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Abstract As an extended gamut of integral membrane
(extrinsic) proteins, and based on their transporting specific-
ities, P-type ATPases include five subfamilies in Arabidopsis,
inter alia, P4ATPases (phospholipid-transporting ATPase),
P3AATPases (plasma membrane H+ pumps), P2A and
P2BATPases (Ca2+ pumps) and P1B ATPases (heavy metal
pumps). Although, many different computational methods
have been developed to predict substrate specificity of un-
known proteins, further investigation needs to improve the
efficiency and performance of the predicators. In this study,
various attribute weighting and supervised clustering algo-
rithms were employed to identify the main amino acid com-
position attributes, which can influence the substrate specific-
ity of ATPase pumps, classify protein pumps and predict the
substrate specificity of uncharacterized ATPase pumps. The
results of this study indicate that both non-reduced coefficients
pertaining to absorption and Cys extinction within 280 nm,
the frequencies of hydrogen, Ala, Val, carbon, hydrophilic
residues, the counts of Val, Asn, Ser, Arg, Phe, Tyr, hydro-
philic residues, Phe-Phe, Ala-Ile, Phe-Leu, Val-Ala and length
are specified as the most important amino acid attributes
through applying the whole attribute weighting models.
Here, learning algorithms engineered in a predictive machine

(Naive Bays) is proposed to foresee the Q9LVV1 and O22180
substrate specificities (P-type ATPase like proteins) with
100 % prediction confidence. For the first time, our analysis
demonstrated promising application of bioinformatics algo-
rithms in classifying ATPases pumps. Moreover, we suggest
the predictive systems that can assist towards the prediction of
the substrate specificity of any new ATPase pumps with the
maximum possible prediction confidence.

Keywords P-typeATPase .Arabidopsis .Attributeweighting
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Introduction

The P-type ATPases are an extended gamut of membrane
proteins. In order to phosphorylation, they use a phosphate
group of ATP at a key conserved aspartate residue during
translocation of ions (Dipolo and Beaugé 2005). The P-type
ATPases play essential roles in a variety of cellular processes,
especially maintaining the electrochemical gradient of several
ions (Na+, K+, H+ and Ca2+) across the cell membrane as a
driving force for the secondary transporters and extrusion of
them if they accumulate reaching high concentration. P-type
ATPases mediate cellular signaling and, as quoted by both
Tang et al. (1996) and Gomes et al. (2000), they might be
engaged in bringing about lipid asymmetry in a membrane
generation.

Such proteins have different transporting specificities and
can translocate a variety of small cations, covering proton
(H+), abundant metal ions (Ca2+, Na+, K+), less abundant
heavy metals (Cu+, Zn2+), and perhaps also phospholipids
against their electrochemical gradient (MÃ¸ller et al. 1996;
Axelsen and Palmgren 1998; Palmgren and Harper 1999;
Mattle et al. 2013).
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The superfamily of P-type ATPases has been classified into
five major phylogenetic subfamilies according to the substrate
being transported (Axelsen and Palmgren 1998) which are
include heavy metal ATPases (P1B), Ca

2+-ATPases (belong
to two phylogenetic subfamilies, P2A-P2B ATPases), (P3A)
H+-ATPases, the supposed aminophospholipid ATPases (P4),
as well as aless reputed subfamily (P5) with a single member
in Arabidopsis. Cronin and coworkers (Cronin et al. 2000)
demonstrated that as a Ca2+ ATPase and within the scope of
a membrane system, SPF1 (P5 ATPase) could play a signifi-
cant role in taking hold of Ca2+ homeostasis utilizing a secre-
tory route (Cronin et al. 2000).

Generally, regarding the overall genome sequence of
Arabidopsis as a model plant, forty-five P-type ATPases have
been unveiledwhich are the largest knownATPases in a single
organism. Furthermore, three P-type ATPases like proteins
with unknown substrate specificity have been reported
in Arabidopsis (Axelsen and Palmgren 2001). At pres-
ent, the wealth of amino acid sequences, as members of
the P-type ATPase family, can provide a comprehensive
overview of characteristics, structure, and substrate
specificity of protein as well as the structure-function
relationship.

The exponential growth of both protein sequences and
structures via genome sequencing and high-throughput struc-
ture determination methods heightened need for reliable com-
putational procedures to assign a reliable function to proteins
of unknown function (Caitlyn et al. 2015). Williams andMills
conducted a survey and showed that out of a wide range of
organisms, phylogenetic and structural analysis of P1B-
ATPase protein sequences can be carried out to forecast the
specificities associated with the metal-substrate in unlabeled
plant pumps (Williams and Mills 2005).

To date, many computational methods have been devel-
oped to predict the active sites and biochemical functions of
unknown proteins (Watson et al. 2005; Lee et al. 2007;
Loewenstein et al. 2009; Gherardini and Helmer-Citterich
2008; Skolnick and Brylinski 2009; Sleator and Walsh 2010;
Chi and Hou 2011; Wilkins et al. 2012), although, more stud-
ies are needed to improve the efficiency and performance of
function predictors.

Having derived and scrutinized attributes relating physico-
chemical and structural properties of protein sequences, one
can apply the attribute weighting and supervised algorithms to
find important amino acid attributes, modeling and predicting
protein function. Thus, the aforementioned types of algo-
rithms could shed light on how to delve into the functionality
of protein molecular mechanism. In this paper, a combination
of attribute weighting and supervised clustering-algorithms is
used to uncover the protein properties as well as predicting the
substrate specificity of P-type ATPase among uncharacterized
substrate specificity. These protein properties are the most
important attributes in classification of P-type ATPases (heavy

metal pumps, Ca2+pumps, plasma membrane H+ pump and
phospholipid-transporting ATPase).

