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Dynamic regulation of RNF168-mediated ubiquitylation of histone H2A Lys13,15 (H2AK13,15ub) at DNA double-
strand breaks (DSBs) is crucial for preventing aberrant DNA repair and maintaining genome stability. However, it
remains unclear which deubiquitylating enzyme (DUB) removes H2AK13,15ub. Here we show that USP51, a pre-
viously uncharacterized DUB, deubiquitylates H2AK13,15ub and regulates DNA damage response. USP51 deple-
tion results in increased spontaneous DNA damage foci and elevated levels of H2AK15ub and impairs DNA damage
response. USP51 overexpression suppresses the formation of ionizing radiation-induced 53BP1 and BRCA1 but
not RNF168 foci, suggesting that USP51 functions downstream from RNF168 in DNA damage response. In vitro,
USP51 binds toH2A–H2Bdirectly and deubiquitylatesH2AK13,15ub. In cells, USP51 is recruited to chromatin after
DNA damage and regulates the dynamic assembly/disassembly of 53BP1 and BRCA1 foci. These results show that
USP51 is the DUB for H2AK13,15ub and regulates DNA damage response.
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To meet constant insults on the genome fromDNA-dam-
aging agents and DNA replication stress, cells have
evolved a sophisticated pathway called DNA damage re-
sponse (DDR) to detect, signal, and repair DNA break le-
sions (Branzei and Foiani 2008; Huen and Chen 2010;
Jackson and Durocher 2013; Marechal and Zou 2013). De-
fects in DDR have been implicated in a broad spectrum of
human diseases, including cancer, infertility, immuno-
logical defects, and aging (Jackson and Bartek 2009;
Ghosal and Chen 2013). Therefore, it is very important
to understand how DDR pathways are regulated. Earlier
studies on DDR have documented a kinase cascade to re-
lay DNA damage signaling. For instance, in response to
DNA double-strand breaks (DSBs), the most lethal dam-
age that cells encounter, checkpoint kinases ATM/ATR
are activated to phosphorylate histone H2A variant
H2AX as well as other proteins, including DNA damage
mediator MDC1 and two downstream kinases, Chk1
and Chk2 (Ciccia and Elledge 2010). In addition to the ki-
nase cascade, a ubiquitin-dependent signaling cascade has
emerged as an important regulator of DDR through its ac-
tions on chromatin, the physiological substrates of DNA
repair pathways.

The initial event in the ubiquitylation cascade is the re-
cruitment of E3 ligase RNF8 by phosphorylated MDC1
(Huen et al. 2007; Kolas et al. 2007; Mailand et al. 2007;
Wang and Elledge 2007). RNF8 ubiquitylates histones
H1 (Thorslund et al. 2015), and ubiquitylated histone H1
products help recruit RNF168, another E3 ubiquitin ligase
that is mutated in RIDDLE syndrome, to the chromatin
surrounding DNA damage sites (Doil et al. 2009; Stewart
et al. 2009). The primary target of RNF168 is Lys13 and
Lys15 of histoneH2A (H2AK13,15) (Gatti et al. 2012;Mat-
tiroli et al. 2012). The RNF8- and RNF168-mediated ubiq-
uitylation cascade facilitates the recruitment of DNA
repair proteins such as 53BP1 and BRCA1. 53BP1 is re-
cruited to DNA damage sites by recognizing ubiquity-
lated H2AK15 (H2AK15ub)-containing nucleosomes
through its ubiquitylation-dependent recruitment motif
(Fradet-Turcotte et al. 2013) and dimethylated H4K20
(H4K20me2) through its tandemTudor domains (Botuyan
et al. 2006). Currently, it is still unclear how RNF168-me-
diated H2AK13,15ub regulates the recruitment of BRCA1
to DNA damage sites. Once recruited, 53BP1 and BRCA1
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play key roles in DDR through the nonhomologous end-
joining (NHEJ) and homologous recombination (HR) path-
ways, respectively (Bunting et al. 2010). Therefore, the
RNF8- and RNF168-dependent ubiquitylation cascade is
important for both NHEJ and HR.
Recent studies have shown that the degree of ubiquity-

lation at DNA damage sites is regulated at multiple levels
in order to generate proper DDR. Uncontrolled histone
ubiquitylation may result in unscheduled transcriptional
silencing, defects in DNA damage checkpoint activation
and cell cycle arrest, and genomic instability (Jackson
and Durocher 2013). For instance, the RNF168 levels
are tightly controlled by E3 ligases TRIP12 and UBR5
to prevent excessive ubiquitylation (Gudjonsson et al.
2012), which can lead to hyperaccumulation of 53BP1
and BRCA1 at DNA damage sites. The deubiquitylating
enzyme (DUB)OTUB1 bindsUBC13, the ubiquitin-conju-
gating enzyme for RNF168, and inhibits polyubiquityla-
tion independently of its catalytic activity (Nakada et al.
2010). In addition, several other DUBs have been shown
to be involved in DDR. For instance, USP3 and USP44
have been suggested to counteract DSB-induced histone
ubiquitylation (Nicassio et al. 2007; Doil et al. 2009; Mos-
bech et al. 2013; Lancini et al. 2014; Sharma et al. 2014).
Overexpression of USP3 and USP44 affects the localiza-
tion of RNF168 at DSB sites, suggesting that these two
DUBs regulate ubiquitylation upstream of RNF168. Sim-
ilarly, USP16 is proposed to have a role in the removal of
H2AK119ub, a histone mark associated with transcrip-
tional silencing (Joo et al. 2007; Shanbhag et al. 2010).
These results indicate that chromatin ubiquitylation is
regulated at multiple levels by multiple mechanisms,
highlighting the importance and complexity of the regula-
tion of chromatin ubiquitylation during DDR. Despite
these advances, it is largely unknown which DUB is
directly involved in the deubiquitylation of histone
H2AK15ub, a critical histone modification involved in
DDR.
Here, we report that USP51, a previously uncharac-

