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Abstract

Long non-coding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. 

Many of these lncRNAs have regulatory functions and have recently emerged as major players in 

governing fundamental biological processes. Here we review the definition, distribution, 

identification, databases, analysis, classification and functions of lncRNAs. We also discuss the 

potential roles of lncRNAs in the etiological processes of psychiatric disorders and the 

implications for clinical diagnosis and treatment.
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Although only 1.2% of the mammalian genome encodes proteins, the genome is almost 

entirely transcribed, generating an enormous number of non-protein coding RNAs that 

include tens of thousands of long non-coding RNAs (lncRNAs) (> 200 nt) (Carninci et al., 
2005; Mercer et al., 2009; Perkel, 2013). lncRNAs resemble protein-coding messenger 

RNAs (mRNAs) in sequence, but they can be distinguished based on multiple other features 

including expression levels, average number of exons, gene length, number of alternatively 

spliced isoforms, degree of tissue-specificity, signatures of conservation, presence of 5′ caps 

and polyA tails, rates of degradation/turn-over, etc. Expression of lncRNAs is tissue-, cell 
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type- and developmental stage-specific (Amaral et al., 2008; Amaral and Mattick, 2008; 

Mercer et al., 2008). lncRNAs are expressed in various tissues (e.g., livers (Dong et al., 
2014)) with over half of all lncRNAs expressed in the brain (Mercer et al., 2008). Most 

lncRNAs are permanently localized in the nucleus (Kapranov et al., 2007), with exceptions 

showing functionality in the cytoplasm (Carrieri et al., 2012; Kapranov et al., 2007; Mercer 

et al., 2009; Qureshi and Mehler, 2013; Taft et al., 2010). This specificity of tissue and 

subcellular distributions strongly suggests that the expression of lncRNAs is under precise 

regulatory control. This review summarizes the identification, databases, classification, 

analysis and functions of lncRNAs and their roles in various psychiatric disorders.

Identification of lncRNAs

Both RNA-Seq and microarray hybridization technologies can be used to identify lncRNAs, 

each with distinct advantages and limitations. Traditionally, lncRNAs can be identified by 

sequencing together with mRNAs and other RNAs using whole-transcriptome RNA-Seq 

technology. However, because lncRNAs tend to be expressed at much lower levels than 

mRNAs (Cabili et al., 2011; Cawley et al., 2004; Guttman et al., 2010; Kampa et al., 2004), 

to achieve adequate coverage of lncRNAs, the read depths of mRNAs will have to exceed 

around 10 times of the normal need in whole-transcriptome sequencing (Cabili et al., 2011; 

Derrien et al., 2012; Guttman et al., 2010; Yan et al., 2013). In addition, many lncRNAs are 

still undetectable by whole-transcriptome RNA-Seq even with the increase in overall read 

depth (Toung et al., 2011). In a word, this technique may not be the most effective to reliably 

and precisely quantify the low abundance lncRNA expression (Labaj et al., 2011). Instead, 

targeted RNA-Seq technology may better address these coverage issues, including lncRNA 

capture or rRNA+PolyA depletion to enrich lncRNAs before sequencing. Alternatively, 

some special microarrays can be used to identify low-abundance lncRNAs. For example, 

Arraystar Human LncRNA Microarray V3.0 (www.arraystar.com) has been designed to 

collect only lncRNAs and proximate mRNAs, so that users can enhance the expression 

signals of lncRNAs to a sufficient level by increasing the template input, and avoid cost on 

other unwanted sequences that whole-transcriptome RNA-Seq usually produces. However, 

the technical limitations of microarrays for the detection of low-abundant transcripts are well 

known, including low signal-to-noise ratios, and have in the past led to significant over-

estimation of the extent and levels of intergenic transcription.

Many lncRNAs overlap with mRNAs, which brings a big challenge for researchers to 

distinguish between these two classes of transcripts if when the traditionally 3′-biased 

microarray probes are used, because these probes target the 3′UTRs that are shared by both 

types of transcripts. Transcript-specific probes that target only the exons or the splice 

junctions of each lncRNA transcript may enable more reliable and accurate detection of each 

individual transcript. Alternatively, directional RNA-Seq may also have significant 

advantages in addressing the issue of overlapping.

