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Abstract
AIM: To investigated changes in intestinal Akkermansia 
muciniphila  (A. muciniphila) and explored the mechanism 
underlying the therapeutic effects of Roux-en-Y gastric 
bypass (RYGB) surgery on type 2 diabetes in diabetic 
Goto-Kakizaki (GK) rats. 

METHODS: Male diabetic GK rats (n = 12) aged 8 wk 
were randomly assigned to the surgery group (GK-RYGB) 
or sham surgery group (GK-Sham) (n  = 6 per group), 
and another 6 male Wistar rats aged 8 wk served as 
controls (WS-Sham). In the surgery group, RYGB surgery 
was conducted, and a sham operation was performed 
in both sham groups. Fasting blood glucose (FBG) levels 
before and after surgery, fasting levels of serum insulin 
and serum glucagon-like peptide-1 (GLP-1) and levels 
30 min after intragastric injection of glucose, and the 
amount of A. muciniphila  in the stool were determined. 
Insulin and GLP-1 were measured by enzyme-linked 
immunosorbent assay, and A. muciniphila  were detected 
by fluorescence-based quantitative polymerase chain 
reaction. 

RESULTS: The FBG was improved, and serum GLP-1 
and insulin increased significantly (P < 0.05) in the GK-
RYGB group after surgery compared to levels before 
surgery and to levels in the GK-Sham group. Before 
surgery, the amounts of A. muciniphila  in the GK-RYGB 
and GK-Sham groups were significantly lower than in the 
WS-Sham group (P < 0.05). After surgery, the amount of 
A. muciniphila  in the GK-RYGB group increased markedly 
compared to that before surgery and to that in the GK-
Sham and WS-Sham groups (P < 0.05). In addition, the A. 
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muciniphila  amount was positively related to GLP-1 (r  = 
0.86, P < 0.05). 

CONCLUSION: Our results demonstrated RYGB surgery 
may increase GLP-1 secretion, elevate serum insulin 
after intragastric injection of glucose, and improve insulin 
resistance in diabetic GK rats, thereby contributing to 
a significant reduction in blood glucose. The increased 
amount of A. muciniphila  after RYGB surgery may be 
related to elevated GLP-1 secretion. 

Key words: Roux-en-Y gastric bypass surgery; Type 2 
diabetes; Glucagon-like peptide-1; Glucose-dependent 
insulinotropic peptide; Akkermansia mucinipilia
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Core tip: Roux-en-Y gastric bypass (RYGB) surgery can 
improve blood glucose with definite efficacy in obese 
patients with type 2 diabetes mellitus and that this effect 
is also long lasting. But the mechanism of RYGB is not 
clear. Our study demonstrated RYGB surgery may increase 
glucagon-like peptide-1 (GLP-1) secretion, elevate serum 
insulin after intragastric injection of glucose, and improve 
insulin resistance in diabetic Goto-Kakizaki rats, thereby 
contributing to a significant reduction in blood glucose. 
The increased amount of Akkermansia muciniphila  after 
RYGB surgery may be related to elevated GLP-1 secretion. 
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INTRODUCTION
According to the International Diabetes Federation[1], 
diabetes mellitus (DM) affected about 370 million 
people in 2011, and an estimated 550 million people will 
develop DM. Of DM patients, 90% are diagnosed with 
type 2 DM (T2DM)[2]. The specific etiology of T2DM is still 
unclear, but it is widely accepted that T2DM develops as 
a result of genetic and environmental factors[3]. Intestinal 
microorganisms have been regarded as environmental 
factors[4] and are closely related to the occurrence and 
development of metabolic diseases, including DM[5-8]. 

In recent years, increasing numbers of studies have 
reported that Roux-en-Y gastric bypass (RYGB) surgery 
may alter the intestinal flora. Animal experiments[9,10] 
and clinical trials[11,12] have revealed that the intestinal 
flora change significantly after RYGB surgery. However, 
a majority of studies focused on the bacterial genus, and 
a specific type of bacterium has never been investigated 
in depth. Studies in the field of internal medicine typically 
emphasize Akkermansia muciniphila (A. muciniphila), 

and findings demonstrate that A. muciniphila is closely 
related to the occurrence and development of obesity 
and DM[13-18]. In the present study, RYGB surgery was 
performed in diabetic Goto-Kakizaki (GK) rats, and 
blood glucose, glucagon-like peptide-1 (GLP-1), and the 
amount of A. muciniphila in the stool were measured 
before and after surgery to evaluate the association 
of postoperative blood glucose and GLP-1 with the 
amount of A. muciniphila and to explore the potential 
mechanisms underlying the therapeutic effects of RYGB 
surgery on T2DM.