Materials and methods

The P-type ATPase sequences in Arabidopsis (forty five) were
extracted from ExPASY (http://www.expasy.org) database.
The substrate specificity of Q9LT02 (just member of P5) is
unknown. So all sequences except Q9LT02 sequence are
categorized into four groups: 7 (heavy metal pump), 14 (Ca+
2 pump), 11 (plasma membrane H+ pump) and 12
(phospholipid-transporting ATPase). Eight-hundred and
ninety-six amino acid attributes derived from protein se-
quences were extracted using CLC bio software (CLC bio,
Aarhus, Denmark) which include length, weight, isoelectric
point, count and frequency of each element (carbon, nitrogen,
sulphur, oxygen, and hydrogen), count and frequency of each
amino acid, count and frequency of negatively charged, pos-
itively charged, hydrophilic and hydrophobic residues, count
and frequency of dipeptides, number of α-helix and β-strand,
and other secondary protein features. All amino acid attributes
were classified as continuous variables, except the substrate
specificity of ATPase pumps and N-terminal amino acids,
which were classified as categorical. A dataset of these protein
attributes was imported into Rapid Miner (RapidMiner 5.0.
001, Rapid-I GmbH, Stochumer Str. 475, 44,227 Dortmund,
Germany), and the substrate specificity of ATPase pumps was
set as the target or label attribute. Then, the steps detailed
below were applied to the dataset.

Data cleansing

Useless amino acid attributes were removed from the dataset
to improve processing performance. Regarded as inefficient or
redundant, attributes displaying less than or equal to a given
standard deviation (SD) threshold (0.1) along with the corre-
lated features were thoroughly excluded and written off from
the database as well. The finalized list containing the efficient
attributes was labeled as FCdb (final cleaned database).

Attribute weight scrutiny

To figure out the most effective amino acid attributes contrib-
uting to different ATPase pumps, the following tenvarious
algorithms used in attribute weight scrutiny were employed
in the finalized dataset (FCdb):

Weight based on Information gain. Figuring the infor-
mation gain in class distribution, the algorithm calculates
the correlation of a feature.

164 Physiol Mol Biol Plants (January–March 2016) 22(1):163–174

http://www.expasy.org


Weight by Information Gain ratio. Figuring the infor-
mation gain ratio in class distribution, the algorithm cal-
culates the correlation of a feature.
Rule weight scrutiny. Estimating the error rate of an
OneR Model on a sample set while having a feature ex-
cluded, the algorithm calculated the correlation of the
supposed feature.
Weight Deviation scrutiny. Scrutinizing standard devi-
ations of all amino acid attributes, the algorithm
defined normalized assessments by attributing the
average, the minimum, or the maximum to the
features.
Chi Squared statistic weight scrutiny. Regarding the
class attribute, the algorithm calculated the correlation
of a feature by figuring the chi-squared statistic value
for each attribute used in the input sample set.
Gini index weight scrutiny. Estimating the Gini index of
the class distribution, the algorithm calculated the corre-
lation of an attribute if the given sample would have been
segregated in regards with the feature.
Uncertainty Weight scrutiny. Evaluating the propor-
tional uncertainty regarding the class, the algorithm com-
puted an attribute correlativity.
Weight scrutiny by Relief. Setting samples and drawing
analogy between the values of the present feature and the
closest example given both similarity and distinction in
class, the algorithm estimated the features correlativity.
Weight by SVM (Support Vector Machine). The algo-
rithm used the typical vector coefficients of a lineal SVM
for the feature assessment.
PCA weightEvaluation (Principle Component
Analysis). The algorithm used the principal component
factors for the feature assessment.

Attribute evaluation

Attribute assessment models are able to compute each attri-
bute score, namely, a measure of its importance in the P-type
ATPase substrate specificity.

Selection of the entire variables weighting more than 0.50
resulted in creating ten new datasets. They were named based
on the models used for attribute weighting (Relief,
Information gain, Uncertainty, Information gain ratio, Chi
Squared, Rule, Deviation, SVM and PCA, Gini index) and
thus subjected to the proceeding model of supervision. Each
supervisory process using models in clustering was fulfilled
for about 11 instances; in the first time, the aforementioned
model was managed and performed, utilizing the principal
dataset (FCdb) and on the ten newly created datasets after-
wards (resulting from different algorithms used in attribute
weighting).

Supervised categorization

The process of supervised clustering achievement (Baysian
models and Decision Trees) is indicated as follows:

Decision Trees. Given the procedure previously de-
scribed (Ebrahimi et al. 2010, 2011, 2014; Ashrafi et al.
2011), sixteen models for tree induction were employed
ranging from DT Random Forest Accuracy, DT Parallel
Info Gain, DT Parallel Gain Ratio, DT Gini Index,DT
Random Forest Gain Ratio, DT Random Forest Gini
Index, DT Parallel Gini Index, Decision Tree (DT)
Accuracy, DT Gain Ratio, DT Stump Info Gain, DT
Info Gain, DT Parallel Accuracy, DT Stump Gain
Ratio, DT Stump Accuracy, DT Stump Gini Index, to
DT Random Forest Info Gain. The entire models were
applied to eleven datasets containing both the FCdb
dataset and ten datasets filtered through Rule, PCA,
Info Gain Ratio, Info Gain, Uncertainty, Chi Squared,
Relief, Gini Index, Deviation, and SVM algorithms uti-
lized in attributes scrutiny. Examined for comparing dif-
ferent models, performances the models displayed in
ATPase substrate specificity prediction were computed
based on structural attributes of ATPase pump. In the
present survey, the definition of performance relied upon
the extent to which the model demonstrated accuracy.
The calculation of accuracy was not accomplished unless
the percentage of correct predictions was taken in respect
with the total number of instances. In other words, should
a predicted attribute shows accuracy in value, which is
equivalent to that of the labeled, it would be inferred as
the substantiation of the correct prediction.

