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Abstract

We developed the Genomic Regions Enrichment of Annotations Tool (GREAT) to analyze the 

functional significance of cis-regulatory regions identified by localized measurements of DNA 

binding events across an entire genome. Whereas previous methods took into account only binding 

proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false 

positives using a binomial test over the input genomic regions. GREAT incorporates annotations 

from 20 ontologies and is available as a web application. Applying GREAT to data sets from 

chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) of 

multiple transcription-associated factors, including SRF, NRSF, GABP, Stat3 and p300 in different 

developmental contexts, we recover many functions of these factors that are missed by existing 

gene-based tools, and we generate testable hypotheses. The utility of GREAT is not limited to 

ChIP-seq, as it could also be applied to open chromatin, localized epigenomic markers and similar 

functional data sets, as well as comparative genomics sets.

The coupling of chromatin immunoprecipitation with massively parallel sequencing, ChIP-

seq, is ushering in a new era of genome-wide functional analysis1–3. Thus far, computational 

efforts have focused on pinpointing the genomic locations of binding events from the deluge 

of reads produced by deep sequencing4–8. Functional interpretation is then performed using 

gene-based tools developed in the wake of the preceding microarray revolution9–11. In a 
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typical analysis, one compares the total fraction of genes annotated for a given ontology 

term with the fraction of annotated genes picked by proximal binding events to obtain a 

gene-based P value for enrichment (Fig. 1 and Online Methods).

This procedure has a fundamental drawback: associating only proximal binding events (for 

example, under 2–5 kb from the transcription start site) typically discards over half of the 

observed binding events (Fig. 2a). However, the standard approach to capturing distal events

—associating each binding site with the one or two nearest genes—introduces a strong bias 

toward genes that are flanked by large intergenic regions12,13. For example, though the Gene 

Ontology14 (GO) term ‘multicellular organismal development’ is associated with 14% of 

human genes, the ‘nearest genes’ approach associates over 33% of the genome with these 

genes. This biological bias results in numerous false positive enrichments, particularly for 

the input set sizes typical of a ChIP-seq experiment (Fig. 2b and Supplementary Fig. 1). 

Building on our experience in addressing these pitfalls12,15,16, we have developed a tool that 

robustly integrates distal binding events while eliminating the bias that leads to false positive 

enrichments.

RESULTS

Here we describe GREAT, which analyzes the functional significance of sets of cis-

regulatory regions by explicitly modeling the vertebrate genome regulatory landscape and 

using many rich information sources.

A binomial test for long-range gene regulatory domains

GREAT associates genomic regions with genes by defining a ‘regulatory domain’ for each 

gene in the genome. Each genomic region is associated with all genes in whose regulatory 

domains it lies (Fig. 1b). High-throughput chromosomal conformation capture (3C) 

approaches such as 5C (ref. 17), Hi-C (ref. 18) or enhanced ChIP-4C (ref. 19) are providing 

first glimpses of actual gene regulatory domains. Because we still lack precise empirical 

maps, however, GREAT assigns each gene a regulatory domain consisting of a basal domain 

that extends 5 kb upstream and 1 kb downstream from its transcription start site (denoted 

below as 5+1 kb), and an extension up to the basal regulatory domain of the nearest 

upstream and downstream genes within 1 Mb (GREAT allows the user to modify the rule 

and distances). GREAT further refines the regulatory domains of a handful of genes, 

including several global control regions20, by using their experimentally determined 

regulatory domains. Our tool can also incorporate additional locus-based and genome-wide 

data as they become available (Supplementary Fig. 2 and Online Methods).

Given a set of input genomic regions and an ontology of gene annotations, GREAT 

computes ontology term enrichments using a binomial test that explicitly accounts for 

variability in gene regulatory domain size by measuring the total fraction of the genome 

annotated for any given ontology term and counting how many input genomic regions fall 

into those areas (Fig. 1b and Online Methods). In the example above, GREAT expects 33% 

of all input elements to be associated with ‘multicellular organismal development’ by 

chance, rather than the 14% of input elements that a gene-based test assumes. The binomial 

test integrates distal binding events in a way that remains robust regardless of erroneous 
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assignments of genomic regions to genes. Namely, the longer the regulatory domain of any 

gene—and, by extension, of any ontology term—the greater the expected number of regions 

associated with this term by chance. Indeed, the binomial statistic markedly reduces the 

number of false positive enriched terms even when very large regulatory domains are used 

(Fig. 2b and Supplementary Fig. 1). The binomial test treats each input genomic region as a 

point-binding event, making it most suitable for testing targets with localized binding peaks. 

The binomial test also highlights cases in which a single gene attracts an unlikely number of 

input genomic regions. To separate these biologically interesting gene-specific events from 

term-derived enrichments that are distributed across multiple genes, we perform both the 

binomial test and the traditional hypergeometric gene-based test. In doing so, we highlight 

ontology terms enriched by both tests (term-derived enrichment) separately from those 

enriched by only the binomial test (gene-specific enrichment) or the hypergeometric test 

(regulatory domain bias) (Fig. 2c and Supplementary Fig. 3).

GREAT supports direct enrichment analysis of both the human and mouse genomes. It 

integrates 20 separate ontologies containing biological knowledge about gene functions, 

phenotype and disease associations, regulatory and metabolic pathways, gene expression 

data, presence of regulatory motifs to capture cofactor dependencies, and gene families 

(Supplementary Tables 1–3 and Online Methods). Core computations are performed by the 

GREAT server while subsequent browsing is executed on the user’s machine. An overview 

of the tool’s functionality and options when analyzing data is given in Table 1, and its 

current web interface is shown in Supplementary Figure 4.

