However, the 

MFE has a markedly different topology of one long extended helix. Identifying low energy 

candidates for the native possessing the appropriate shape is difficult, without organizing 

structures based on topology.

RNAshapes’ analysis of N. pharaonis yields three distinct shape groups, seen in Figure 2. 

The MFE structure belongs to the most frequent (incorrect) shape, which dominates the 

sample at a frequency of 99%. Without the benefit of shape analysis, many structures would 

have to be sifted through in search of one with the desired cloverleaf topology. With shape 

analysis, the native structure is easily located as the shrep of the third shape [42].

Thus, RNAshapes enables very quick perusal of the different topologies present in a set of 

suboptimal structures. This view of the sample at a low level of structural granularity gives 

one important way to summarize the structural information of the sample. This is useful 

when first exploring the characteristics of a sequence, but especially useful if a known 

topology is suspected.

3.3 RNAHeliCes: a refinement of RNAshapes

Developed as an extension of RNAshapes, RNAHeliCes [38] operates at a granularity 

between the fine gained Sfold and the abstract RNAshapes, and hence is included in this 

review for its interesting abstraction scheme. However, in contrast to the other methods 

discussed here, RNAHeliCes does not stochastically sample from the Boltzmann 

distribution. Rather, it deterministically enumerates all low energy structures, beginning with 

the lowest ones, until by default three hishapes are identified. While its abstraction scheme is 

of interest, this abbreviated analysis of suboptimal space limits its practical use. 

Nevertheless, we discuss RNAHeliCes for its unique granularity level, and as a general 

contrast to the more preferred Boltzmann sampling methods.

RNAHeliCes’ intermediate level of granularity is appropriate in scenarios when multiple 

structures of interest have the same shape and must be differentiated. Such is the case for the 

spliced leader RNA from Leptomonas collosoma [43], their test sequence [38]. Since its two 

structures (seen in Figure 3) both have the shape [ ], using shape abstraction would identify 

at most one of them. Thus, a finer grained abstraction is needed.
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Specifically, RNAHeliCes adds an index to every bracket pair in the shape abstraction to 

form a helix index shape, or hishape. The index is calculated as the average of the indices of 

the closing base pair and serves to differentiate helices located at different nucleotide 

positions, unless they are centered at the same position.

Like RNAshapes, RNAHeliCes uses abstraction as its organizing principle, clustering 

structures with the same hishape together. Allowable differences within a hishape group 

include exact helix composition, length and location of stack extensions, and internal loops 

and bulges. While each group has the hishape signature common to all its structures, it is 

also characterized by a representative structure (called a hishrep) that is the minimum free 

energy structure in the group.

RNAHeliCes can be used to view common hishapes but also to predict structure, as with L. 
collosoma. By distinguishing between stems centered around different midpoints, it 

identifies two hishapes within the common shape. For L. collosoma, the shreps for each 

hishape approximate the two alternate structures for the sequence. Thus, this level of 

abstraction is more appropriate to the L. collosoma sequence than RNAshapes.

3.4 Profiling: at the helix level

Like RNAHeliCes, profiling operates at an intermediate granularity, disregarding certain low 

frequency base pairs to consider only common helices. Developed to take a more modular 

approach to clustering structures, profiling enables the structural behavior of a subsequence 

or region of interest to be investigated [37]. Such regions include known functional domains 

and any new regions of interest discovered through experimental or computational means 

[44].

We consider the Vibrio cholerae quorum regulatory sequence VcQrr3 example used by 

profiling [37]. No native structure is known, although a large portion of it is evolutionarily 

conserved with other quorum sensing sequences [45]. With sequence conservation pointing 

to functional and hence structural importance, the structural patterns of the given region 

need to be determined.

Profiling addresses this scenario by taking a helix-centric approach to representing and 

clustering structures. By focusing on high frequency helices known as features, profiling 

represents structures by their particular combination of features, known as its profile. 