MATERIALS AND METHODS
Animals
GK rats aged 8 wk (specific pathogen free; n = 12) 
and Wistar rats (n = 6) were purchased from Shanghai 
SLAC Laboratory Animal Co., Ltd. China. GK rats were 
randomly assigned to 1 of 2 groups (n = 6 per group): 
The GK-RYGB group and GK-sham group. Wistar rats 
served as controls (WS-Sham group). This study was 
approved by the Ethics Committee of the Beijing Tiantan 
Hospital Affiliated to Capital Medical University, and all 
the procedures were performed in accordance with the 
Guide for the Care and Use of Laboratory Animals. 

Surgical procedures and postoperative treatments
Before surgery, rats were fasted for 12 h and then were 
intraperitoneally anesthetized with 10% chloral hydrate 
at 0.35 mL/100 g, followed by RYGB surgery. A 4-cm 
incision was made in the upper abdomen, and laparotomy 
was performed: First, the stomach was divided just below 
the gastroesophageal junction from the greater to the 
lesser curve, taking care to preserve the vagus nerve 
in this region. A gastric pouch of approximately 20% 
of the total stomach volume was preserved. Second, 
the jejunum was divided 8 cm below the ligament of 
Treitz, and the distal cut end was anastomosed on the 
anterior surface of the gastric pouch with 5-0 suture. 
The anastomosis was 4-6 cm in length. Third, a 1-cm 
enterotomy was made on the antimesenteric aspect 
of the jejunum 10 cm distal to the gastrojejunostomy 
and was anastomosed to the proximal cut end of the 
jejunum as an end-to-side anastomosis that was 4-6 cm 
in length. 

Sham surgery was performed in the following manner: 
A midline 4-cm incision was made in the upper abdomen, 
and laparotomy was performed. The gastrointestinal 
tract was explored, straightened out, and placed back 
into the abdominal cavity. Food was withheld for 24 h 
after surgery, but animals were given ad libitum access 
to water. Beginning 2 d after surgery, fluid (10% glucose) 
was administered for 2 d, and normal diet was resumed 
at 4 d after surgery. None of the animals in the 3 groups 
died during the experiment. 

Fasting blood glucose
Fasting blood glucose (FBG) was measured at 1 wk 
before surgery and at 1, 2, 3, and 4 wk after surgery. 
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Rats were fasted overnight, blood was collected from 
the tail vein, and glucose was measured with a glucose 
meter (Beijing Yicheng Company) at 8:00 AM. 

Serum insulin and GLP-1
Serum insulin and GLP-1 were measured 1 wk before 
surgery and 4 wk after surgery. Rats were fasted 
overnight, and blood was collected from the tail vein at 
fasting status and at 30 min after intragastric admini-
stration of 1 g/kg glucose. Blood was transferred into an 
EDTA-pretreated tube and centrifuged at 3000 rpm for 
12 min at 4 ℃. The serum was collected and stored at 
-80 ℃ for further analysis. Rat radioimmunoassay kits 
(IBL, Germany) were used for the detection of serum 
insulin and GLP-1 according to the manufacturer’s 
instructions. 

Homeostasis model assessment-insulin resistance
Homeostasis model assessment-insulin resistance 
(HOMA-IR) was measured before surgery and 4 wk after 
surgery as follows: HOMA-IR = fasting plasma glucose 
(mmol/L) × fasting insulin (pmol/L)/22.5. HOMA-IR was 
used to evaluate the insulin resistance. 