Many lncRNAs identified by RNA-Seq and microarray hybridization technologies fail to 

show conservation, and thus their functions are unclear. On this point, chromatin signature 

represents a distinct, third approach and may confer advantages (www.arraystar.com). On 

the basis of exploiting chromatin structure, this method identifies sets of functional large 
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intergenic non-coding RNAs (lincRNAs) that show a high degree of evolutionary 

conservation. Mikkelsen et al. (2007) created a genome-wide chromatin-state map using 

chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) 

(Mikkelsen et al., 2007). This map marks the ‘K4–K36 domains’ from trimethylation of 

lysine 4 of histoneH3 (H3K4me3) at the promoters to trimethylation of lysine 36 of histone 

H3 (H3K36me3) along the length of the transcribed genomic regions. Guttman et al. (2009) 

searched for K4–K36 domains in this genome-wide chromatin-state map that reside outside 

known protein coding gene loci and do not overlap known miRNAs or endogenous short 

interfering RNAs (siRNAs), and then systematically revealed 1,675 K4–K36 (1,250 

conservatively defined) domains (Guttman et al., 2009). Most of these K4–K36 domains 

encode functional lincRNAs that are highly conserved in nucleotide sequence and chromatin 

structure and are implicated in diverse biological processes including transcription of these 

sites (Guttman et al., 2009).

Databases of lncRNAs

The sequence information for lncRNAs are available in several public databases, including 

RefSeq release 60, UCSC hg19, GENCODE 17, RNAdb 2.0 (Pang et al., 2007), NRED 

(Dinger et al., 2009), Valadkhan Lab Functional lncRNA Database, LncRNADisease, 

lncRNAdb, NONCODE (Bu et al., 2012a) and Ensembl 37.59. Among them, RefSeq, 

GENCODE, Ensembl and UCSC are gene annotation databases that include varying 

numbers of annotated lncRNAs; Valadkhan Lab Functional lncRNAs, LncRNADisease and 

lncRNAdb are lncRNA databases; RNAdb 2.0 and NONCODE are RNA databases 

including lncRNAs; and NRED is a microarray expression database of lncRNAs. Some 

databases include unannotated RNAs that are not well defined and might have little or no 

expression data. To extract effective lncRNAs from these unannotated RNAs, one can screen 

these databases according to certain computational pipeline. For example, one can filter 

transcripts of known coding RNAs, structural RNAs (e.g., tRNAs, rRNAs), small ncRNAs, 

and highly similar sequences, examine whether each transcript contains a significant open 

reading frame (ORF), and, finally, retain only multiexonic transcripts > 200 nt.

Several ground-breaking landmark publications also reported lncRNAs 30,37–50. These 

lncRNAs (www.arraystar.com) include: (1) LincRNAs (1st set). Khalil et al. identified and 

characterized 3,289 lincRNAs by searching for intergenic K4-K36 domains in genome-wide 

chromatin-state maps (Khalil et al., 2009). (2) LincRNAs (2nd set). Cabili et al. defined a 

reference catalog of more than 8,000 lincRNAs using RNA-Seq data and public database 

information (Cabili et al., 2011). A total of 14,353 transcripts expressed from 4,662 

stringently-defined lincRNAs were identified. (3) Transcribed Ultra-Conserved Regions 

encoding lncRNAs (T-UCRs). Ultra-conserved regions (UCRs) are intra- and intergenic 

sequences with >200nt that are 100% identical among humans, mice, and rats. 481 UCRs 

were identified by Bejerano et al. (Bejerano et al., 2004). 475 UCRs encode T-UCRs. (4) 
HOX LncRNAs. Rinn et al. identified 407 transcribed regions within the four HOX loci in 

humans (101 HOX exons, 75 introns and 231 intergenic ncRNA transcripts) (Rinn et al., 
2007). (5) LncRNAs with Enhancer-like Function (LncRNA-a). Orom et al. identified about 

3,000 lncRNAs with lncRNA-a using the GENCODE annotation (Harrow et al., 2006; Orom 

et al., 2010). (6) Finally, some lncRNAs with ORFs. Some sense-overlapping lncRNAs have 
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an ORF that shares the same start codon as a protein-coding transcript; however, these short 

ORFs are unlikely to encode a protein for some reasons. About 709 sense-overlapping 

lncRNAs with such ORF types have been reported (www.arraystar.com). Actually, a large 

proportion of these lncRNAs have already been deposited into the above databases. Some of 

the putative lncRNAs lack expression data or have not been characterized in details either, 

and thus the effective lncRNAs should be extracted using the computational filtering 

pipelines as described above.