Structures with the same profile are clustered together, and the most frequent profiles are 

selected as clusters of particular interest. The clusters with their profile signatures thus 

summarize the helical information in a Boltzmann sample. By abstracting away low 

frequency helices, common patterns involving the key helices and thus key regions can 

emerge.

In addition to highlighting regional and helical trends, profiling can be used for simple 

structure prediction. Thus in addition to a signature profile, a representative structure is 

given for each cluster. This is the consensus structure, which is composed of all the base 

pairs present in a majority of structures in the profile. Profiles provide a more abstract way 
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of viewing the salient information in a cluster, while the consensus structures give a base-

pair resolution view of the information.

The consensus structures for the four VcQrr3 selected profiles are seen in Figure 4. 

Previously, these profiles were shown to contain four distinct structural patterns in the 

conserved region [37], with the variations centering around nucleotides known as key to 

functionality [46, 47, 48]. Thus, for extracting information at the regional level, profiling 

clears away lower level details and presents major helical patterns.

4 Evaluation criteria

As illustrated, each cluster analysis method extracts important information from sets of 

suboptimal structures at complementary levels of granularity. In addition to these individual 

proof-of-principle results, in this section we compare the methods in four key measures: 

accuracy, precision, result size and runtime.

Accuracy is always a factor when choosing a method, as is the practical issue of runtime. 

Precision, or the repeatability of results, is an issue due to the stochasticity of Boltzmann 

sampling. Finally, since we are moving beyond considering just one MFE structure to 

multiple suboptimal ones, the typical number of clusters returned is an important 

characteristic of the analysis method.

As described, the methods associate both a representative structure and a signature to each 

cluster. To investigate the effect of abstraction, we evaluate the performance of the signatures 

as well as the more commonly assessed structures. It will be shown that although 

representative structures across methods have comparable accuracy, increased abstraction 

typically yields increased accuracy as well as increased precision.

We evaluate these measures using ten Rfam [49] families with sequence length less than 

200, the range of best performance for thermodynamic optimization [5]. From each Rfam 

family alignment, ten seed sequences were chosen to give a median and average MFE F-

measure score of approximately 0.5. For the accuracy comparisons, the native base pairings 

for each sequence were obtained by aligning it with the Rfam consensus structure.

For the computations, we use GTfold, a parallel implementation of the MFE algorithm [50], 

Sfold 2.2, RNAshapes 2.1.6, RNAHeLiCes 2.0.14 and profiling 1.0.

4.1 Accuracy

There are several options when measuring accuracy, the first and most important assessment 

of a method. Unlike the MFE optimization, the cluster analysis methods return multiple 

clusters, each represented by both a structure and a signature. Thus, there is the option of 

measuring the accuracy of one structure or of the aggregate of multiple ones, and of doing so 

for signatures as well. As we shall see, there are reasons for exploring all these options.

As others have done [30], we report the accuracy of the best representative structure, i.e. the 

structure with the highest accuracy. This gives a sense of the best the methods can do, and of 

the fundamental limitations to accuracy each method is bound by. However, when the native 
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is not known, the best structure cannot be identified. Instead, the highest frequency or most 

probable structure, is always apparent; hence, we also calculate its accuracy.

Moreover, in addition to considering the accuracy of a single structure, we will argue that 

considering multiple structures is worth the improvement to accuracy. As some researchers 

may be able to systematically investigate all structures, we calculate the overall average 

accuracy of all structures, both unweighted and weighted by the frequency of the cluster. 

Comparing unweighted versus weighted indicates the general frequency of more accurate 

structures; if accurate structures are of lower frequency, then the unweighted accuracy will 

be greater, and vice versa.

Representative structures, however, are not the only structural information produced about 

the clusters. These methods also give information at higher abstraction levels in the form of 

cluster signatures. We will show that structural predictions on a broader scale than base pairs 

have a better accuracy than the representative structure, and hence are also evaluated in 

addition to the more traditional structure level.

For each method including the MFE prediction, we calculate its accuracy as the F-measure, 

which is the harmonic mean of positive predictive value and sensitivity. We summarize 

results for each family by reporting the median most probable, best, average and weighted 

accuracy over all sequences in the family.