Comparison of enrichment tests and regulatory domain ranges

To demonstrate the utility of our approach, we compared GREAT results to previously 

published gene-based analyses as well as to enrichments from the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID)21. Most gene-based tools assess 

enrichments in a very similar manner; we chose DAVID as a representative gene-based tool 

owing to its popularity and its ability to test a breadth of data sources similar to that of 

GREAT (Supplementary Table 4).

We analyzed eight ChIP-seq data sets from a range of human and mouse cells and tissues 

(Supplementary Table 5), each with a different distribution of proximal and distal binding 

events (Fig. 2a). We tested each data set in six different ways: (i) by reproducing the original 

study’s list of enrichments, or if the original study did not report enrichments, by using 

DAVID on the set of genes with binding events within 2 kb of the transcription start site; (ii) 

by using GREAT with the default regulatory domain definition (basal promoter 5+1 kb and 

extension up to 1 Mb); (iii) by using GREAT’s hypergeometric test on the set of genes with 

binding events within 2 kb of the transcription start site, to control for the different gene 

mappings and ontologies in DAVID and GREAT; (iv) by using GREAT with a 5+1 kb basal 

promoter and a more limited 50 kb extension; and (v, vi) by using GREAT with either one 

(v) or two (vi) nearest genes up to 1 Mb (Tables 2 and 3, and Supplementary Tables 6–44, 

indexed in Supplementary Table 45).

GREAT invariably revealed strong enrichments for experimentally validated functions of the 

specific factors, as well as for testable—and, to our knowledge, novel—functions. It also 
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implicated subsets of regulatory regions in driving the assayed developmental processes and 

in activating key signaling pathways. In a majority of data sets, distal binding events were 

essential to recover known functions, strongly suggesting that many of the distal associations 

are biologically meaningful (see below). Furthermore, in most sets, restricting regulatory 

domain extension to 50 kb retains many enriched terms but omits roughly half of both the 

binding events and the genes implicated using the full 1-Mb extension. Although including 

distal associations is crucial, the exact distal association rule is not—the default rule, the 

nearest-gene rule, and the two-nearest-genes rule (tests ii, v and vi, respectively) behaved 

very similarly. Additionally, inclusion of the small set of experimentally determined gene 

regulatory domains we curated from the literature made very little difference in the rankings 

of any of the sets (data not shown). We present the analysis of four ChIP-seq data sets below 

and discuss the remainder in the Supplementary Note.

Serum response factor binding in human Jurkat cells

First, we analyzed a set of genomic regions bound by the serum response factor (SRF) in the 

human Jurkat cell line, identified via ChIP-seq and mapped to the genome using the 

quantitative enrichment of sequence tags (QuEST) ChIP-seq peak-calling tool8. This data 

set’s authors applied existing gene-based enrichment tools, which did not discern specific 

functions of SRF from the set of regions it binds8, and concluded that SRF is a regulator of 

basic cellular processes with no specific physiological roles (results reproduced in Table 2). 

Although SRF is indeed a regulator of basic cellular functions, numerous studies have 

implicated SRF in more specific biological contexts. SRF is a key regulator of the Fos 
oncogene22 and has also been described as a “master regulator of actin cytoskeleton”23. 

Neither FOS nor actin appeared in the top ten hypotheses generated by the previous study 

(Table 2). The same was true when we used GREAT with only proximal (2 kb) associations 

(Supplementary Table 6).

However, GREAT analysis of the most significant SRF ChIP-seq peaks8 (QuEST score > 1; 

n = 556) using the default settings (5+1 kb basal, up to 1 Mb extension) prominently 

highlights the key observation that gene-based analyses were unable to reveal: SRF regulates 

genes associated with the actin cytoskeleton23 (Table 3). As postulated above, using both 

binomial and hypergeometric enrichment tests does highlight informative GO terms more 

effectively than using either test alone (Fig. 2c and Supplementary Table 46). Moreover, 

when extension of regulatory domains is limited to 50 kb, one-third of the supporting 

regions and associated genes are lost, and actin-related terms drop in rank (Supplementary 

Table 7).

Coupling distal (up to 1 Mb) associations with the many additional ontologies available 

within GREAT provides a wealth of enrichments for specific known functions of SRF. An 

enrichment analysis of TreeFam gene families24 shows that SRF binds in proximity to five 

of six members of the FOS family. Two genes within the Fos family, Fos and Fosb, are 

previously known targets of SRF (ref. 22). The Transcription Factor Targets ontology25 has 

compiled data from ChIP experiments that link transcription factor regulators to downstream 

target genes. GREAT shows that many genes proximal to SRF binding events (in Jurkat 

cells) are also proximal to YY1 binding events (in HeLa cells), consistent with experiments 
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showing that SRF acts in conjunction with YY1 to regulate Fos (ref. 26). The top six hits in 

the Predicted Promoter Motifs ontology27 are all variants of the SRF motif generated from 

different experiments and thus serve as strong positive controls of our method. Using the 

Pathway Commons ontology28, GREAT predicts that SRF regulates components of the 

TRAIL signaling pathway and the class I PI3K signaling pathway. Previous experimental 

work has demonstrated that there is an association between SRF and TRAIL signaling29 and 

that SRF is needed for PI3K-dependent cell proliferation30.