Classification and functions of lncRNAs

LncRNAs have recently emerged as major players in governing fundamental biological 

processes. Recent evidence suggests that lncRNAs are involved in a wide variety of cellular 

functions, including epigenetic silencing, transcriptional regulation, RNA processing and 

modification (Amaral et al., 2008; Mercer et al., 2009; Wang et al., 2008), and implicated in 

neural plasticity (Sartor et al., 2012), neuropathological process (Bu et al., 2012b), 

neurotransmission (Qureshi et al., 2010), and stress response (Sartor et al., 2012). A large 

proportion of lncRNAs may cis-regulate their neighboring protein-coding genes, so 

analyzing the genomic context of lncRNAs can help predict their functional roles. According 

to the positional relationship between lncRNAs and their associated protein-coding genes, 

lncRNAs can be classified as intergenic, intronic, antisense, sense overlapping, and 

bidirectional lncRNAs (www.arraystar.com) (Figure 1). 1. Intergenic lncRNAs (lincRNAs) 
are located between protein-coding genes and are at least 1 kb away from the nearest 

protein-coding genes. For example, a sense lincRNA, i.e., proliferating cell nuclear antigen 

pseudogene 1 (PCNAP1; 1,055 nt), is located between ADH4 and ADH6. LincRNAs are 

implicated in diverse biological processes, including embryonic stem cell pluripotency, cell-

cycle regulation and immune surveillance. They usually interact with chromatin modifying 

proteins (PRC2, SCMX and CoREST) to regulate the expression of proximate genes (Khalil 

et al., 2009). 2. Intronic lncRNAs are located within the intron of annotated protein coding 

genes. Most of them show the same tissue expression patterns as the host genes, and may 

stabilize the host transcripts or regulate their alternative splicing (Nakaya et al., 2007). 3. 
Sense-overlapping lncRNAs can be considered transcript isoforms of protein-coding 

mRNAs, because they overlap with the host gene on the same genomic strand. The majority 

of these IncRNAs lack substantial open reading frames (ORFs) for protein translation. Some 

others contain ORFs that share the same start codons as the host transcripts but are unlikely 

to encode a protein because of non-sense mediated decay (NMD) that limits the translation 

of mRNAs with premature termination stop codons and triggers NMD-mediated destruction 

of the mRNA, or because of an upstream alternative ORF which inhibits the translation of 

the predicted ORF. Some sense-overlapping lncRNAs share stop codons with host mRNAs 

on the same genomic strand. For example, IPO11-LRRC70 read-through overlaps IPO11 
mRNA and shares a stop codon on the same genomic strand. This lncRNA is close to the 

peak association marker rs7445832 (p=6.2×10−9) for alcohol and nicotine codependence in 

European-Americans and Australians as identified in a GWAS (Zuo et al., 2013). 4. 
Antisense-overlapping lncRNAs: Natural antisense transcripts (NATs) are RNA molecules 

that are transcribed from the opposite strand of many protein coding (sense) genes and 

overlap in part with well-defined spliced sense or intronless sense mRNAs. NATs bind to 