More precisely, positive predictive value is calculated as

and sensitivity as

where TP denotes a true positive, FP a false positive, and FN a false negative. The F-

measure is defined as

We compare the base pairs of the native against the predicted structure to determine 

accuracy. Base pairs common to both structures are counted as true positives; base pairs 

occurring only in the native but not the predicted as false negatives; and base pairs only in 

the predicted but not the native as false positives.

Rogers and Heitsch Page 8

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A more general definition of true positive, false positive and false negative involving edit 

distance is needed to calculate signature accuracy. The edit distance details the 

transformation of the native into the predicted by a series of either insertions or deletions. 

Any insertions to the native signature is considered a false positive, and any deletion a false 

negative. Any element of the native signature not deleted in the edit distance is a true 

positive. The shortest edit distance gives us the necessary terms to calculate the F-measure. 

Recall that Sfold’s clusters have the centroid as both signature as well as representative 

structure.

For profiling, each group has its profile (a set of features) as its signature. We calculate the 

F-measure of selected profiles against the profile representation of the native structure, with 

helices that are not features omitted from the profile by definition. Common features are true 

positives, features found only in the profile representation of the native are false negatives, 

and features found only in the selected profile are false positives. For simplicity we consider 

only features of length greater than two base pairs. Because very low frequency profiles are 

not selected, the weighted accuracies of the selected profiles are calculated using normalized 

frequencies.

The RNAHeliCes signature is its hishape. Each hishape is a set of indices with associated 

loop type. To calculate accuracy, we use their convert function to translate the native 

structure into a hishape, comparing it against the predicted hishapes with their tree edit 

program. A true positive is a loop type and index found in both the native and predicted 

hishape, with false positives and negatives found only in the predicted or native respectively. 

Because RNAHeliCes gives free energies and not frequencies for its hishapes, we 

approximate hishape frequency in calculating the weighted average accuracy. An 

abbreviated partition function from the given free energies is used as a normalizing factor to 

determine the probability of each hishape.

We use a similar tree edit approach to calculating the accuracy of RNAshapes signatures. 

For simplicity and consistency, we use the RNAHeliCes tree edit program to determine the 

edit distance between the native and predicted shapes. Both the native and the representative 

structure are translated into hishapes by the RNAHeliCes convert function before being 

input into the tree edit program. The additional index of hishape is disregarded by ignoring 

any relabeling edits. Insertions and deletions as before provide counts for true positives, 

false positives and false negatives.

4.2 Precision

The deterministic MFE and RNAHeliCes algorithms always return the same result for a 

given sequence. However, there is no such guarantee with methods analyzing a 

stochastically generated Boltzmann sample. Thus, not only the accuracy but also the 

precision (or repeatability) of results is an issue.

We measure precision by running each stochastic method ten times. The precision score for 

each cluster representation (structure or signature) is the observed fraction of runs in which 

it represents a cluster. For example, if a structure appears as an Sfold centroid in eight runs 
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out of ten, it receives a precision score of 0.8. The precision of the cluster representatives 

can thus be calculated for all methods.

Like accuracy, we report precision in four ways: the score of the most frequent element, of 

the best element, of the average of all the elements, and of the average of all the elements 

weighted by their frequencies. The most probable element is always apparent and can be 

used if only one element is desired, while the best element demonstrates the advantages of 

using multiple structures. Finally, comparing the weighted with the unweighted average 

reveals that precision increases when the higher frequency elements are weighted 

accordingly.

4.3 Size of results

Although accuracy results will demonstrate the viability of using cluster analysis methods 

even when only one structure is processed, results will also show that there is almost always 

a more accurate representative structure. Results size thus quantifies how many 

representative structures are produced. This result, in combination with others, demonstrates 

that using only a handful more structures pays a significant dividend in accuracy.

For Sfold, we report the number of clusters; for profiling, the number of selected profiles; 

and for RNAshapes, the number of shapes. We show results for RNAHeliCes as a reference 

only, as the default setting for this deterministic method always produces the three lowest 

energy hishapes.