A. muciniphila in the stool. Extraction of bacterial DNA 
took place as follows: Stool was collected 1 wk before 
and 4 wk after surgery and was stored at -80 ℃. The 
standard MucT (ATCC BAA-835T) was thawed, cultured, 
and then stored at 4 ℃. DNA was extracted with the 
QIAamp bacterial genomic DNA extraction kit (Qiagen, 
Germany) according to the manufacturer’s instructions 
and then was stored at -20 ℃ for use. Next, primers for 
polymerase chain reaction (PCR) were designed: On 
the basis of the V1 and V6 variable regions of 16S RNA 
of A. muciniphila[17], forward and reverse primers were 
designed with Primer Premier 5.0 (Premier Biosoft, Palo 
Alto, CA, United States) and were synthesized as follows: 

Forward: 5′ CAGCACGTGAAGGTGGGGAC 3′
Reverse: 5′ CCTTGCGGTTGGCTTCAGAT 3′
Product length: 214 bp.
Routine PCR was conducted as follows: Genomic DNA 

extracted from the bacteria in rat stool, and standard 
bacteria served as templates for routine PCR. The purity 
and integrity of genomic DNA were determined by 1.0% 
agarose gel electrophoresis. After PCR, the amplified 
DNA was harvested with a DNA retrieval kit (Company, 

Country). The retrieved DNA of standard bacteria served 
as standards for fluorescence-based quantitative PCR, 
and a standard curve was delineated. 

A 10-fold dilution series of standard DNA template 
and DNA template from stool bacteria were indepen-
dently prepared and used for real-time quantitative PCR. 
Product specificity was determined according to the melt 
curve, and the Ct value and the standard curve were 
employed to calculate the amount of measured bacteria 
(copies per g stool). 

Statistical analysis
Statistical analysis was performed with SPSS version 
19.0 (Chicago, IL, United States), and data were 
expressed as mean ± standard deviation (x ± s). 
Comparisons of means among groups were done with 
one-way analysis of variance. A value of P < 0.05 was 
considered statistically significant. Correlations between 
A. muciniphila amount and serum GLP-1 were evaluated 
with Pearson correlation analyses and univariate regression 
analyses. 

RESULTS
Blood glucose and insulin
Before surgery, FBG in GK rats was significantly higher 
than that in Wistar rats (P < 0.05). At 1 wk after surgery, 
FBG was reduced in the 3 groups, but a significant diffe-
rence was found only in the GK-RYGB group (P < 0.05). 
FBG increased gradually in the GK-Sham group and 
the WS-Sham group within 2 wk after surgery. At 2, 
3, and 4 wk after surgery, FBG in the GK-RYGB group 
was lower than that in the GK-Sham group but was still 
higher than in the WS-Sham group. After surgery, FBG 
in the GK-RYGB group was significantly different from 
that in the GK-Sham and WS-Sham groups (P < 0.05) 
(Table 1). 

Before surgery, fasting serum insulin (FSI) values in 
GK rats was significantly lower than those in Wistar rats (P 
< 0.05). At 4 wk after surgery, the FSI values in the GK-
RYGB group and GK-Sham group increased compared to 
values before surgery (P > 0.05). At 4 wk after surgery, 
the FSI at 30 min after intragastric administration of 
glucose in the GK-RYGB group increased significantly 
compared to that before surgery and was significantly 
higher than in the GK-Sham group but lower than in the 
WS-Sham group after surgery (P < 0.05) (Table 2). 

Before surgery, HOMA-IR in GK rats was significantly 
higher than that in Wistar rats (P < 0.05), suggesting 
higher insulin resistance in GK rats before surgery. At 4 wk 
after surgery, HOMA-IR in the GK-RYGB group was signi-
ficantly lower than that before surgery and that in the 
GK-Sham group after surgery (P < 0.05), indicating 
that RYGB surgery can improve insulin resistance in GK 
rats (Table 3). 