Zuo et al. Page 4

Psychiatr Genet. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sense RNA and/or proteins to regulate transcription and translation. For example, a large 

antisense-overlapping lncRNA, i.e., LOC100507053 (213kb), covers ADHs 5, 4, 6 and 1A 

genes that form a risk genomic region for alcoholism demonstrated by numerous GWASs 

and candidate gene studies (Gelernter et al., 2009; Li et al., 2011, 2012). This class of 

lncRNA frequently uses diverse transcriptional and post-transcriptional regulatory 

mechanisms to fulfill a wide variety of biological roles (Sartor et al., 2012). These IncRNAs 

usually have a tendency to undergo fewer splicing events and typically show lower 

abundance than sense transcripts (He et al., 2008). The basal expression levels of antisense-

overlapping lncRNAs and sense mRNAs in different tissues and cell lines can be either 

positively or negatively regulated (Katayama et al., 2005; Okada et al., 2008). 5. 
Bidirectional lncRNAs are oriented head to head with a protein-coding gene within 1kb. A 

bidirectional lncRNA transcript exhibits an expression pattern similar to its host gene, 

suggesting that they may be subject to shared regulatory pressures. However, discordant 

expression relationships between bidirectional lncRNAs and protein coding gene pairs have 

also been identified, challenging the assertion that lncRNA transcription occurs solely to 

“open” chromatin to promote the expression of neighboring coding genes (Chakalova et al., 
2005; Mercer et al., 2008; Struhl, 2007).

Additionally, some lncRNAs may trans-regulate distant protein-coding genes. RNA 

Immunoprecipitation sequencing (RIP-Seq) or microarray (RIP-Chip) technology has 

identified many lncRNAs that interact with specific RNA binding proteins (RBPs) (Zhao et 
al., 2010). LncRNAs may function by interacting with these RBPs.

Roles of lncRNAs in psychiatric disorders

Recent findings that suggest a functional role of lncRNAs in various aspects of cell biology 

have increased awareness of their potential to contributing towards diseases. To determine 

which lncRNAs are related to various diseases becomes the logical and necessary next step 

in identifying the missing regulatory pathways following a long history of attention to the 

coding regions and small ncRNAs like miRNAs. For instance, by analyzing the differential 

expression, fold change of expression, classification, and regulatory effects of lncRNAs, 

many association studies have identified lncRNAs in association with Alzheimer’s disease, 

substance dependence, schizophrenia, bipolar disorder, depression, autism spectrum disorder 

(ASD) and panic disorder.

Alzheimer’s disease

Alzheimer’s disease (AD) is the main cause of dementia in the elderly population 

worldwide. Adult neurogenesis appears to be upregulated very early in AD pathogenesis in 

response to some specific aggregates of beta-amyloid (Aβ) peptides, exhausting the neuronal 

stem cell pools in the brain. LncRNAs exhibit aberrant expression in AD. Recently, it has 

been demonstrated that an antisense lncRNA, BACEAS, exhibited elevated expression in 

several brain regions in individuals with AD. BACEAS regulates the expression of the sense 

beta-secretase-1 (BACE1) gene, a crucial enzyme in AD etiology (Faghihi et al., 2008; 

Modarresi et al., 2011). Upon exposure to various cell stressors including beta-amyloid 1-42 

(Aβ 1-42), expression of BACE1-AS becomes elevated, increasing BACE1 mRNA stability 
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and generating additional Aβ 1-42 through a post-transcriptional feed-forward mechanism. 

Alternatively, alteration of the expression for BACE1-AS may also mediate changes at an 

epigenetic level to effect gene expression and contribute to disease etiology, suggesting that 

this lncRNA may serve as an attractive drug target candidate for AD (Faghihi et al., 2008) 

(www.arraystar.com).

Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset 

AD. An antisense-overlapping lncRNA, 51A, maps in intron 1 of SORL1 gene and is 

frequently upregulated in expression in the cerebral cortices of individuals with AD. 51A 
expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein 

variant A to an alternatively spliced protein form. This process, resulting in a decreased 

synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor 

protein (APP), leading to increased Aβ formation that is implicated in neurodegeneration. 

(Ciarlo et al., 2013)

Another lncRNA, Brain Cytoplasmic RNA 200-Alpha (BC200), a human analog of brain 

cytoplasmic RNA 1 (BC1), is a translational regulator that is selectively targeted to 

somatodendritic domains of neurons. It modulates local protein synthesis in postsynaptic 

dendritic microdomains, contributing to the maintenance of long-term synaptic plasticity. 