4.4 Runtimes

The expediency of computational prediction methods is a significant motivator for their use. 

Accordingly, we quantify the efficiency of each method by its runtime.

By now, MFE methods are well-optimized, resulting in efficient runtimes. Although these 

cluster analysis methods have been developed more recently, we show that their run times do 

not suffer much in comparison. We use the runtime of GTfold [50], a parallelized 

implementation of the MFE method, for comparison. We measure the time it takes to 

generate and analyze a Boltzmann sample for a given sequence using a high resolution 

timer. We report the median run time across all sequences in a family.

5 Results

Results confirm the superiority of using cluster analysis methods instead of the MFE 

prediction. First, if only one possible structure will be considered, the most probable 

structure should be used since its accuracy is often better, and unlikely to be worse, than the 

MFE prediction. Second, considering just a few alternative structures confers real 

improvements in accuracy, so researchers are strongly urged to broaden their methodology 

beyond single-structure predictions. Finally, the most significant gains in accuracy, as well 

as precision, are achieved by viewing structures more abstractly as cluster signatures. This 

suggests that random errors affecting precision and systematic ones affecting accuracy are 

both reduced by this “fuzzier” view of secondary structures. As discussed in the next 

section, the implication for researchers is that the most accurate structure predictions will be 

Rogers and Heitsch Page 10

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieved by iterating through the levels of granularity. Furthermore, this benefit will be 

maximized by coupling the computational analyses with experimental hypothesis testing.

5.1 Accuracy

Results confirm the preferred approach of Boltzmann sampling. Because Sfold, profiling 

and RNAshapes summarize the structural information from a larger, more representative 

group of structures, accuracy results as a whole are more reliable. Boltzmann sampling 

methods in general either perform at or above the level of MFE structures, while RNA-

HeliCes can dip significantly below (Figure 5a). Furthermore, while Boltzmann signatures 

(e.g. Figure 5b and Figure 5d) perform reliably better than their associated representative 

structures (e.g. Figure 5a and Figure 5c), this relation is not seen in RNAHeliCes. Thus, 

while we consider RNAHeliCes for its unique abstraction scheme, we focus primarily on the 

three Boltzmann sampling methods.

Within the sampling methods, the best accuracies achieved by Sfold, profiling and 

RNAshapes for their representative structures are close to each other (Figure 5c). No one 

method sustains a clear advantage, with all methods producing the best accuracy for at least 

one RNA family. Similarly, the top accuracy score among most probable structures does not 

uniformly belong to one method, but shifts between methods depending on RNA family 

(Figure 5a). Thus at the base pair level of accuracy, there is little difference between these 

three methods. Consequently, we now compare all the methods’ representative structures 

collectively against the MFE structure.

Figure 5a illustrates that using the most probable structure is a better strategy than using the 

MFE. For each method, only RNAHeliCes had one family (TPP) with accuracy below 95% 

of the MFE accuracy. Moreover, on average, the accuracy is usually 6% above.

However, in nearly all the cases, the accuracy of the most probable representative (Figure 

5a) structure is not the best (Figure 5c). Every method has a representative structure with 

accuracy better than the MFE, for every RNA family. Even adding only two additional 

suboptimal structures for RNAHeliCes, which always produces just three structures by 

default, significantly improves the best accuracy in a substantial number of cases. (The 

improved scores of the most probable and best structures have previously been shown with 

Sfold [30], but we demonstrate that these results are not tied to Sfold’s methodology but are 

a general result of clustering suboptimal structures.) Thus, while considering only one 

structure is the simplest, expanding the scope of investigation even a little carries significant 

benefits.