In addition to rediscovering and expanding specific known functions of SRF, GREAT 

produces testable hypotheses even for this well-studied transcription factor. The 

Transcription Factor Targets ontology indicates that SRF binds near genes regulated by 

E2F4 (in T98G, U2OS and WI-38 cells; Table 3). SRF and E2F4 have not been shown to co-

regulate target genes; however, both SRF and E2F4 are known to interact with Smad3 (refs. 

31,32), and they may thus be co-regulators of a common set of genes. The Predicted 

Promoter Motifs ontology reveals additional potential cofactors and co-regulators. It is 

particularly useful given that many more genes have characterized binding motifs than have 

genome-wide ChIP data available. In this case, it shows enrichment for SRF binding near 

genes containing GABP motifs in their promoters. Notably, an independent experiment 

measuring GABP-bound regions of the genome in Jurkat cells has found that 29% of SRF 

peaks occur within 100 bp of a GABP peak, suggesting that SRF and GABP may indeed 

work together8. We were able to generate this same hypothesis using GREAT, without 

observing the GABP ChIP-seq data.

P300 binding in the developing mouse limbs

Second, we analyzed a recent ChIP-seq data set comprising 2,105 regions of the mouse 

genome bound by the general enhancer-associated protein p300 in embryonic limb tissue33. 

Of 25 such regions tested in transgenic mouse assays, 20 showed reproducible enhancer 

activity in the developing limbs33. Our analysis shows that GREAT identifies functions of 

enhancers active during embryonic development that gene-based tools do not detect. DAVID 

analysis of the genes with proximal p300 limb binding events produces only enrichments 

associated with transcription and involvement in organ morphogenesis, with the closest 

enrichments being the much broader terms ‘organ development’ and ‘anatomical structure 

morphogenesis’ (Supplementary Table 10a). In contrast, GREAT analysis of the 2,105 p300 

limb peaks using the default settings (5+1 kb basal, up to 1 Mb extension) produces 

overwhelming support for their putative functional role in limb development (Supplementary 

Table 10b).

GO enrichments highlight the regulation of transcription factors involved specifically in 

embryonic limb morphogenesis. The Mouse Phenotype ontology34 points to the developing 

limbs and skull, hinting at the remarkable overlap of signaling processes involved in head 

and limb development35. The p300 limb peaks are enriched near genes in the TGF-β 

signaling pathway, which is known to be involved in limb development36, and the InterPro 

ontology highlights genes in the Smad family containing the Dwarfin-type MAD 

homology-1 protein domain (Supplementary Table 10b), which is known to mediate and 

regulate TGF-β signaling37.
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Perhaps the strongest validation for the GREAT methodology comes from the MGI 

Expression: Detected ontology38. Notably, the enrichments highlighted most prominently by 

GREAT pinpoint the exact tissue and time point at which the experiment in ref. 33 was 

performed, providing unique large-scale evidence for the relevance of p300-bound regions to 

limb gene regulation. The top two ontology terms suggest limb-specific expression during 

Theiler stage 19 (TS19), which corresponds precisely with embryonic day 11.5, the time 

point at which the p300 limb peaks were assayed in ref. 33 (Supplementary Table 10b). In 

contrast, GREAT run with proximal (2 kb) associations retrieves only weak enrichments for 

limb-associated genes and limb TS19, implicating 7-fold fewer genes and 16-fold fewer 

p300 limb peaks as being involved in TS19 limb expression than GREAT run with the 

default association rule (Supplementary Table 11). Moreover, GREAT run with proximal 

associations completely misses genes with crucial roles in limb development such as Gli3, 

Grem1 and Wnt7a (ref. 39).

When GREAT’s regulatory domains are extended up to 50 kb, it correctly recovers limb 

terms, but still implicates only half the genes found with the default association rule and 

yields P values many orders of magnitude weaker (Fig. 3 and Supplementary Table 12). By 

extending regulatory domains, we increase both the number of limb-related genes containing 

one or more p300 limb peaks within their regulatory domains and the number of p300 limb 

peaks associated with limb-related genes (Fig. 3). When regulatory domains are further 

extended from 50 kb to 1 Mb, they include even more p300 limb peaks than expected by 

chance (Fig. 3c), providing strong evidence that many of these distal associations are 

biologically meaningful.

P300 binding in the developing mouse forebrain and midbrain

Finally, we analyzed two ChIP-seq data sets comprising regions bound by p300 in mouse 

embryonic forebrain and midbrain tissue33. Using the 2,453 forebrain peaks, DAVID 

correctly highlights forebrain and general brain development (0.004 < P < 0.05), but with 

terms implicating fewer than ten genes (Supplementary Table 15a). GREAT run with 

proximal regulatory regions (2 kb) ranks forebrain development higher and is able to 

implicate additional genes and regions using its unique phenotype and expression ontologies 

(Supplementary Table 16). Using up to 50 kb extension adds additional related terms and 

raises the number of genes associated with each term (Supplementary Table 17). This trend 

continues when the extension is increased to up to 1 Mb, and only this inclusion of distal 

binding allows detection of significant associations (P = 0.001) with Wnt signaling genes 

that have known roles in forebrain development40 (Supplementary Table 15b).