Dysfunctional plasticity has been posited as a starting point for the neurodegenerative 

changes as observed in AD. BC200 was significantly up-regulated in AD brains, specifically 

in Brodmann’s area 9 and the hippocampus, regions that frequently are involved in the 

disease. Relative BC200 levels in these brain areas are correlated with the disease severity. 

In more advanced stages of the disease, BC200 is mis-localized and clustered in the 

perikaryon. These observations suggest that deregulation of these synaptic lncRNAs is 

involved in the synaptic and neural network dysfunction in both early and later stages of AD. 

(Mus et al., 2007)

Other lncRNAs implicated in the etiology of AD include GDNF-AS1 (Airavaara et al., 
2011), CDKN2B-AS1 (Zuchner et al., 2008), HAR1A (Harries, 2012), HAR1B (Harries, 

2012), SNHG3 and SOX2-OT (Arisi et al., 2011).

Substance dependence

Dysregulation of many lncRNAs has been reported to contribute to substance use disorders 

including alcohol, nicotine, heroin and cocaine dependence. For example, nuclear enriched 

abundant transcript 2 (NEAT2), an lncRNA regulating synapse formation (Bernard et al., 
2010), was up-regulated in alcoholics’ brain (Kryger et al., 2012); NEAT2, NEAT1, 
myocardial infarction associated transcript (MIAT) and maternally expressed 3 transcript 

(MEG3) were up-regulated in the nucleus accumbens (NAc) of heroin abusers (Michelhaugh 

et al., 2011); and NEAT2, MIAT, MEG3 and empty spiracles homeobox 2 opposite strand 

transcript (EMX2OS) were elevated in the NAc of cocaine abusers (Michelhaugh et al., 
2011). Smokers had dramatically elevated imprinted maternally expressed transcript (H19) 

expression in airway epithelium (Kaplan et al., 2003); demethylation of H19 was correlated 

to chronic alcohol use in males (Ouko et al., 2009); and many lncRNAs were reported to be 

involved in cocaine-induced neural plasticity in the NAc and in risk for cocaine dependence 

(Bu et al., 2012b).
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Brain-derived neurotrophic factor (BDNF) gene, a gene known to be involved in substance 

dependence, e.g., cocaine dependence (Ghitza et al., 2010), is controlled by a conserved 

antisense lncRNA, i.e., BDNF-AS (Modarresi et al., 2012). BDNF-AS suppresses BDNF 
mRNA expression by altering chromatin structure at the BDNF gene locus. Inhibiting 

BDNF-AS by siRNA or other methods robustly increased BDNF mRNA and protein 

expression and enhanced neuronal outgrowth. BDNF-AS is dysregulated in response to 

chronic drug use and contributes to drug-seeking behaviors. (Sartor et al., 2012)

Schizophrenia

Alternative splicing of some mRNAs is associated with the pathology of schizophrenia (SZ). 

Many disease-associated genes displayed aberrant splicing patterns. Gomafu is an lncRNA 

highly regulated by neural activity. It binds directly to splicing factors, and is significantly 

downregulated in the cortex of SZ patients. Modulation of Gomafu expression alters splicing 

patterns of at least two SZ-associated genes. Knockdown of Gomafu resulted in the 

upregulation of SZ pathology-related splice variants of DISC1 and ERBB4, consistent with 

the observation that overexpression of these same splice variants are associated with SZ. In 

contrast, Gomafu overexpression produced significant downregulation of the same disease-

associated splice variants of both genes (Barry et al., 2014). This suggests that the lncRNA 

Gomafu may contribute to the pathogenic splicing pattern of these key SZ genes. 

(Guennewig and Cooper, 2014)

DLG2AS, aka PSZA11q14, is an antisense-overlapping lncRNA to DLG-2 gene, located 

within the first intron of DLG-2. It acts as an antisense regulator of DLG-2, which controls 

the assembly of functional N-methyl-D-aspartate (NMDA) receptors. Its expression was 

reduced in the brains of SZ patients, specifically in Brodmann’s areas 9, 21 and 22 and in 

the hippocampus, indicating that it may be involved in at least some cases of SZ (Polesskaya 

et al., 2003). Schizophrenia spectrum disorders have also been linked to the reelin (RELN) 

gene and its antisense transcript HAR1 (Tamura et al., 2007). Other lncRNAs have been 

reported to be implicated in SZ, including C6UAS (Morelli et al., 2000) and LINC00271 
(Amann-Zalcenstein et al., 2006).