If resources allow for only a few more suboptimal structures to be processed, then the higher 

frequency ones should be considered first. This is implied by comparing the unweighted 

average accuracies (Figure 5e) against the weighted average (Figure 5g). For Sfold and 

RNAshapes, the weighted accuracy is higher than the unweighted because the very low 

frequency structures are unlikely to be the native pairings. In contrast, profiling already 

removes these structures from consideration. Hence, the lower frequency selected profiles 

are exactly those shown to be more accurate by the other two methods. Accordingly, for 
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profiling the unweighted has higher accuracy than the weighted. Thus, if only a few but not 

all of the structures can be considered, selecting the more frequent ones is the best strategy.

Although the methods are largely interchangeable at the base pair level, this is not the case 

as abstraction is introduced. In a majority of the cases (e.g. Figure 5c vs. Figure 5d), the 

signature has a higher accuracy than its representative structure, indicating that broader 

structural predictions are more correct than specific ones.

Additionally, the degree of abstraction is related with the degree of accuracy. Especially for 

the best and averaged accuracies (Figures 5d and 5f), shapes is clearly better than profiles, 

which is clearly better than centroids. The improvement in accuracy is especially significant 

for RNAshapes; the most probable shape is the correct one in most families (Figure 5b). 

This agrees with an intuitive sense that computational prediction, while not completely 

accurate in all the base pair details, nevertheless is sophisticated enough to predict the broad 

outlines of structure correctly at this length scale.

Thus, accuracy results confirm the superiority of using structures from a Boltzmann sample, 

preferably more than one. They also confirm the strategy of using abstraction when possible.

5.2 Precision

Precision increases as abstraction increases. Because a lack of precision often indicates the 

presence of random errors, this indicates that there is significant stochastic noise at the base 

pair level in Boltzmann sampling. The best scores (Figure 6c) indicate that despite stochastic 

noise, the Boltzmann sample has a clear signal that the methods are consistently picking up. 

The precision of the most probable structure (Figure 6a) is usually among the best scores of 

each run (Figure 6c). Hence the more frequent elements are consistently present in runs with 

high repeatability, with stochastic noise affecting the low frequency elements more. This is 

further confirmed by precision scores significantly increasing when average scores (Figure 

6e) are weighted according to their frequencies (Figure 6g). Thus, considering the most 

probable structure, and preferably two to five other high frequency structures, as the native is 

advantageous not only with respect to accuracy but also to precision.

The stochastic noise is further reduced by lowering the granularity from structures to 

signatures. Both profiling and RNAshapes have their best and most probable precision 

scores boosted to perfect repeatability for all families when considering signatures (Figures 

6d and 6b). Even between signatures, there is a clear inverse relation between level of 

granularity and precision. According to the average precision scores (Figure 6f), Sfold’s 

fine-grained centroids perform worse than profiling’s more abstract helix centric view, 

which in turn is worse than RNAshapes’ more abstract shapes. This again is consistent with 

accuracy results, which strongly encourage the use of signatures under the principle that the 

lower granularity, the better.

Taken together with the accuracy scores, we see that both accuracy and precision typically 

increase with higher frequency structures, and even more so with signatures. This indicates 

that abstraction alleviates both random stochastic errors that affect precision, and potentially 

more systematic ones affecting accuracy. Precision results also confirm the strategy of 
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always considering the most probable structures, additional high frequency structures when 

resources allow, and abstract signatures when feasible.

5.3 Size of results

For researchers partial to the one structure simplicity of the MFE method, any of the 

Boltzmann methods’ most probable structure is a better choice than the MFE. However, 

analyzing additional high frequency structures pays dividends in accuracy, as seen by the 

fact that the most probable structure is usually not the most accurate. Results size confirm 

that the number of additional structures to be analyzed is typically small.

Sfold consistently gives some of the smallest number of clusters, i.e. between two to six 

clusters. For Sfold, the number of clusters does not noticeably differ as sequence length 

increases. Thus, the best accuracies of Sfold are accessible by considering only a handful of 

additional structures, which covers all the clusters.

The median number of selected profiles is slightly larger but always under a dozen, and 

generally correlated to sequence length. Considering all the selected profiles is still feasible, 

as is focusing on the most frequent two to five profiles.