Naive Bayes classifier

Naive Bayes classifier is a conditional probability model
based on Bayes’ rule with independence assumptions between
the features. Naive Bayes is well documented and consequent-
ly, often works reasonably well and outperforms more sophis-
ticated learning algorithms in classification, even if the
features are not statistically independent (Domingos and
Pazzani 1997). In this survey, two models, including Naive
Bayes and kernel based Naive Bayes, were applied to predict
the substrate specificity of ATPase pumps.

Outcomes

Data cleansing

The primary dataset included 44 samples (protein sequences)
with 852 amino acid features. Among these examined sam-
ples, 7, 12, 11 and 14 cases were categorized as heavy metal
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pump, Ca+2 pump, plasma membrane H+ pump, and
phospholipid-transporting ATPases, respectively. Having
gone through a purgatory process by removing duplicates
and inefficient/correlated features (data cleansing), the survey
was conducted onward with 44 samples and 506 features left.

Feature weight scrutiny

After achieving the Data normalization, models were man-
aged to run and meet the weight range requirements (between
0 and 1).

Weight scrutiny through PCA Employing the PCA model,
the researchers found out that the sole feature showing the
weight of 1.00 (according to Table 1) was non-
reducedcoefficient of Cys extinction within 280Â nm.

Weight scrutiny through SVM Twenty features were shown
to outweigh 0.70 by SVM algorithm: As indicated in Table 1,
the features were non-reduced absorption within 280 nm, the
Val, Lys-Ala frequencies, the Phe-Phe, Val, Val-Ala, Gly-Ser,
Gly-Leu, Met-Ala, Ile-Asn, Lys-Ala, Ala-Val, Val-Gly, Ile-
Gly, Ser-Glu, Cys-Pro, Gly-Thr, Met-Gly, Glu-Gly, Gly-Ala
accounts.

Weight scrutiny through Relief The application of this mod-
el to the dataset, as shown in Table 1, unveiled that seventeen
features outweighed 0.70: non-reduced coefficient pertaining
to Cys extinction within 280 nm, length, the Val frequencies,
hydrophilic residues and the counts of Val, Ser, Phe, Tyr, hy-
drophilic residues, Pro-Gly, Glu-Tyr, Phe-Arg, Tyr-Leu, Met-
Tyr, Cys-Tyr, Leu-Tyr, Trp-Cys.

Weight scrutiny through uncertainty When this model was
applied, thirty five attributes outweighed 0.70 using the algo-
rithm of uncertainty: non-reduced coefficient pertaining to Cys
extinction within 280Â nm, non-reduced absorption at 280 nm,
length, the frequencies of hydrogen, Val, carbon, hydrophilic
residues, Trp, Ser, Gly, hydrophobic residues and the counts of
Phe-Phe, Val, Val-Ala, Ser, Phe, Tyr, hydrophilic residues, Cys,
Phe-Asn, Glu-Tyr, Phe-Arg, Tyr-Glu, Arg-Thr, sulphur, Leu,
hydrophilic Other, hydrophobic residues, Gln-Ser, Val-Gln,
Met-Tyr, Cys-Tyr, Leu-Leu, Cys-Glu, Ile-Phe (Table 1).

Weight scrutiny through Gini index Forty seven features
outweighed 0.80 using the algorithm of uncertainty: non-
reduced coefficient pertaining to Cys extinction within
280 nm, non-reduced absorption within 280 nm, length, ali-
phatic index, the frequency of hydrogen, Val, carbon, hydro-
philic residues, Gly, Ala, Ile, Ser, Arg and the counts of Val,
Phe-Leu, Val-Ala, Ser, Arg, Phe, Tyr, hydrophilic residues,
Cys, hydrophilic Other, hydrophobic residues, Phe-Met, Trp-
Tyr, Cys-Tyr, Leu-Tyr, Ser-Ser, Phe-Phe, Ala-Ile, Phe-Asn,

Table 1 This table presents the most important attributes confirmed,
based on different weighting algorithms, to be involved in the substrate
specificity of ATPase pumps (Values closer to 1 shows higher
effectiveness of features). Weighting algorithms were PCA, relief,
uncertainty, gini index, chi squared, deviation, rule, correlation, gain
ratio, and information gain

Weighting
method

Attribute Weight

Weighting by PCA Non-reduced coefficient pertaining
to Cys extinction within 280 nm

1.00

Weighting by SVM Val frequency 0.9
Phe-Phe count 0.7
Val count 0.7
Non-reduced absorption at 280 nm 0.7
Val-Ala count 0.9
Gly-Ser count 0.8
Gly-Leu count 1.0
Met-Ala count 0.7
Ile-Asn count 0.8
Lys-Ala count 0.9
Ala-Val count 0.8
Lys-Ala frequency 0.7
Val-Gly count 0.7
Ile-Gly count 0.8
Ser-Glu count 0.8
Cys-Pro count 0.7
Gly-Thr count 0.7
Met-Gly count 0.7
Glu-Gly count 0.7
Gly-Ala count 0.8

Weighting by relief Non-reduced coefficient pertaining
to Cys extinction within 280 nm

0.8

Val frequency 0.7
Val count 0.7
Hydrophilic residues frequency 0.7
Ser count 0.7
Phe count 0.7
Tyr count 0.9
Hydrophilic residues count 1.0
Length 0.7
Pro-Gly count 0.7
Glu-Tyr count 0.7
Phe-Arg count 0.7
Tyr-Leu count 0.7
Met-Tyr count 0.8
Cys-Tyr count 1.0
Leu-Tyr count 0.7
Trp-Cys count 0.8

Weighting by uncertainty Non-reduced coefficient pertaining
to Cys extinction within 280 nm