GLP-1
Before surgery, fasting GLP-1 in GK rats was significantly 
lower than that in Wistar rats (P < 0.05). At 4 wk after 

Time point GK-RYGB GK-Sham WS-Sham

1 wk presurgery 6.98 ± 0.32a 7.07 ± 0.57a 4.57 ± 0.26
1 wk postsurgery 6.42 ± 0.25c 6.82 ± 0.49a 4.25 ± 0.23
2 wk postsurgery    6.01 ± 0.20a,c,e 6.88 ± 0.52a 4.37 ± 0.22
3 wk postsurgery    5.60 ± 0.26a,c,e 6.93 ± 0.52a 4.37 ± 0.23
4 wk postsurgery    5.72 ± 0.25a,c,e 7.03 ± 0.52a 4.50 ± 0.24

Table 1  Fasting blood glucose in different groups before and 
after surgery (x ± s, mmol/L)

aP < 0.05 vs WS-Sham group; cP < 0.05 vs GK-Sham group; eP < 0.05 vs 
presurgery value. GK: Goto-Kakizaki; RYGB: Roux-en-Y gastric bypass; 
WS: Wistar.
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surgery, fasting GLP-1 in the GK-RYGB surgery group 
was significantly higher than in the GK-Sham group (P < 
0.05) but was comparable to that in the WS-Sham group 
(P > 0.05) (Table 4). 

A. muciniphila: The extracted bacterial DNA is shown in 
Figure 1. The marker was a 100-bp ladder DNA marker 
with clear bands, suggesting that the extracted DNA was 
legible. 

Amount of A. muciniphila before and after surgery in 
different groups
At 1 wk before surgery, the amount of A. muciniphila 
in GK rats was significantly lower than that in Wistar 
rats (P < 0.05). At 4 wk after surgery, the amount of A. 
muciniphila was 9.34 ± 0.18 copies per g stool in the 
GK-RYGB surgery group, which was significantly higher 
than that before surgery and that in the WS-Sham group 
and GK-Sham group (P < 0.05). This suggests that the 
amount of A. muciniphila in rat stool increases in GK rats 
after surgery (Table 5). 

Correlation between intestinal A. muciniphila and serum 
GLP-1 
The amount of A. muciniphila served as an indepen-
dent variable and serum GLP-1 content as a dependent 
variable. A scatterplot (Figure 2) of the results showed 
a linear relationship between serum GLP-1 and the 
amount of A. muciniphila, and spots were found mainly 
within the 95%CI. Correlation analysis showed that r (the 
Pearson correlation coefficient) was 0.867, suggesting 
a significant positive correlation between serum GLP-1 
and the amount of A. muciniphila. The amount of A. 
muciniphila was used as an independent variable and 

the level of serum GLP-1 was used as a dependent 
variable for univariate analysis, and the results showed 
that P = 0.00. 

DISCUSSION
The effectiveness of surgery in the treatment of T2DM 
has been widely accepted after 20 years of clinical 
practice, and surgery has been included in guidelines 
for the treatment of DM[19,20]. Previous studies have 
shown that RYGB surgery can improve blood glucose 
with definite efficacy in obese patients with T2DM[21-24] 
and that this effect is also long lasting[14]. Moreover, 
this surgery may be better to mitigate T2DM-related 
complications compared to pharmacotherapy[11,13,25]. 

Although surgery has favorable therapeutic efficacy 
for T2DM, the specific mechanism of action is still unclear 
and may be related to changes in gastrointestinal 
hormones[26,27]. One of the widely studied gastrointestinal 
hormones is GLP-1, which, with its receptor GLP-1R, has 
been a focus of studies in internal medicine. To date, 
GLP-1 analogues (e.g., liraglutide) and GLP-1R agonists 
(e.g., exenatide) have been developed and used in 
clinical practice with favorable efficacy[28]. Currently, 
published animal experiments[26] and clinical trials[29] 

have demonstrated that GLP-1 increases after RYGB 
surgery. In the present study, our results also showed 
that GLP-1 secretion increases in GK rats after RYGB 
surgery. GLP-1 acts mainly to increase glucose-induced 
insulin secretion, increase glucagon secretion, improve 
insulin sensitivity, promote regeneration of islet β cells, 
and reduce their apoptosis[30], leading to reduction in 
blood glucose. In our study, the results showed that FBG 
remained unchanged in GK rats after RYGB surgery, but 

Group Presurgery 4 wk postsurgery

Fasting 30 min after intragastric glucose Fasting 30 min after intragastric glucose
GK-RYGB  15.20 ± 0.67a    27.07 ± 1.07a  16.05 ± 1.41a      47.57 ± 4.24a,c

GK-Sham  15.26 ± 0.76a    27.49 ± 1.29a  15.43 ± 0.97a    27.26 ± 1.26a

WS-Sham 18.54 ± 0.99 104.00 ± 4.96 19.01 ± 0.42 103.68 ± 4.85

Table 2  Serum insulin in different groups before and after surgery (x ± s, pmol/L)

aP < 0.05 vs WS-Sham group; cP < 0.05 vs GK-Sham group. GK: Goto-Kakizaki; RYGB: Roux-en-Y gastric bypass; WS: 
Wistar.