RNAshapes reports a median number of shapes ranging from two to 19, with the number of 

shapes increasing more significantly with longer sequence lengths. However, the growing 

number of shapes is populated in large part by very low frequency clusters, which have been 

shown to have relatively poor accuracy and precision. Hence, using a few of the most 

frequent structures is again encouraged. If signatures are used, employing just the most 

probable is a valid strategy, given the most probable signatures’ very high accuracy and 

perfect precision.

5.4 Runtime

Compared to GTfold, the cluster analysis methods are slower, though to human perception 

there is little difference between the runtimes of GTfold, profiling and RNAHeliCes. Hence, 

runtime is not a discriminating factor under normal conditions (e.g. no massive number of 

runs).

Sfold was fairly consistent in generating and analyzing Boltzmann samples, averaging 

around 25 seconds, with the most time spent in its computationally intensive clustering 

algorithm. Both profiling and RNAHeliCes ran in usually under a second, though RNA-

HeliCes’ run time went up for longer families. RNAshapes’ run time was inbetween Sfold 

and profiling, and was the most variable. Run time increased with sequence length for all 

methods, as expected.

Thus, while high volume studies may preclude using slower methods, single runs can be 

made by any method in reasonable time.
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6 Discussion

Results demonstrate that at the base pair level, the Boltzmann cluster analysis methods are 

indistinguishable, most notably in terms of accuracy. Hence, whether selecting one structure 

to use or employing the more preferred multiple structures, any of the methods is sufficient 

to show improvements over the MFE prediction. Real differences, however, appear when 

considering signatures with their differing granularity levels. Specifically, lowered 

granularity translates to higher accuracy and precision, indicating that errors both systematic 

and random are addressed at least in part by structural abstraction.

These results taken together present a clear strategy for employing cluster analysis methods: 

use the most probable structure instead of the MFE prediction, consider multiple structures 

when resources allow, and begin with signatures instead of structures when feasible. While 

the methods are largely indistinguishable at the base pair level, careful consideration is 

needed if abstract signatures are used, as each method operates at a different granularity 

level.

Use of the appropriate method yields information at the given granularity, which in turn 

should motivate further investigation. By iterating between computation and 

experimentation, the granularity of exploration can progress from very low to very high. 

Thus, while their representative structures make these methods competitors at the base pair 

level, their signatures make them complementary tools from a granularity perspective.

If nothing but the broadest knowledge concerning a sequence is known, then the broadest 

and most abstract method (RNAshapes) is the place to begin. For example, a group of 

related sequences (identified through evolutionary homology, sequence alignment, or 

experimental results) may need to be characterized. Such a scenario occurs with aptamers, 

which are sequences that bind to a ligand of interest and are typically of length 100 

nucleotides or less. Of increasing interest in therapeutic use [51, 52], aptamers can be found 

experimentally from a large random pool of sequences [53, 54, 55]. The nature of aptamer-

ligand binding, however, is not well understood, nor is it always clear what the key similarity 

is that causes a group of sequences to all bind to the same ligand [56].

The secondary structure of the sequence is thought to be crucial to its binding, and structural 

features common to all the sequences are of high interest. Since little is known about the 

sequence(s) of interest, a very high level, shapes-oriented approach is a good starting point 

to identifying common branching motifs. Sampled shapes are highly accurate and precise at 

this level, and can be directly compared between sequences of differing lengths. If a 

branching pattern of interest is identified (such as the linear or slightly branched topologies 

known to be favored [57, 58, 59]), then only aptamers with the predicted branching pattern, 

for example, can be included in a experimental selection pool. This early weeding out of 

potentially unviable sequences could alleviate the low yield and high cost of aptamer 

synthesis [55], thus increasing the effectiveness of experimentation. Using shape predictions 

could also preclude the not uncommon scenario of generating random sequence pools with 

low structural diversity [59] or with characteristics different from functional molecules.
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Results from aptamer selection usually produce a smaller subset of sequences with the 

desired binding affinity. Thus, while all sequences may have the same branching 

configuration, a higher granularity level is now needed to investigate details that enable 

some sequences to bind while others do not. The wide gap between shape and shrep 

accuracies in Figures 5c and 5d indicate that much accuracy is lost by jumping from a shape 

to the MFE structure with that shape.