Autism spectrum disorders

Autism spectrum disorders (ASDs) include various developmental disorders, including 

autism, pervasive developmental disorder not otherwise specified (PDD-NOS), Rett 

syndrome, Fragile X syndrome and the Asperger syndrome. Common symptoms of the 

various ASDs include problems of reciprocal social interactions, verbal and non-verbal 

communication, and rigid and stereotyped behaviors. ASD is a clinically and etiologically 

heterogeneous disorder with a complex genetic architecture. In the last decade, several 

studies reported aberrant expression of lncRNAs, suggesting that lncRNAs contributed to 

ASD risk. Recently, Ziats and Rennert (2013) showed that over 200 lncRNAs were 

differentially expressed in a microarray of postmortem prefrontal cortex and cerebellum 

tissue of ASD patients (Ziats and Rennert, 2013).

(1) Autism—Vincent et al. (2002) identified a novel autism locus, which includes the gene 

RAY1/ST7 (Vincent et al., 2002). This locus contains at least four lncRNAs, i.e., ST7OT1-4, 
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both on the sense and antisense strands that potentially regulate RAY1/ST7. Additionally, 

moesin regulates neuronal architecture and the lncRNA MSNP1AS, transcribed in antisense 

to a moesin pseudogene, is 94% identical and antisense to moesin and can bind moesin 

mRNA (Kerin et al., 2012; Le Meur et al., 2005). Overexpression of MSNP1AS in cultured 

cells led to decreased moesin levels while MSNP1AS transcript levels were 12-fold higher 

in postmortem brain samples from autism cases (Kerin et al., 2012). High levels of the 

MSNP1AS transcript were associated with the presence of an autism risk SNP and thus 

MSNP1AS is strongly positioned to be an lncRNA risk factor for autism (Kerin et al., 2012). 

Finally, mutations in the X-chromosome PTCHD1 gene have been reported to involve X-

linked intellectual disability (ID) and autism (Filges et al., 2011; Noor et al., 2010). Several 

lines of evidence suggest that PTCHD1 might have a causative role in a subset of ID and/or 

autism patients (Filges et al., 2011). On the antisense strand of the PTCHD1 gene, several 

overlapping lncRNAs (PTCHD1AS1, PTCHD1AS2 and PTCHD1AS3) were detected, 

which may serve as regulators for PTCHD1.

(2) Rett syndrome—Rett syndrome is a rare, severe, “girls only” form of autism, usually 

identified in the first two years of life. It is characterized by arrested development between 6 

and 18 months of age, regression of acquired skills, loss of speech, stereotypical movements, 

seizures, and ID. Mutations in the methyl CpG binding protein 2 (MECP2), which binds 

methylated CpGs and can both activate and repress transcription, were first described to be 

the cause of the disorder (Amir et al., 1999). While assessing the transcriptome of male 

Mecp2 hemizygous knockout mouse brains (Petazzi et al., 2013), it was revealed that the 

lncRNAs AK081227 and AK087060 were both significantly upregulated as compared to 

wild-type littermates. Importantly, overexpression of AK08127 was associated with the 

downregulation of its host coding protein gene, the GABA receptor subunit Rho 2. This 

suggests that transcriptional dysregulation of lncRNAs may have the capacity to contribute 

to the etiology of Rett syndrome.