0.9

Hydrogen frequency 0.7
Val frequency 0.7
Phe-Phe count 0.7
count of Val 0.9
Carbon frequency 1.0
Hydrophilic residues frequency 0.8
Non-reduced Absorption at 280 nm 0.7
Val-Ala count 0.7
Ser count 0.7
Phe count 0.8
Tyr count 0.7
Hydrophilic residues count 0.9
Length 1.0
Trp frequency 0.7
Ser frequency 0.8
Gly frequency 0.7
Hydrophobic residues frequency 0.7
Cys count 0.7
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Table 1 (continued)

Weighting
method

Attribute Weight

Phe-Asn count 0.7
Glu-Tyr count 0.7
Phe-Arg count 0.7
Tyr-Glu count 0.7
Arg-Thr count 0.7
Sulphur count 0.7
Leu count 0.7
Hydrophilic other count 0.7
Hydrophobic residues count 0.8
Gln-Ser count 0.7
Val-Gln count 0.7
Met-Tyr count 0.7
Cys-Tyr count 0.7
Leu-Leu count 0.7
Cys-Glu count 0.7
Ile-Phe count 0.7

Weighting by gini index Non-reduced coefficient pertaining
to Cys extinction within 280 nm

1.0

Hydrogen frequency 0.9
Val frequency 1.0
Val count 0.9
Carbon frequency 1.0
Hydrophilic residues frequency 0.8
Non-reduced Absorption at 280 nm 0.9
Phe-Leu count 0.9
Val-Ala count 0.8
Ser count 0.8
Arg count 0.9
Phe count 0.9
Tyr count 1.0
Hydrophilic residues count 0.9
Length 0.9
Gly frequency 0.8
Cys count 0.8
Hydrophilic other count 0.8
Hydrophobic residues count 0.9
Phe-Met count 0.8
Trp-Tyr count 0.9
Cys-Tyr count 0.9
Leu-Tyr count 0.9
Ser-Ser count 0.8
Ala frequency 0.7
Phe-Phe count 0.7
Ala-Ile count 0.7
Ile frequency 0.7
Ser frequency 0.7
Phe-Asn count 0.7
Pro-Gly count 0.7
Gly-Ser count 0.7
Gly-Leu count 0.7
Tyr-Leu count 0.7
Thr count 0.7
Leu count 0.7
Arg frequency 0.7
Asp-Ala count 0.7
Val-Gln count 0.7
Ile-Ala count 0.7
Tyr-Arg count 0.7
Leu-Phe count 0.7
Aliphatic index 0.7
Cys-Asn count 0.7
Ile-Tyr count 0.7
Phe-Tyr count 0.7
Asn-Leu count 0.7

1.0

Table 1 (continued)

Weighting
method

Attribute Weight

Weight scrutiny through
Chi squared

Non-reduced coefficient pertaining
to Cys extinction within 280 nm

Hydrogen frequency 0.7
Val frequency 0.7
Val count 0.8
Carbon frequency 1.0
Hydrophilic residues frequency 0.8
Non-reduced absorption at 280 nm 0.7
Asp count 0.7
Ser count 0.7
Phe count 0.8
Hydrophilic residues count 0.9
Length 0.9
Trp frequency 0.7
Ser frequency 0.9
Glu count 0.7
Hydrophilic other count 0.7
Hydrophobic residues count 0.7
Leu-Leu count 0.7
Ile-Phe count 0.7

Weight Scrutiny through
deviation

Non-reduced coefficient pertaining
to Cys extinction within 280 nm

1.00

Weight scrutiny through
rule

Non-reduced coefficient pertaining
to Cys extinction within 280 nm

1.0

Val count 0.7
Carbon frequency 0.8
Non-reduced absorption at 280 nm 0.9
Asp count 0.7
Ser count 0.7
Arg count 0.7
Phe count 0.8
Hydrophilic residues count 0.9
Length 0.9
Ser frequency 0.8
Hydrophobic residues frequency 0.7
Sulphur count 0.7
Leu count 0.7
Negatively Charged (D & E) count 0.7
Hydrophilic other count 0.8
Hydrophobic residues count 1.0
Index of Aliphatic 1.0
Point of Isoelectric 1.0

Weight Scrutiny through
Gain Ratio

Non-reduced coefficient pertaining
to Cys extinction within 280 nm

1.0

Hydrogen frequency 0.9
Ala frequency 0.7
Val frequency 1.0
Val count 0.9
Carbon frequency 1.0
Hydrophilic residues frequency 0.9
Non-reduced absorption at 280 nm 0.9
Ala-Ile count 0.7
Phe-Leu count 0.9
Val-Ala count 0.8
Asp count 0.8
Ser count 0.9
Arg count 0.9
Phe count 0.9
Tyr count 1.0
Hydrophilic residues count 0.9
Length 0.9
Ile frequency 0.8
Ser frequency 0.7
Gly frequency 0.8
Hydrophobic residues frequency 0.7
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Pro-Gly, Gly-Ser, Gly-Leu, Tyr-Leu, Thr, Leu, Asp-Ala, Val-
Gln, Ile-Ala, Tyr-Arg, Leu-Phe, Cys-Asn, Ile-Tyr, Phe-Tyr,
Asn-Leu (Table 1).

Weight scrutiny through Chi squared Nineteen features
outweighed 0.70 using the algorithm of Chi Squared: non-
reduced coefficient pertaining to Cys extinction within
280 nm, non-reduced absorption within 280 nm, length, The
frequency of hydrogen, Val, carbon, hydrophilic residues, Trp,
Ser, The counts of Val, Asp, Ser, Phe, hydrophilic residues,
Glu, hydrophilic Other, hydrophobic residues, Leu-Leu, Ile-
Phe (Table 1).

Weight scrutiny through deviation The algorithm of devia-
tion brought into light the sole feature which outweighed 0.70
where non-reduced coefficient pertaining to Cys extinction
within 280Â nm showed the weight equivalence of 1.00 as
is indicated in Table 1.