By considering different helix combinations with the same shape, the focus can be narrowed 

further without moving directly to base pairs. Helix-centric methods like profiling give the 

location and length of helices within a topology, enabling the search for common regional 

motifs and domains, like the bulge-hairpin [55] or the stem-loop motif [60] known to be 

functionally important in many characterized aptamers.

Regional analysis afforded by profiling is needed when computational or experimental data 

points to a particular area of interest. Computationally, sequence alignment tools can 

determine that a conserved subsequence exists. Experimentally, subregions of interest are 

found in sequences from partially structured libraries [60, 61]. Shown to improve aptamer 

selection, these sequences typically contain a conserved subsequence flanked by two 

randomized subsequences. High performing sequences require regional analysis to 

determine the structural behavior of their randomized subsequences. Profiling a sequence 

gives the major combinations of helices possible for the region, enabling common motifs to 

emerge.

A proposed motif can be verified by screening additional sequences predicted to form 

similar substructures in the key region. Once a motif or domain is identified as the potential 

key to binding, granularity can be increased to a nucleotide level. Mutation experiments 

predicted to disrupt key domains can verify computational predictions or necessitate 

alternate hypotheses. Successful knockout mutations pinpoint specific nucleotides of 

interest, which can be tracked by the cluster analysis methods’ representative structures. 

Sfold in particular can process a set of structures with only a few key base pair differences 

among them. Because mutagenesis experiments at this level are resource-intensive, such a 

fine-grained level of analysis should only be performed after iterating through coarser 

grained signature analysis.

Researchers can thus iterate between experimentation and computation, using one to inform 

the other. By employing a more nuanced use of these complementary signatures, brute force 

experiments can give way to faster and more informed techniques. Furthermore, ad-hoc 

comparisons of structures can yield to a more rigorous, multilayered approach that draws on 

a wealth of computational research.

Finally, given the benefits of this multilayered approach, it would be interesting to 

incorporate other abstractions, such as trees [62, 63, 64] or graphs [65, 66, 67, 68] into the 

cluster analysis of Boltzman samples. Expanding the number and granularity of tools can 

only strengthen the computational benefits to experimentalists.
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7 Conclusion

The RNA computational community has long known the advantages of considering 

information in addition to the MFE prediction, investigating the use of base pairs and 

suboptimal structures to improve accuracy. Yet, the single MFE prediction paradigm still 

dominates among experimentalists, although increasing biological evidence indicates that 

multiple secondary structures have functional significance in nature. The purpose of this 

paper has been to convince the reader that this gap can and should be bridged.

First, the gap should be bridged because cluster analysis of Boltzmann samples outperforms 

MFE predictions, even at sequence lengths where thermodynamic optimization is the most 

accurate. To begin, picking the representative structure associated with the highest frequency 

cluster from any Boltzmann sampling method is more accurate on average than the MFE. 

Moreover, whenever additional information (experimental, computational or otherwise) is 

available to discriminate between potential alternatives, multiple structures should be 

considered, since an even more accurate structure can almost always be found. Furthermore, 

the more accurate structures are likely to be the higher frequency ones, so low frequency 

structures need be considered only when resources allow. This, in conjunction with the 

relatively small numbers of clusters, typically a dozen or less, ensure that only a handful of 

additional structures need to be processed to improve accuracy.

Second, the gap should be bridged because the cluster analysis methods offer a more 

powerful function than mere structure prediction. Namely, these methods also represent 

clusters with abstract signatures. The signatures’ different granularities provide alternative 

ways to view and compare structures that confer better accuracy and precision. These 

improved results imply that signatures help reduce systematic errors (potentially present in 

the thermodynamic model) and random ones introduced by stochastic sampling.