1                 2             3              4              5              6             Marker

Figure 1  Electrophoresis of extracted DNA in the Goto-Kakizaki-Roux-en-Y gastric bypass surgery group.
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serum insulin increased after intragastric administration 
of glucose, suggesting that RYGB surgery may elevate 
glucose-induced insulin secretion via increasing GLP-1 
secretion. In addition, our results revealed that HOMA-
IR in GK rats after RYGB surgery was significantly lower 
than that before surgery and that in the GK-Sham 
group, indicating that RYGB surgery can improve insulin 
sensitivity via GLP-1 induction in GK rats. 

The mechanism whereby RYGB increases GLP-1 
secretion is still unclear. Evidence suggests that early 
contact of the distal small intestine with food after food 
intake following RYGB surgery may induce the secretion 
of GLP-1[27], but studies to date have not elucidated the 
mechanisms whereby food induces GLP-1 secretion. 
Thus, the role of food in increased GLP-1 secretion still 
requires clarification. Tolhurst et al[31] speculated that 
intestinal microorganisms were closely related to GLP-1 
and their metabolites (such as short-chain fatty acids) 
may act on the corresponding receptors on L cells to 
stimulate GLP-1 secretion. However, whether intestinal 
microorganisms induce GLP-1 secretion after RYGB 
surgery and the putative mechanisms of this action are 
still poorly understood. 

Studies[29,32] have confirmed that intestinal microor-

ganisms may affect body weight and blood glucose. A. 
muciniphila has been a focus in current studies because 
apparently it can reduce body weight and improve blood 
glucose as well as insulin resistance[15-18]. However, the 
role of A. muciniphila in the therapeutic effects of RYGB 
surgery on T2DM have never been studied. In this study, 
the results showed that the amount of A. muciniphila in 
the stool of GK rats was significantly lower than that in 
Wistar rats before surgery, suggesting that the amount 
of A. muciniphila in diabetic rats was lower than that in 
healthy rats. At 4 wk after RYGB surgery, the amount of A. 
muciniphila increased significantly in GK rats, suggesting 
that RYGB surgery can increase the intestinal amount 
of A. muciniphila in GK rats. Hansen et al[33] speculated 
that 2-oleoylglycerol, a metabolite produced by intes-
tinal A. muciniphila, may stimulate the secretion of 
gastrointestinal hormones, especially GLP-1, in L cells in 
the distal small intestine. In the present study, correlation 
analysis and regression analysis confirmed that the 
amount of A. muciniphila was positively correlated with 
that of GLP-1. Thus, we speculate that RYGB surgery not 
only increases the intestinal amount of A. muciniphila but 
also elevates GLP-1. 

Our findings indicate that GLP-1 increases after RYGB 
surgery, which then elevates serum insulin after intra-
gastric administration of glucose and improves insulin 
resistance and effectively reduces blood glucose in GK 
rats. The increased intestinal amount of A. muciniphila 
following RYGB surgery may contribute to the elevated 
secretion of GLP-1 after RYGB surgery. But, the modality 
wehreby A. muciniphila increases as a results of RYGB 
still remains undefined, nor is clear how GLP-1 increases, 
which needs further research in the future.

COMMENTS
Background
Type 2 diabetes mellitus (T2DM) is an endocrine and metabolic disease, which 
has become a significant worldwide health problem. According to the International 

Group Presurgery 4 wk postsurgery

GK-RYGB  4.72 ± 0.34a    4.07 ± 0.30c,e

GK-Sham  4.80 ± 0.51a 4.83 ± 0.54
WS-Sham 3.75 ± 0.07 3.74 ± 0.20

Table 3  Homeostasis model assessment-insulin resistance in 
different groups before and after surgery 

aP < 0.05 vs WS-Sham group; cP < 0.05 vs GK-Sham group; eP < 0.05 vs 
presurgery. GK: Goto-Kakizaki; RYGB: Roux-en-Y gastric bypass; WS: 
Wistar.