When run on the 561 midbrain p300 peaks, DAVID does not yield significant results (P > 

0.05; Supplementary Table 20a) and proximal (2 kb) GREAT performs only slightly better, 

offering three relevant terms associated with very few genes from our unique ontologies 

(Supplementary Table 21). In contrast, GREAT with up to 1 Mb extension highlights twelve 

brain-specific enriched terms (Supplementary Table 20b). Many GREAT enriched terms are 

shared between the forebrain and midbrain peaks (as discussed in Supplementary Note), but 

GREAT correctly identifies midbrain-specific enrichments such as the GO term 

‘compartment specification’. Compartment specification is of interest, as within this tissue at 
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this developmental age, Fgf8 induces Wnt (also enriched within this set) to set up a gene 

network that establishes the boundary between the midbrain and hindbrain compartments41. 

GREAT with up to 50 kb extension is able to highlight many of the same terms, but loses 

roughly half the associated genes and regions and the Wnt enrichment (Supplementary Table 

22).

DISCUSSION

GREAT is a new-generation tool aimed at the interpretation of genome-wide cis-regulatory 

data sets. It explicitly models the vertebrate cis-regulatory landscape through the use of 

long-range regulatory domains and a genomic region–based enrichment test, allowing 

analyses that take into consideration the large number of binding events that occur far 

beyond proximal promoters. By accounting for the length of gene regulatory domains, 

GREAT is able to highlight biologically meaningful terms and their associated cis-regulatory 

regions and genes, in a manner that remains robust if there are false associations between 

input regions and genes. Moreover, these regulatory-domain definitions can naturally 

incorporate future results from three-dimensional conformation capture studies17–19, 

radiation hybrid maps42 and other emerging approaches for measuring the regulatory 

genome in action. By coupling this methodology with many ontologies that span a wealth of 

biological information types, GREAT produces specific, accurate enrichments that provide 

insight into the biological roles of cis-regulatory data sets of interest.

We comprehensively tested GREAT on multiple ChIP-seq data sets and found that it is able 

to reproduce many known biological facts that existing methods do not detect, as well as 

suggest novel hypotheses for further experimental characterization. In particular, our 

analysis shows that ignoring distal binding events often leads to missing target gene 

associations, to obtaining weaker P values or even to completely omitting relevant 

enrichment terms. Besides ChIP-seq data, GREAT can also be applied to the analysis of any 

data set thought to be enriched for localized cis-regulatory regions. This includes functional 

genomic data sets of open chromatin, localized epigenomic markers, and comparative 

genomic sets. GREAT may thus prove invaluable in elucidating the cis-regulatory functions 

encoded in genomes.

GREAT is available online (http://great.stanford.edu/); also provided is a means for direct 

submission from other applications such as genome portals and peak calling tools.

ONLINE METHODS

Gene set definition

Statistical enrichment of ontology terms is dependent upon the genome-wide gene set used 

in the analysis. GREAT currently supports testing of human (Homo sapiens NCBI Build 

36.1, or UCSC hg18) and mouse (Mus musculus NCBI Build 37, or UCSC mm9). To limit 

the gene sets to only high-confidence genes and gene predictions, we use only the subset of 

the UCSC Known Genes45 that are protein coding, are on assembled chromosomes and 

possess at least one meaningful GO annotation14. GO is an ontological representation of 

information related to the biological processes, cellular components and molecular functions 
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of genes. We rely on the idea that if a gene has been annotated for function it should be 

included in the gene set, and if no function has been ascribed to a gene its status may be 

unclear and thus it is best omitted from the gene set. In GREAT version 1.1.3, we use GO 

data downloaded on 5 March 2009 for human and 23 March 2009 for mouse, leading to 

gene sets of 17,217 and 17,506 genes for human and mouse, respectively.

A single gene may have multiple splice variants. As annotations are generally given at the 

gene level, GREAT uses a single transcription start site (TSS) to specify the location of each 

gene. The TSS used is that of the ‘canonical isoform’ of the gene as defined by the UCSC 

Known Genes track45.

Association rules from genomic regions to genes

For each gene, we define a ‘regulatory domain’ such that all noncoding sequences that lie 

within the regulatory domain are assumed to regulate that gene. GREAT currently supports 

three different parametrized association rules to define gene regulatory domains 

(Supplementary Fig. 2). The default ‘basal plus extension’ association rule assigns a ‘basal 

regulatory region’ irrespective of the presence of neighboring genes that extends (using 

default parameters) 5 kb upstream and 1 kb downstream of the TSS (Supplementary Fig. 

2a). Each gene’s regulatory domain is then extended up to the basal regulatory region of the 

nearest upstream and downstream genes, but no longer than 1 Mb in each direction. The 

choice of basal regulatory region size and placement was motivated by the location of 

histone modifications and measures of chromatin accessibility near the TSS of genes46, and 

the maximum extension distance is based upon work showing that long-range distal 

enhancers can regulate expression of target genes up to 1 Mb away47,48. All three parameters 

(basal upstream, basal downstream and maximum extension distance) can be set by the user.

The ‘two nearest genes’ association rule extends each gene’s regulatory domain from the 

TSS of the canonical isoform to the nearest upstream and downstream TSS (Supplementary 

Fig. 2b), up to 1 Mb in each direction. This association rule stipulates that each base pair 

cannot be assigned to more than two genes.