Signatures also provide complementary ways of mining the important structural information 

of a Boltzmann sample. These include the trends and motifs in the sample concerning 

branching, helical and base pair patterns. The appropriate level of cluster analysis depends 

on the level of information known or desired concerning a structure, i.e. very broad or 

general hypotheses are well suited for RNAshapes analysis and testing, more specific 

regional ones for profiling, and very specific base pair ones for Sfold.

The different granularity levels also indicate the viability of iterating back and forth between 

computation and experimentation. Computation helps guide experimentation, which 

generates more fine-grained hypotheses to be verified by higher granularity methods, and so 

forth. Because lower granularity signatures are in general more accurate, employing this 

graduated approach to analysis should funnel researchers toward more accurate results than 

leaping straight to the base pair resolution of an MFE structure.

As shown, cluster analysis methods have much to offer the experimental community, from a 

superior single structure prediction strategy to a more sophisticated one of iterating between 

computation and experimentation. These methods reflect the wealth of research relevant to 

real world problems developed in the last decades to turn RNA structural data into 
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actionable information. Their adoption by the experimental RNA community will only 

improve current analysis and speed up the rate of important discovery and applications.
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Figure 1. 
The two Sfold cluster centroids for A. tumefaciens 5S. The first is the MFE structure, the 

second very close to the native; they respectively represent clusters with probabilities 62.1% 

and 37.9%. Base pairs in the symmetric difference are shown in yellow and total 47. Base 

pairs separating the second from the native are shown in red; many are noncanonical. Note 

that single stranded bases do not count toward the symmetric difference.
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Figure 2. 
The three shapes present in a N. pharaonis tRNA-ala sample, with their shreps; their 

probabilities from left to right are 99.0%, 0.7% and 0.3%. The MFE is the shrep for the first, 

most populous shape, while the native is the shrep for the last.
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Figure 3. 
The two alternating native structures for the spliced leader RNA from Leptomonas 
collosoma. Both have the same shape [ ], but different hishapes. The first structure has the 

innermost base pair (25, 29) and thus an index of ; its hishape is [27]. The second 

structure has a helix midpoint of  and a hishape of [38].
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Figure 4. 
Four VcQrr3 consensus structures, with colors indicating different features. Their 

probabilities are, clockwise from top left, 6.8%, 56.4%, 7.0% and 20.5% Each structure as a 

combination of colors illustrates profiling’s representation of a structure as a set of features. 

The MFE structure is the lower left.
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Figure 5. 
Accuracy comparisons for representative structures (left) and signatures (right). Median 

scores are reported for each family. Sfold centroids are used for both. The median MFE F-

measure is also reported for comparison. Note the significant improvement in accuracy for 

signatures versus structures.
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Figure 6. 
Precision comparisons for representative structures (left) and signatures (right). Median 

scores are reported for each family. Sfold centroids are used for both. Neither RNAHeliCes 

nor the MFE prediction are included, since both are deterministic with perfect precision. 

Note the improvement in precision for signatures versus structures.
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Figure 7. 
Median number of groups for each RNA family. RNAHeliCes always by design returns 

three groups, and is included here for reference.
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Figure 8. 
Median run time of Sfold, profiling, RNAshapes and RNAHelices.
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Table 1

Information for the ten test families, each having ten test sequences. MFE accuracies are calculated with F-

measures using the GTmfe package of GTfold and the native structure from the Rfam consensus alignment. 

The median score is reported in the table. Sequence length reflect average family length as reported by Rfam, 

which were used in selecting the ten families.

ID Description Length MFE acc.

UnaL2 UnaL2 LINE 3′ element 54.1 0.59

tRNA transfer RNA 73.4 0.51

Intron group II Group II catalytic intron 87.2 0.56

THF THF riboswitch 99.6 0.51

TPP TPP riboswitch 111.6 0.5

5S 5S ribosomal RNA 116.6 0.53

U5 U5 spliceosomal RNA 117.2 0.52

FMN FMN riboswitch 136.6 0.52

U1 U1 spliceosomal RNA 162 0.53

U2 U2 spliceosomal RNA 190 0.57
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