Weight scrutiny through rule Seven attributes outweighed
0.70 using the algorithm of Rule: non-reduced coefficient
pertaining to Cys within 280 nm, non-reduced absorption
within 280 nm, length, aliphatic index and isoelectric point,
the frequency of carbon, Ser, hydrophobic residues, the counts
of Val, Asp, Ser, Arg, Phe, hydrophilic residues, sulphur, Leu,
negatively charged (D & E), hydrophilic other, hydrophobic
residues (Table 1).

Weight scrutiny through gain ratio As the algorithm imple-
mented in the dataset, 51 attributes outweighed or were on a
par with 0.70: non-reduced coefficient pertaining to Cys ex-
tinction within 280 nm, non-reduced absorption within
280 nm, length, aliphatic index, the frequency of hydrogen,
Ala, Val, carbon, hydrophilic residues, Ile, Ser, Gly, hydro-
phobic residues, Ser-Val, Lys-Ala, the counts of Val, Ala-Ile,
Phe-Leu, Val-Ala, Asp, Ser, Arg, Phe, Tyr, hydrophilic resi-
dues, Cys, Pro-Gly, Glu-Thr, Tyr-Leu, Tyr-Glu, Arg-Thr, Thr,
Glu, Leu, hydrophilic other, hydrophobic residues, Ser-Trp,
Phe-Met, Met-Ala, Val-Gln, Trp-Met, Ile-Ala, Trp-Tyr, Cys-
Tyr, Leu-Phe, Leu-Tyr, Trp, Ser-Ser, Lys-Ala, Met, Glu-Met
(Table 1).

Weight scrutiny through Info gain Thirty three features
outweighed 0.70 using Info Gain: non-reduced coefficient
pertaining to Cys extinction within 280 nm, non-reduced ab-
sorption within 280 nm, length, the hydrogen frequency, Val,
Ala, carbon, hydrophilic residues, Gly, hydrophobic residues,
the counts of Val, Phe-Leu, Val-Ala, Asp, Ser, Arg, Phe, Tyr,
hydrophilic residues, Cys, Pro-Gly, Glu-Thr, Thr, Leu, hydro-
phobic residues, Ser-Trp, Phe-Met, Met-Ala, Trp-Tyr, Cys-
Tyr, Leu-Phe, Leu-Tyr, Ser-Ser (Table 1).

Table 1 (continued)

Weighting
method

Attribute Weight

Cys count 0.9
Pro-Gly count 0.7
Glu-Thr count 0.7
Tyr-Leu count 0.7
Tyr-Glu count 0.7
Arg-Thr count 0.7
Thr count 0.7
Glu count 0.8
Leu count 0.7
Hydrophilic other count 0.7
Hydrophobic residues count 0.9
Ser-Trp count 0.8
Phe-Met count 0.9
Met-Ala count 0.8
Val-Gln count 0.8
Trp-Met count 0.7
Ile-Ala count 0.8
Trp-Tyr count 0.9
Cys-Tyr count 0.9
Leu-Phe count 0.7
Leu-Tyr count 0.9
Aliphatic index 0.7
Trp count 0.7
Ser-Ser count 0.9
Lys-Ala count 0.8
Ser-Val frequency 0.7
Lys-Ala frequency 0.7
Met count 0.7
Glu-Met count 0.7

Weighting by info gain Non-reduced coefficient pertaining
to Cys extinction within 280 nm

0.8

Hydrogen frequency 0.7
Ala frequency 0.7
Val frequency 1.0
Val count 0.7
Carbon frequency 0.8
Hydrophilic residues frequency 0.7
Non-reduced absorption at 280 nm 0.9
Phe-Leu count 0.7
Val-Ala count 0.8
Asp count 0.8
Ser count 0.7
Arg count 0.8
Phe count 0.8
Tyr count 0.8
Hydrophilic residues count 0.8
Length 0.8
Gly frequency 0.7
Hydrophobic residues frequency 0.7
Cys count 0.7
Pro-Gly count 0.7
Glu-Thr count 0.7
Thr count 0.7
Leu count 0.7
Hydrophobic residues count 0.7
Ser-Trp count 0.7
Phe-Met count 0.7
Met-Ala count 0.7
Trp-Tyr count 0.7
Cys-Tyr count 0.7
Leu-Phe count 0.7
Leu-Tyr count 0.7
Ser-Ser count 0.7
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Key structural protein attributes distinguishing the substrate
specificity of ATPase pumps regarding the outcome
of the algorithms used in attribute weighting

With regards to the thorough outcome of applying models for
attribute weighting (Table 1), nineteen protein attributes were
proclaimed as the key distinctive features in ATPase pumps
structures including non-reduced coefficient pertaining to Cys
extinction within 280 nm, non-reduced absorption within
280 nm, the frequencies of hydrogen, Ala, Val, carbon, hydro-
philic residues, the counts of Val, Asn, Ser, Arg, Phe, Tyr,
hydrophilic residues, Phe-Phe, Ala-Ile, Phe-Leu, Val-Ala and
length.

Supervised clustering

Tree of decision Sixteen various models of Decision Tree
were employed to cover the 11 datasets. The entire model trees
were characterized with leaves and roots; minimum and max-
imum performances were considered 48.5 % &93.5 %, re-
spectively as shown in Table 2. Three Decision Tree models
were the epitome ones which included Random Forest model
with Gain ratio criterion run on Chi Squared dataset, Random
Forest models with Gini index criterion run on Gini index
dataset, Decision Tree model with Info Gain criterion run on
Relief dataset, respectively.

The simplest trees were generated by the Random Forest
model with Gain Ratio criterion run on Chi Squared.
Interestingly, non-reduced coefficient pertaining to Cys ex-
tinction within 280 nm was the only protein feature applied
to generate the first tree. The proteins, where the feature value
outweighed 131,620, were observed as the phospholipid-
transporting ATPases; but when the value outweighed 104,
225 and was lower than or on a par with 131,620, such pro-
teins were categorized as plasma membrane H+ pumps. In the
case this feature value outweighed 76,900 and was lower than
or on a par with 104,225, the protein was assigned as the Ca+2

pumps; otherwise, it belonged to the heavy metal pump class.
Performance was 93.5 % (Fig. 1a).