The ‘single nearest gene’ association rule extends each gene’s regulatory domain from the 

TSS of the canonical isoform in each direction to the midpoint between the TSS and the 

nearest adjacent TSS (Supplementary Fig. 2c), up to 1 Mb in each direction. This association 

rule stipulates that each base pair cannot be assigned to more than one gene.

For well-studied genes with experimentally detected distal regulatory elements (reviewed in 

ref. 20), we manually override the computationally defined regulatory domains. GREAT 

version 1.1.3 uses experimentally validated regulatory domains for SHH47, genes in the β-

globin locus49, and KIAA1715, EVX2, HOXD10, HOXD11, HOXD12 and HOXD13 (ref. 

50). Future releases of the tool will continue to refine regulatory domains as technological 

advances, including three-dimensional conformation capture studies17–19 and radiation 

hybrid maps42, further elucidate interactions between regulatory DNA and its target genes.
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Hypergeometric test over genes

The hypergeometric test over genes identifies all genes whose regulatory domains possess 

one or more genomic regions from the input set and calculates enrichments over the genes 

with respect to the defined gene set using a hypergeometric distribution. More formally, the 

hypergeometric test is executed separately for each ontology term π and is defined by four 

parameters:

1. N is the total number of genes in the genome.

2. Kπ is the number of genes in the genome that possess ontology annotation π.

3. n is the number of genes selected because one or more input genomic regions 

resides in their regulatory domains.

4. kπ is the number of selected genes that possess ontology annotation π.

The test calculates the P value of the observed enrichment for term π as the fraction of ways 

to choose n genes without replacement from the entire group of N genes such that at least kπ 

of the n possess ontology annotation π, using the formula below.

(1)

In particular, the hypergeometric test counts every gene only once even if it was picked by 

multiple genomic regions. Terms enriched by the hypergeometric test thus indicate a high 

‘term coverage’, where a larger fraction of all genes annotated with the term are selected by 

the input genomic regions than expected by chance.

Binomial test over genomic regions

To account for the length variability within gene regulatory domains, we implemented a 

binomial test over genomic regions that uses the fraction of the genome associated with each 

ontology term as the probability of selecting the term. The binomial test is executed 

separately for each ontology term π and is defined by three parameters:

1. n is the total number of genomic regions in the input set.

2. pπ is the a priori probability of selecting a base pair annotated with π when 

selecting a single base pair uniformly from all non–assembly gap base pairs in the 

genome.

3. kπ is the number of genomic regions in the input set that cause annotation π to be 

selected.

The test calculates the P value of the observed enrichment for term π as the probability of 

selecting annotation π at least kπ times in n attempts using the formula below.
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(2)

The binomial test first maps each input genomic region to the left median base pair in its 

span, making it most appropriate for assessing enrichment of factors with narrow, precise 

peaks. The value of pπ is calculated for each ontology annotation π as the fraction of non–

assembly gap base pairs in the genome associated with annotation π. Each input genomic 

region can then be thought of as a ‘dart’ thrown at the genome, counting as a hit if the left 

median base pair is annotated with ontology term π. In this test, the length of each gene’s 

regulatory domain is explicitly accounted for in the calculation of pπ. This explicit use of 

regulatory domain size in the significance calculation provides a proper assessment of the 

enrichment for ontology terms by noncoding sequences. Notably, as the binomial test 

incorporates the fraction of the genome assigned to each gene in the calculation of statistical 

significance, it is robust regardless of variation in association rules and occasional incorrect 

assignments of genomic regions to distal target genes. Ontology terms assigned to genes that 

have large regulatory domains are inherently weighted such that each binding event 

associated with the term contributes less to the resulting enrichment than binding events 

associated with terms assigned to genes with small regulatory domains. However, 

enrichments under the binomial test may arise from clusters of noncoding regions all near 

one or a few genes with a particular ontology annotation, as well as from noncoding regions 

associating with many genes that possess a particular ontology annotation. The 

hypergeometric test over genes (described above) provides a measure of ‘term coverage’ that 

can be used to identify terms significant by the binomial test that have many annotated genes 

selected as well.

Foreground/background hypergeometric test over genomic regions

When a set of input genomic regions is selected from a superset of ‘background genomic 

regions’ (for example, the repetitive elements that have been exapted into functional roles 

selected from all repetitive elements in the genome12), one should consider whether the 

input genomic regions differ in functional composition from the entire set of background 

genomic regions as a whole. The foreground/background hypergeometric test over genomic 

regions poses this statistical question by mapping all ontology annotations of each gene to 

all background genomic regions that lie within its regulatory domain; it then calculates 

enrichments over the input genomic regions with respect to the superset of background 

genomic regions using a hypergeometric distribution. Formally, the foreground/background 

hypergeometric test over genomic regions is executed separately for each ontology term π 

and is defined by four parameters:

1. N is the number of genomic regions in the background set.

2. Kπ is the number of genomic regions in the background set that lie within the 

regulatory domain of some gene annotated with term π.

3. n is the number of genomic regions in the foreground set.
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4. kπ is the number of genomic regions in the foreground set that lie within the 

regulatory domain of some gene annotated with term π.

The test calculates the P value of the observed enrichment for term π using the 

hypergeometric equation shown above, equation (1).