(3) Fragile X Syndrome—Fragile X syndrome (FXS) is the most common known single 

gene cause of ASD. It is inherited via an X-linked dominant pattern and characterized by 

moderate to severe mental retardation, macroorchidism, and distinct facial features. The 

disorder is caused by an unstable expansion of a CGG repeat in the fragile X mental 

retardation 1 gene (FMR1), that leads to the silencing of the gene by methylation of the 

repeat and the promoter (Sutcliffe et al., 1992), resulting in decreased fragile X mental 

retardation protein (FMRP) levels in the brain (Devys et al., 1993). Accumulating evidence 

suggests that the etiology of the disorder is influenced by lncRNAs. FMRP, the protein 

encoded by FMR1, acts as a translational repressor of specific mRNAs at the synapse and is 

associated with the dendritic lncRNA and BC1 (Zalfa et al., 2003). BC1 enables the 

interaction of FMRP with the target mRNAs; and FMRP can directly bind to BC1 and its 

human analog BC200 via its N-terminus. Of note, the 5′ stem loop of BC1 is involved in 

FMRP recognition and this region is complementary to FMRP target mRNAs (Zalfa et al., 
2005). Taken together, the studies suggested that BC1 is a lncRNA that is essential for the 

repression of mRNAs via FMRP and loss of this repression in FXS patients could result in 

synaptic dysfunction.
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The promoter of FMR1 is bidirectional and can also give rise to the lncRNA FMR4 
(FMR1AS1 or ASFMR1), a gene transcribed in the antisense orientation and overlaps the 

CGG repeat region. FMR4 is similar to FRM1 in being silenced in FXS patients. Alternative 

splicing of FMR4 seems to exhibit premutation specific profiles and is upregulated in 

premutation carriers (Khalil et al., 2008; Ladd et al., 2007). Following siRNA knockdown of 

FMR4, alterations in cell cycle and apoptosis were reported. Conversely, overexpression of 

FMR4 resulted in increased cell proliferation. Additionally, knockdown of FMR4 did not 

influence FMR1 expression and vice versa, suggesting an independent mechanism from 

FMR1 (Khalil et al., 2008). Together, these findings point toward a contribution of FMR4 in 

the pathology of FXS.

Recently, Pastori et al. (2014) discovered two new lncRNAs in the FMR1 gene locus: FMR5 
and FMR6. FMR5 was similarly expressed in brain regions from unaffected and premutation 

individuals and full mutation patients, whereas FMR6 was silenced in full mutation and 

premutation carriers. According to the authors, this might suggest an abnormal transcription 

or chromatin remodeling prior to transition to the full mutation. In addition to the finding 

that both FMR5 and FMR6 are expressed in blood leukocytes, these lncRNAs are potentially 

useful as biomarkers in FXS. (Pastori et al., 2014)

Multiple mental illnesses

Some lncRNAs have been suggested to be involved in multiple mental illnesses. Disruption 

of the ‘disrupted in schizophrenia-1’ (DISC1) locus has been linked to the development of 

schizophrenia, schizoaffective disorder, bipolar disorder, major depression and autistic 

spectrum disorders (Brandon et al., 2009; Chubb et al., 2008). DISC1 is regulated by 

lncRNA DISC2 (Millar et al., 2000), which may also represent an excellent candidate for 

susceptibility to these disorders (Taylor et al., 2003). Additionally, lncRNA DAOA-AS1 
(G72/G30) has been associated with schizophrenia (Ma et al., 2006; Yue et al., 2006), 

bipolar disorders (Hattori et al., 2003) and panic disorders (Schumacher et al., 2005).

In summary, lncRNAs are a diverse group of non-coding RNAs that play critical roles in 

many cellular processes. Accumulating evidence suggests that they are involved in many 

psychiatric disorders. Having a better understanding of lncRNAs’ roles in psychiatric 

disorders will not only enrich functional annotation of the non-coding regions of human 

genome, but also have tremendous potential to advance our understanding of specific 

regulatory pathways for the risk DNA variants to affect the development of psychiatric 

disorders. These studies have the potential to discover novel biomarkers and drug targets that 

can be used to facilitate the diagnosis, treatment and prognosis of psychiatric disorders.
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Figure 1. Classification of LncRNAs
[Sense, LncRNAs are transcribed from the same genomic strand as the protein-coding 

mRNAs; Intergenic, located between two protein-coding genes and at least 1 kb away from 

these genes; Antisense, transcribed from the antisense strand; Intronic, located within the 

intron of protein coding genes; Bidirectional, oriented head to head with a protein-coding 

gene within 1kb. Arrow direction: 5′ → 3′]
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