Counts of Phe and Gly-Ser were the protein attributes
which applied in the construction of the second tree. When
the Phe count was higher than 50.5, the proteins were catego-
rized as phospholipid transporting ATPases; but when the val-
ue was lower than or on a par with 50.5 along with the Gly-Ser
count outweighing 5.5, such proteins were recognized as Ca+2

pumps. If the Gly-Ser count was lower than or on a par with
5.5, and the Phecount outweighed 36.5, these proteins were
assigned to the plasma membrane H+ pump class; otherwise,
they belonged to the heavy metal pump group. The perfor-
mance was 92.0 % (Fig. 1b).

In the third tree, count of Val, the frequency of hydrophobic
residues and Ile-Ala count were the protein attributes applied
to build this tree. Performance was 92.0 % (Fig.1c).

The best Decision Tree model in distinguishing P-type
ATPase substrate specificity was Random Forest model with
Gain Ratio criterion based on the Chi Squared dataset. It pre-
dicted that Q9LVV1 and O22180 are Ca+2 pump and heavy
metal pump with 70 % and 60 % prediction confidence, re-
spectively (Table 3).

NaiveBayes Regarding the usage of Rule and SVM dataset,
the performances of Naive Bayes and kernel based Naive
Bayes models were 95.5 % and 93 %, respectively. Naive
Bayes based on the Rule and SVM datasets predicted that
Q9LVV1 and O22180 are Ca+2 pump and heavy metal pump,
respectively, with 100 % prediction confidence (Table 3).

Discussion

A putative or possible function is sometimes assigned when
the function of a protein is unknown. These assignments are
often incorrect due to the simple bioinformatics analyses in-
cluding sequence and structural comparisons using programs
such as BLAST (Altschul et al. 1997; Cameron et al. 2004)
and Dali (Holm et al. 2006; Holm and Rosenstrom 2010),
respectively. With the growing challenges of protein function
prediction, the development of reliable computational
methods is vital for assigning accurate function to proteins
with confidence (Caitlyn et al. 2015).

Accordingly, a computational method to discriminate be-
tween P-type ATPase substrate specificity would be immense-
ly helpful in engineering these pumps and predicting the sub-
strate specificity of any new ATPases pumps. This study was
undertaken for specifying the most significant amino acid fea-
tures in order to classify and predict the substrate specificity of
ATPase pumps. Different bioinformatics algorithms were ap-
plied to study 896 amino acid attributes of ATPase pumps.

Data cleansing algorithms were applied to the original
dataset to remove correlated, useless or redundant attributes
and consequently, access to a smaller and more manageable
set of attributes as well as improve the efficiency of process
(Ebrahimi and Ebrahimie 2010; Ebrahimi et al. 2009). After
the cleansing algorithms were applied to the original dataset,
approximately 43 % of the features were discarded, implying
that nearly half of the variables are statistically useless and
redundant.

Weighting algorithms provide useful information about
those attributes which are most significant for prediction or
classification. In this investigation, 70 % of the weighting
algorithms selected features such as non-reduced coefficient
pertaining to Cys extinction, non-reduced absorption within
280 nm, length, the hydrogen, Val, carbon, Ala, hydrophilic
residues frequencies, and the counts of Phe-Phe, Val, Ala-Ile,
Phe-Leu, Val-Ala, Asp, Ser, Arg, Phe, Tyr, hydrophilic resi-
dues as the most important protein attributes in classification