GREAT software

The GREAT core calculation engine is implemented in C and the source code is publicly 

available for download (http://great.stanford.edu/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Enrichment analysis of a set of cis-regulatory regions. (a) The current prevailing 

methodology associates only proximal binding events with genes and performs a gene-list 

test of functional enrichments using tools originally designed for microarray analysis. (b) 

GREAT’s binomial approach over genomic regions uses the total fraction of the genome 

associated with a given ontology term (green bar) as the expected fraction of input regions 

associated with the term by chance.
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Figure 2. 
Binding profiles and their effects on statistical tests. (a) ChIP-seq data sets of several 

regulatory proteins show that the majority of binding events lie well outside the proximal 

promoter, both for sequence-specific transcription factors (SRF and NRSF, ref. 8; Stat3, ref. 

43) and a general enhancer-associated protein (p300, refs. 33,43). Cell type is given in 

parentheses: H, human; M, mouse. (b) When not restricted to proximal promoters, the gene-

based hypergeometric test (red) generates false positive enriched terms, especially at the size 

range of 1,000–50,000 input regions typical of a ChIP-seq set. Negligible false positive 

enrichment was observed for the region-based binomial test (blue). For each set size, we 

generated 1,000 random input sets in which each base pair in the human genome was 

equally likely to be included in each set, avoiding assembly gaps. We calculated all GO term 

enrichments for both hypergeometric and binomial tests using GREAT’s 5+1 kb basal 

promoter and up to 1 Mb extension association rule (see Results). Plotted is the average 

number of terms artificially significant at a threshold of 0.05 after application of the 

conservative Bonferroni correction. (c) GO enrichment P values using the genomic region-

based binomial (x axis) and gene-based hypergeometric (y axis) tests on the SRF data8 with 

GREAT’s 5+1 kb basal promoter and up to 1 Mb extension association rule (see Results). b1 

through b10 denote the top ten most enriched terms when we used the binomial test. h1 

through h10 denote the top ten most enriched terms when we used the hypergeometric test. 

Terms significant by both tests (B ∩ H) provide specific and accurate annotations supported 

by multiple genes and binding events (Table 3). Terms significant by only the 

hypergeometric test (H\B) are general and often associated with genes of large regulatory 

domains, whereas terms significant by only the binomial test (B\H) cluster four to six 

genomic regions near only one or two genes annotated with the term (Supplementary Table 

46).
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Figure 3. 
Distal binding events contribute substantially to accurate functional enrichments of p300 

limb peaks. We examined properties of the 2,105 p300 mouse embryonic limb peaks33 in the 

context of three known limb-related terms and a negative control term (GO cortical 

cytoskeleton). Three different association rules were used (see Results): a gene-based 

GREAT analysis using only peaks within 2 kb of the nearest transcription start site (labeled 

2 kb), an analysis with 5+1 kb basal and up to 50 kb extension (50 kb), and an analysis with 

5+1 kb basal and up to 1 Mb extension (1 Mb). For each term, we examined the relevance of 

distal binding peaks by comparing the experimental results (black bars) to the average values 

of 1,000 simulated data sets (gray bars) in which the 192 proximal ChIP-seq peaks within 2 

kb of the nearest transcription start site were fixed and the 1,913 distal peaks were shuffled 

uniformly within the mouse genome, avoiding assembly gaps and proximal promoters. By 

design, simulation results for proximal, 2-kb GREAT are identical to the actual data and are 

thus omitted. (a) Lengthening a 2-kb proximal promoter to a 50-kb extension, expected to 

increase genome coverage per term (pπ in Fig. 1b) by 25-fold, causes an actual increase of 

19- to 24-fold; in contrast, lengthening a 50-kb extension rule to a 1-Mb extension rule, 

expected to raise genome coverage 20-fold, leads to an actual increase of only 2.5- to 6-fold 

because regulatory domains are not extended through neighboring genes. (b) As regulatory 

McLean et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



domains increase in length from only the proximal 2 kb up to 50 kb and 1 Mb, the number 

of relevant genes with a p300 limb peak in their regulatory domain increases. The added 

genes selected only by distal associations are typically enriched for limb functionality 

compared to simulated data. (c) As regulatory domains increase in length, the number of 

p300 limb peaks associated with a relevant gene in excess of the number expected by chance 

increases for all limb-related terms. (d) As in c, the inclusion of distal peaks markedly 

increases the statistical significance of the correct terms alone. *Statistical significance is 

measured using the hypergeometric test over genes for 2 kb to mimic current gene-based 

approaches, and using the binomial test over genomic regions for 50 kb and 1 Mb. Error bars 

indicate s.d.; NS, not significant at a threshold of 0.05 after false discovery rate multiple test 

correction; obs, observed; exp, expected. Note scale changes on x axes.
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Table 1

GREAT parameters, filters and options, and their effects

Parameter Effect

Region-gene association rule Determines how gene regulatory domains are calculated. When we allowed for distal associations, the 
sets we examined
remained robust regardless of the exact choice of association rule. Our default rule (basal and 
extension; see Results)
models a current hypothesis of gene regulatory domains.

Region-gene association rule 
parameters

Determine the length of each inferred gene regulatory domain. As we show, when the right statistical 
model is used,
including distal associations of up to 1 Mb can strongly increase biological signals.

Statistical significance visual filter Highlights statistically significant results in bold font. Multiple test correction options and thresholds 
for significance
can be modified.

Binomial fold enrichment filter Complements P value by requiring that statistically significant terms have strong biological effects. 
Often filters general
ontology terms that apply to thousands of genes.