Group Presurgery 4 wk postsurgery

GK-RYGB   21.01 ± 0.90a     34.36 ± 1.46c,e

GK-Sham   21.19 ± 0.53a   24.98 ± 2.63a

WS-Sham  29.31 ± 1.51  32.13 ± 1.52

Table 4  Serum glucagon-like peptide-1 in different groups 
before and after surgery (x ± s, pmol/L)

aP < 0.05 vs WS-Sham group; cP < 0.05 vs GK-Sham group; eP < 0.05 vs 
presurgery. GK: Goto-Kakizaki; RYGB: Roux-en-Y gastric bypass; WS: 
Wistar.

Group Presurgery 4 wk postsurgery

GK-RYGB  7.85 ± 0.09a      9.34 ± 0.18a,c,e

GK-Sham  7.79 ± 0.08a  7.82 ± 0.09a

WS-Sham 8.51 ± 0.08 8.82 ± 0.06

Table 5  Amount of Akkermansia muciniphila  in different 
groups before and after surgery (log10 copies/g)

aP < 0.05 vs WS-Sham group; cP < 0.05 vs GK-Sham group; eP < 0.05 vs 
presurgery. GK: Goto-Kakizaki; RYGB: Roux-en-Y gastric bypass; WS: 
Wistar.
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Figure 2  Scatterplot of the amount of Akkermansia muciniphila vs levels 
of glucagon-like peptide-1. GLP-1: Glucagon-like peptide-1.
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Diabetes Federation, T2DM has become the third most common type of non-
infectious disease worldwide following cardiovascular disease and cancer. The 
conventional therapies include diet adjustment, exercise, self-monitoring of 
blood glucose and drug. But none of these therapies is adequately effective in 
maintaining long-term glycemic control and preventing complications. Therefore, 
an effective treatment for T2DM is urgently required. Of the current treatments for 
T2DM, Roux-en-Y gastric bypass (RYGB) surgery is considered to be an effective 
long-term treatment. However, the mechanisms that drive these outcomes remain 
incompletely understood. 

Research frontiers
Recently, T2DM is characterized by altered gut microbiota, and Akkermansia 
muciniphila (A. muciniphila) is one of substantial gut microbiota. A. muciniphila 
which belongs to the phylum Verrucomicrobia, has been identified as a mucin-
degrading bacteria that resides in the mucus layer, and it is the dominant human 
bacterium that abundantly colonizes this nutrient-rich environment. And its 
abundance inversely correlates with body weight and T2DM in mice and humans. 
A. mucinihpila becomes hot gut microbiota in basic research for diabetes.

Innovations and breakthroughs
In this study, the authors used Goto-Kakizaki (GK) rats, a genetic model of 
T2DM, to investigate whether the RYGB surgery influenced the population of 
A. muciniphila. The authors’ findings indicate that glucagon-like peptide-1 (GLP-1) 
increases after RYGB surgery, which then elevates serum insulin after intragastric 
administration of glucose and improves insulin resistance and effectively reduces 
blood glucose in GK rats. The increased intestinal amount of A. muciniphila 
following RYGB surgery may contribute to the elevated secretion of GLP-1 after 
RYGB surgery. 

Applications
The authors’ findings indicate that GLP-1 increases after RYGB surgery, and 
effectively reduces blood glucose in GK rats. The increased intestinal amount of 
A. muciniphila following RYGB surgery may contribute to the elevated secretion 
of GLP-1 after RYGB surgery. The authors’ findings may explain the mechanism 
that RYGB surgery can improve blood glucose with definite efficacy in obese 
patients with T2DM.

Peer-review
The authors need to be congratulated for their innovative research study on 
relevant clinical topic. The experimental work has been scheduled and performed 
according to the current principles of the experimental project. The manuscript 
itself is concise, written in an elegant style according to all requirements of original 
contribution.
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