Physiol Mol Biol Plants (January–March 2016) 22(1):163–174 169



T
ab

le
2

Pe
rc
en
ta
ge

of
pe
rf
or
m
an
ce

w
hi
ch

in
di
ca
te
th
e
su
ita
bi
lit
y
of

si
xt
ee
n
T
re
e
In
du
ct
io
n
m
od
el
s
su
ch

as
D
T
A
cc
ur
ac
y,
D
T
G
ai
n
R
at
io
,D

T
gi
ni
in
de
x,
D
T
in
fo

ga
in
,D

T
pa
ra
lle
lA

cc
ur
ac
y,
D
T
pa
ra
lle
l

G
ai
n
R
at
io
,D

T
pa
ra
lle
lG

in
iI
nd
ex
,D

T
pa
ra
lle
lI
nf
o
G
ai
n,
D
T
st
um

p
A
cc
ur
ac
y,
D
T
st
um

p
G
ai
n
R
at
io
,D

T
st
um

p
G
in
iI
nd
ex
,D

T
st
um

p
In
fo

G
ai
n,
D
T
R
an
do
m
Fo

re
st
A
cc
ur
ac
y,
D
T
R
an
do
m
F
or
es
tG

ai
n

R
at
io
,D

T
R
an
do
m
Fo

re
st
G
in
iI
nd
ex
,D

T
R
an
do
m
Fo

re
st
In
fo

G
ai
n
an
d
N
aÄ

±Â
¨v
e
ba
ye
s
su
ch

as
N
ai
ve

ba
ye
s
an
d
N
ai
ve

B
ay
es

K
er
ne
lm

od
el
s
w
hi
ch

w
er
e
ru
n
on

el
ev
en

da
ta
se
ts
in
cl
ud
in
g
C
hi
Sq

ua
re
d,

In
fo

G
ai
n,
D
ev
ia
tio

n,
G
in
iI
nd
ex
,I
nf
o
G
ai
n
R
at
io
,P

C
A
,R

el
ie
f,
R
ul
e,
U
nc
er
ta
in
ty
,F

C
db
,a
nd

SV
M

T
re
e
in
du
ct
io
n

m
od
el
s

A
cc
ur
ac
y

re
ga
rd
in
g
tr
ee

of
de
ci
si
on

R
at
io

ga
in

re
ga
rd
in
g
tr
ee

of
de
ci
si
on

G
in
ii
nd
ex

re
ga
rd
in
g
tr
ee

of
de
ci
si
on

In
fo

ga
in

re
ga
rd
in
g
tr
ee

of
de
ci
si
on

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
pa
ra
lle
l

A
cc
ur
ac
y

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
pa
ra
lle
l

ga
in

R
at
io

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
pa
ra
lle
l

gi
ni

In
de
x

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
pa
ra
lle
l

In
fo

ga
in

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
st
um

p
ac
cu
ra
cy

D
at
ab
as
e

C
hi

sq
ua
re
d

75
.5
0
%

77
.5
0
%

75
.5
0
%

87
.5
0
%

73
.5
0
%

75
.0
0
%

73
.0
0
%

85
.0
0
%

54
.5
0
%

In
fo

ga
in

75
.5
0
%

77
.5
0
%

75
.5
0
%

85
.5
0
%

75
.5
0
%

77
.5
0
%

73
.5
0
%

85
.5
0
%

54
.5
0
%

D
ev
ia
tio
n

81
.0
0
%

83
.5
0
%

79
.0
0
%

79
.0
0
%

81
.0
0
%

83
.5
0
%

79
.0
0
%

79
.0
0
%

59
.5
0
%

G
in
ii
nd
ex

75
.5
0
%

77
.5
0
%

75
.5
0
%

85
.5
0
%

77
.5
0
%

77
.5
0
%

78
.0
0
%

83
.5
0
%

54
.5
0
%

In
fo

ga
in

ra
tio

75
.5
0
%

77
.5
0
%

75
.5
0
%

85
.5
0
%

75
.5
0
%

77
.5
0
%

75
.5
0
%

85
.5
0
%

54
.5
0
%

PC
A

81
.0
0
%

83
.5
0
%

79
.0
0
%

79
.0
0
%

81
.0
0
%

83
.5
0
%

79
.0
0
%

79
.0
0
%

59
.5
0
%

R
el
ie
f

80
.0
0
%

80
.0
0
%

85
.0
0
%

92
.0
0
%

82
.0
0
%

84
.5
0
%

78
.0
0
%

92
.0
0
%

54
.5
0
%

R
ul
e

75
.5
0
%

75
.0
0
%

70
.5
0
%

85
.0
0
%

75
.5
0
%

75
.0
0
%

72
.5
0
%

89
.0
0
%

54
.5
0
%

U
nc
er
ta
in
ty

75
.5
0
%

77
.5
0
%

75
.5
0
%

87
.5
0
%

75
.5
0
%

77
.5
0
%

78
.0
0
%

87
.5
0
%

54
.5
0
%

FC
db

75
.5
0
%

77
.5
0
%

75
.5
0
%

85
.5
0
%

73
.0
0
%

75
.5
0
%

78
.0
0
%

83
.5
0
%

54
.5
0
%

T
re
e
in
du
ct
io
n

m
od
el
s

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
st
um

p
ga
in

R
at
io

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
st
um

p
gi
ni

In
de
x

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
st
um

p
in
fo

ga
in

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
th
e

A
cc
ur
ac
y
of

ra
nd
om

fo
re
st

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
th
e
ga
in

R
at
io

in
ra
nd
om

Fo
re
st

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
ra
nd
om

Fo
re
st
gi
ni

In
de
x

T
re
e
of

de
ci
si
on

re
ga
rd
in
g
th
e
In
fo

G
ai
n
in

ra
nd
om

Fo
re
st

B
ay
se

K
er
ne
l

N
ai
ve

B
ay
se

D
at
ab
as
e

C
hi

sq
ua
re
d

50
.0
0
%

52
.5
0
%

50
.5
0
%

91
.0
0
%

93
.5
0
%

89
.0
0
%

91
.0
0
%

90
.5
0
%

93
.0
0
%

In
fo

ga
in

50
.0
0
%

52
.5
0
%

50
.5
0
%

87
.0
0
%

88
.5
0
%

88
.5
0
%

89
.0
0
%

50
.5
0
%

88
.0
0
%

D
ev
ia
tio
n

59
.5
0
%

59
.5
0
%

59
.5
0
%

84
.5
0
%

83
.5
0
%

86
.0
0
%

81
.5
0
%

81
.0
0
%

83
.5
0
%

G
in
ii
nd
ex

50
.0
0
%

52
.5
0
%

50
.5
0
%

91
.0
0
%

87
.0
0
%

92
.0
0
%

90
.5
0
%

28
.5
7
%

81
.5
0
%

In
fo

ga
in

ra
tio

50
.0
0
%

52
.5
0
%

50
.5
0
%

89
.0
0
%

90
.5
0
%

88
.5
0
%

86
.0
0
%

28
.5
7
%

83
.5
0
%

PC
A

59
.5
0
%

59
.5
0
%

59
.5
0
%

84
.5
0
%

83
.5
0
%

86
.0
0
%

81
.5
0
%

81
.0
0
%

83
.5
0
%

R
el
ie
f

52
.0
0
%

52
.5
0
%

52
.5
0
%

89
.0
0
%

88
.5
0
%

84
.0
0
%

80
.5
0
%

25
.8
1
%

79
.0
0
%

R
ul
e

50
.0
0
%

54
.5
0
%

48
.5
0
%

87
.0
0
%

87
.0
0
%

81
.5
0
%

84
.5
0
%

93
.0
0
%

95
.5
0
%

U
nc
er
ta
in
ty

50
.0
0
%

52
.5
0
%

50
.5
0
%

88
.5
0
%

86
.5
0
%

85
.0
0
%

91
.0
0
%

28
.5
7
%

86
.0
0
%

FC
db

50
.0
0
%

52
.5
0
%

50
.5
0
%

69
.0
0
%

89
.0
0
%

89
.0
0
%

86
.5
0
%

23
.5
3
%

57
.5
0
%

170 Physiol Mol Biol Plants (January–March 2016) 22(1):163–174



of heavy metal pump, Ca2+ pump, plasma membrane H+

pump and phospholipid-transporting ATPase group of
ATPase pumps.