Observed gene hits filter Shows only enriched terms for which input regions select at least this many genes. Helps avoid 
enrichments owing to numerous regions selecting a small number of genes.

Minimum annotation count threshold Increases statistical power by reducing the number of tests performed, by testing only ontology terms 
associated a priori with at least this many genes.

Display type Summary display shows only terms statistically significant by both binomial and hypergeometric tests. 
Full display ignores the statistical significance filter and shows terms that meet all other criteria.

Export Export tables individually or in batches into a file of tab-separated values or publication-ready HTML.

UCSC custom tracks Clicking a specific region from within a term details page opens the University of California Santa 
Cruz Genome Browser44

focused on that region, with two custom tracks automatically loaded—one for the total set of input 
regions and another
for the subset of regions associated with the chosen term.
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Table 2

Gene-based ontology enrichments regions bound by SRF in human Jurkat cells

Term P value

Nucleus 5.18 × 10−70

Protein binding 2.16 × 10−50

Cytoplasm 6.67 × 10−27

Transcription 4.13 × 10−26

Nucleotide binding 1.04 × 10−23

Metal ion binding 1.92 × 10−22

Zinc ion binding 5.76 × 10−20

RNA binding 3.38 × 10−18

Regulation of transcription, DNA-dependent 1.15 × 10−15

ATP binding 4.84 × 10−15

Listed are the top ten enriched GO terms found using a gene-based enrichment analysis of the 1,936 genes that possess an SRF binding peak within 
2 kb (adapted from ref. 8). Though the large number of selected genes produces strong P values, the most significant terms are general and yield 
only a very broad view of SRF functions. The first actin-related term, ‘actin binding’, is ranked 28th (data not shown).

Nat Biotechnol. Author manuscript; available in PMC 2016 April 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McLean et al. Page 20

Ta
b

le
 3

G
R

E
A

T
 o

nt
ol

og
y 

en
ri

ch
m

en
ts

 f
or

 r
eg

io
ns

 b
ou

nd
 b

y 
SR

F 
in

 h
um

an
 J

ur
ka

t c
el

ls

O
nt

ol
og

y
Te

rm
B

in
om

ia
l P

 v
al

ue
B

in
om

ia
l f

ol
d

en
ri

ch
m

en
t

H
yp

er
ge

om
et

ri
c 

P
 v

al
ue

D
is

ta
l b

in
di

ng
a

E
xp

er
im

en
ta

l s
up

po
rt

G
O

: c
el

lu
la

r 
co

m
po

ne
nt

A
ct

in
 c

yt
os

ke
le

to
n

6.
91

 ×
 1

0−
9

3.
05

2.
22

 ×
 1

0−
7

38
.9

%
R

ef
. 2

3

C
or

tic
al

 c
yt

os
ke

le
to

n
4.

03
 ×

 1
0−

6
5.

90
5.

41
 ×

 1
0−

4
54

.5
%

R
ef

. 2
3

G
O

: m
ol

ec
ul

ar
 f

un
ct

io
n

A
ct

in
 b

in
di

ng
5.

21
 ×

 1
0−

5
2.

03
2.

74
 ×

 1
0−

5
51

.4
%

R
ef

. 2
3

T
ra

ns
cr

ip
tio

n 
fa

ct
or

 ta
rg

et
s

SR
F 

ta
rg

et
s 

(J
ur

ka
t,

T
/G

 H
A

-V
SM

C
, B

e(
2)

-C
)

4.
97

 ×
 1

0−
76

13
.2

2
9.

79
 ×

 1
0−

68
14

.3
%

Po
si

tiv
e 

co
nt

ro
l

Y
Y

1 
ta

rg
et

s 
(H

eL
a)

1.
45

 ×
 1

0−
6

2.
09

0.
00

84
20

.4
%

R
ef

. 2
6b

E
2F

4 
an

d 
p1

30
(T

98
G

, U
2O

S)
0.

00
47

2.
01

0.
00

27
44

.4
%

N
ov

el
c

E
2F

4 
(W

I-
38

)
0.

01
94

2.
08

0.
00

31
36

.4
%

N
ov

el
c

Pr
ed

ic
te

d 
pr

om
ot

er
 m

ot
if

s
SR

F 
va

ri
an

ts
4.

54
 ×

 1
0−

28
 to

4.
19

 ×
 1

0−
12

3.
69

 to
 1

5.
46

1.
71

 ×
 1

0−
25

 to
2.

04
 ×

 1
0−

9
17

.4
%

 to
28

.6
%

Po
si

tiv
e 

co
nt

ro
ls

G
A

B
PA

 o
r 

G
A

B
PB

4.
20

 ×
 1

0−
9

3.
67

6.
68

 ×
 1

0−
6

27
.6

%
N

ov
el

c

M
ot

if
 N

G
G

G
A

C
T

T
T

C
C

A
1.

02
 ×

 1
0−

4
2.

12
8.

30
 ×

 1
0−

5
20

.0
%

N
ov

el
c

E
G

R
1

1.
71

 ×
 1

0−
4

2.
03

0.
00

13
46

.9
%

N
ov

el
c

Pa
th

w
ay

 c
om

m
on

s
T

R
A

IL
 s

ig
na

lin
g 

pa
th

w
ay

2.
37

 ×
 1

0−
7

2.
45

1.
71

 ×
 1

0−
5

46
.3

%
R

ef
. 2

9

C
la

ss
 I

 P
I3

K
 s

ig
na

lin
g 

ev
en

ts
9.