The role of dipeptides, such as Phe-Phe, Phe-Leu and Val-
Ala and Gly-Ser, in the substrate specificity of pumps has been
shown in this survey. As far as the records are concerned,
however, considerable discussions regarding the dipeptides
importance in substrate specificity of ATPase pumps have
been doomed to limited quantities. A number of researchers

have reported the essential role of dipeptide composition in
halostability (Ebrahimie et al. 2011), thermo stability
(Ebrahimi et al. 2011) and α-linolenic acid content (Zinati
et al. 2014).

Therefore, the substrate specificity of ATPase pumps can
be distinguished from their amino acid and dipeptide compo-
sitions. It is therefore likely that variations in these key
distinguishing features are associated with changes in sub-
strate specificity of ATPase pump.

Fig. 1 The simplest trees generated by the Random Forest model with Gain Ratio criterion run on Chi Squared dataset
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Decision Trees are powerful classification algorithms that
have become a popular tool for many researchers. Here, for the
first time, a variety of tree induction models were used for clas-
sification of heavy metal pumps, Ca2+pumps, plasma membrane
H+ pumps as well as phospholipid-transporting ATPase; it was
also predicted the substrate specificity of uncharacterized P-type
ATPase.

The results indicated that the performances of these
Decision Trees varied from 48.5 % to 93.5 %, implying that
the capability of various Decision Tree in induction models

are different to classify different pumps based on amino acid
attributes.

The percentages of performance in Tree induction models
were used for comparing different models and determining the
most efficient and precisemodel. The results showed that the best
performance obtained when Random Forest model with Gain
ratio criterion run on Chi Squared dataset. Correspondingly, in
this model, non-reduced coefficients pertaining to Cys extinction
within 280 nm was considered the only protein feature which
used in construction of the simplest tree. Cysteine plays a vital

Fig. 1 (continued)

Table 3 Results of application of the predictive models to predict the substrate specificity of P-type ATPase like proteins (Q9LVV1 and O22180)

Description Confidence (heavy
metal pump)

Confidence
(Ca+2 pump)

Confidence (plasma
membrane H+ pump)

Confidence (phospholipid-
transporting ATPase)

Prediction (substrate
specificity)

Predictive
models

Q9LVV1 0.10 0.70 0.10 0.10 Ca+2 pump Tree

O22180 0.60 0.10 0.20 0.10 heavy metal pump Tree

Q9LVV1 0.00 1.00 0.00 0.00 Ca+2 pump Bayes SVM

O22180 1.00 0.00 0.00 0.00 heavy metal pump Bayes SVM

Q9LVV1 0.00 1.00 0.00 0.00 Ca+2 pump Bayes RULE

O22180 1.00 0.00 0.00 0.00 heavy metal pump Bayes RULE
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role in protein structural stability due to its side chain; it contains
a reactive sulfhydryl group that can oxidize to make a
covalent bond with another Cystein (formation of a di-
sulfide bond) (Leichert and Jakob 2006). Moreover,
non-reduced coefficients pertaining to Cys extinction
within 280 nm was a significant attribute assigned by 10
weighting algorithms. Therefore, those attributes, obtained
by feature selection, are the best choice to predict substrate
specificity of P-type ATPase.

The most substantial result revealed from this study could
be observed in the substrate specificity prediction of the two
P-type ATPase like proteins based on its amino acid compo-
sition. Naive Bayes, as the best predictive machine learning
algorithm in this survey, was able to predict two P-type
ATPase like proteins of unknown substrate specificity. To
our awareness, this is the first study for the application of
the predictive models to predict the substrate specificity of
P-type ATPase like proteins (Q9LVV1 and O22180) with a
confidence rate up to 100 %. It proved the efficiency of the
predictive models in predicting P-type ATPase substrate spec-
ificity. Furthermore, the features information of the tertiary
and quaternary protein structure are not essential for predic-
tion of substrate specificity. On the basis of predictive models
results, Q9LVV1 and O22180 are thought to act as Ca+2 pump
and heavy metal pump, respectively. Additional experimental
methods are also needed to validate these putative substrate
specificities.

These mentioned approaches have been taken to specify
important structural attributes, prediction and classification
of protein thermo-stability (Ebrahimi et al. 2009), P glycopro-
tein pump (Hammann et al. 2009) halo-stability (Ebrahimie
et al. 2011), olive cultivars (Beiki et al. 2012),α-linolenic acid
content (Zinati et al. 2014) as well as genotype discrimination
(Nasiri et al. 2015).

As a conclusion, it should be noted that determination of
pump substrate specificity through common laboratory proce-
dures is highly demanding of time and labor as compared to
this rapid bioinformatics approaches. Attribute weighting al-
gorithms were able to apply cleansing process to a notable
numbers of features, enhance the modeling accuracy rate
and thus predict the substrate specificity of ATPase pumps.
The findings of this study suggest that supervised algorithms
(Decision Tree and Naive Bayes) can be used as efficient
methods for classification and prediction of the substrate spec-
ificity of new ATPase pumps with the maximum possible
prediction confidence.

Additionally, the findings substantiated that amino acid
structural composition could be optimally exerted for the P-
type ATPase substrate specificity precise determination.
Furthermore, these models suggest which amino acids or di-
peptides are of critical importance for translocation in different
ATPases and gain insight to engineer according to the impor-
tant attributes in this survey.
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