92
 ×

 1
0−

7
2.

56
4.

45
 ×

 1
0−

5
44

.1
%

R
ef

. 3
0

T
re

eF
am

FO
S 

fa
m

ily
9.

66
 ×

 1
0−

9
27

.8
9

1.
21

 ×
 1

0−
6

28
.6

%
R

ef
. 2

2d

E
nr

ic
he

d 
te

rm
s 

fo
r 

a 
va

ri
et

y 
of

 o
nt

ol
og

ie
s 

ob
ta

in
ed

 u
si

ng
 G

R
E

A
T

 a
na

ly
si

s 
(5

+
1 

kb
 b

as
al

, u
p 

to
 1

 M
b 

ex
te

ns
io

n)
 o

f 
pr

ox
im

al
 a

nd
 d

is
ta

l b
in

di
ng

 e
ve

nt
s.

 T
he

 e
nr

ic
he

d 
te

rm
s 

hi
gh

lig
ht

 e
xp

er
im

en
ta

lly
 v

al
id

at
ed

 
fu

nc
tio

ns
 a

nd
 c

of
ac

to
rs

 o
f 

SR
F 

th
at

 le
nd

 im
m

ed
ia

te
 in

si
gh

t i
nt

o 
its

 b
io

lo
gi

ca
l r

ol
es

 a
s 

w
el

l a
s 

pr
op

os
e 

te
st

ab
le

 h
yp

ot
he

se
s 

of
 S

R
F 

fu
nc

tio
ns

 th
at

 a
re

, t
o 

ou
r 

kn
ow

le
dg

e,
 n

ov
el

 (
se

e 
R

es
ul

ts
).

 S
ho

w
n 

ar
e 

al
l 

bi
no

m
ia

l e
nr

ic
he

d 
te

rm
s 

at
 a

 f
al

se
 d

is
co

ve
ry

 r
at

e 
of

 0
.0

5 
w

ith
 a

 f
ol

d 
en

ri
ch

m
en

t o
f 

at
 le

as
t t

w
o 

th
at

 a
re

 a
ls

o 
si

gn
if

ic
an

t a
t a

 f
al

se
 d

is
co

ve
ry

 r
at

e 
of

 0
.0

5 
by

 th
e 

hy
pe

rg
eo

m
et

ri
c 

te
st

, u
si

ng
 th

e 
hi

gh
es

t-
sc

or
in

g 
SR

F 
pe

ak
s 

an
yw

he
re

 in
 th

e 
ge

no
m

e 
(Q

uE
ST

 s
co

re
 >

 1
; n

 =
 5

56
).

a T
he

 f
ra

ct
io

n 
of

 b
in

di
ng

 p
ea

ks
 c

on
tr

ib
ut

in
g 

to
 th

e 
en

ri
ch

m
en

t l
oc

at
ed

 >
10

 k
b 

fr
om

 th
e 

tr
an

sc
ri

pt
io

n 
st

ar
t s

ite
 o

f 
th

e 
ne

ar
es

t g
en

e.

b K
no

w
n 

in
te

ra
ct

io
ns

 o
ft

en
 a

ls
o 

gi
ve

 r
is

e 
to

 n
ov

el
 h

yp
ot

he
se

s;
 f

or
 e

xa
m

pl
e,

 S
R

F 
is

 k
no

w
n 

to
 c

o-
re

gu
la

te
 s

om
e 

ge
ne

s 
w

ith
 Y

Y
1,

 a
nd

 G
R

E
A

T
 id

en
tif

ie
s 

m
an

y 
ad

di
tio

na
l g

en
es

 p
ot

en
tia

lly
 b

ou
nd

 b
y 

bo
th

 S
R

F 
an

d 
Y

Y
1.

c H
yp

ot
he

si
s:

 S
R

F 
ac

ts
 w

ith
 E

2F
4,

 G
A

B
P,

 E
G

R
1 

an
d 

a 
pr

ev
io

us
ly

 u
nc

ha
ra

ct
er

iz
ed

 b
in

di
ng

 m
ot

if
 to

 c
o-

re
gu

la
te

 ta
rg

et
 g

en
es

 (
se

e 
R

es
ul

ts
 f

or
 s

up
po

rt
in

g 
ev

id
en

ce
).

d SR
F 

is
 k

no
w

n 
to

 r
eg

ul
at

e 
Fo

s 
an

d 
Fo

sb
 (

re
f.

 2
2)

; G
R

E
A

T
 h

ig
hl

ig
ht

s 
th

re
e 

ot
he

r 
m

em
be

rs
 o

f 
th

e 
FO

S 
fa

m
ily

 th
at

 m
ay

 a
ls

o 
be

 r
eg

ul
at

ed
 b

y 
SR

F.

Nat Biotechnol. Author manuscript; available in PMC 2016 April 22.


	Abstract
	RESULTS
	A binomial test for long-range gene regulatory domains
	Comparison of enrichment tests and regulatory domain ranges
	Serum response factor binding in human Jurkat cells
	P300 binding in the developing mouse limbs
	P300 binding in the developing mouse forebrain and midbrain

	DISCUSSION
	ONLINE METHODS
	Gene set definition
	Association rules from genomic regions to genes
	Hypergeometric test over genes
	Binomial test over genomic regions
	Foreground/background hypergeometric test over genomic regions
	GREAT software

	References
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3