terized protein, is involved in DDR by removing
H2AK13,15ub following DNA repair. Depletion of
USP51 results in increased H2AK13,15ub levels on chro-
matin and delayed disassembly of proteins at DNA dam-
age foci. Together, these studies identify a novel, bona
fide DUB that regulates genome integrity by modulating
H2AK13,15ub levels.

Results

Depletion of USP51 results in increased DNA
damage foci

In a shRNA screen for the regulators of nucleosome as-
sembly (H Zhang, H Gan, Z Wang, J Lee, T Ordog,
M Wold, M Ljungman, and Z Zhang, in prep.), we unex-
pectedly observed that cells depleted of USP51, a previ-
ously uncharacterized DUB, exhibited an increase in
spontaneous DNA damage foci (Fig. 1). The DDR proteins
53BP1 and BRCA1 form foci at DNA damage sites, which
colocalize with ubiquitin Lys63-conjugated polyubiquitin
(K63ub) foci and depend on the RNF8/RNF168-catalyzed

ubiquitin pathway (Huen and Chen 2010; Jackson and
Durocher 2013; Panier and Boulton 2014). As shown in
Figure 1, A and B, depletion of USP51 using two indepen-
dent shRNAs resulted in a marked increase in 53BP1,
BRCA1, and K63ub foci in U2OS cells while having no ap-
parent effect on the protein levels of 53BP1 and BRCA1
(Supplemental Fig. S1A). The 53BP1 foci colocalized
with K63ub foci, supporting the idea that depletion of
USP51 resulted in the accumulation of spontaneously
damaged foci. Moreover, the increased 53BP1 and
BRCA1 foci were abolished in RNF168-depleted cells
(Supplemental Fig. S1B–D). Importantly, expression of
shRNA-resistant USP51, but not a catalytically inactive
mutant (USP51/CI), suppressed the 53BP1 foci induced
by USP51 depletion (Fig. 1C,D). We also observed that
USP51-depleted cells exhibited an increase in G1-phase
cells and a reduction in S-phase cells (Supplemental Fig.
S1E,F). These results indicate that USP51 and its deubi-
quitylating enzymatic activity are important for main-
taining genome integrity and cell cycle progression.

USP51 functions downstream fromMDC1 recruitment in
response to ionizing radiation (IR)-induced DNA breaks

Dynamic regulation of protein ubiquitylation at DNA
damage foci is important for DDR (Jackson and Durocher
2013). To determine whether USP51 has any direct role in
this process, we first tested whether overexpression of
USP51 affects IR-induced DNA damage foci. In response
to IR, H2AX is phosphorylated at Ser139 (γH2AX) at chro-
mosome breaks, which initiates a protein assembly cas-
cade, resulting in sequential recruitments of MDC1, E3
ubiquitin ligases RNF8 and RNF168, and repair proteins
BRCA1 and 53BP1 to DNA damage sites (Huen and
Chen 2010). Overexpression of USP51 but not USP51/CI
suppressed IR-induced DNA damage foci, including
53BP1 and BRCA1 foci as well as ubiquitin foci detected
by FK2 antibodies (Fig. 2A,B). These IR-induced foci colo-
calized with γH2AX foci and were dependent on the pres-
ence of RNF168 (Supplemental Fig. S2A). In contrast,
USP51 overexpression had no apparent effect on the for-
mation of IR-induced MDC1 and γH2AX foci (Fig. 2C,D;
Supplemental Fig. S2B,C). These results suggest that
USP51 functions downstream from H2AX phosphoryla-
tion and MDC1 recruitment, possibly deubiquitylating a
factor during DDR. Consistent with this interpretation,
overexpression of USP51, but not its catalytically inactive
mutant, also suppressed IR-induced RNF169 foci, which
are recruited to DNA damage sites downstream from
RNF168 (Supplemental Fig. S2D–F; Shao et al. 2009; Pan-
ier et al. 2012; Poulsen et al. 2012).

USP3, USP16, and USP51 function distinctly in response
to IR-induced DNA breaks

Previous studies have shown that two other DUBs, USP3
andUSP16, are also involved inDDR (Nicassio et al. 2007;
Lancini et al. 2014; Sharma et al. 2014). It is known that
USP16 targets H2AK119ub and H2AK15ub and that
USP3 targets H2AK15ub (Sharma et al. 2014; Zhang
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et al. 2014). To gain insight into how USP51 functions in
DDR, we compared the effect of overexpression of USP3,
USP16, and USP51 on the formation of IR-induced
53BP1 and RNF168 foci. Consistent with the previous re-
sults (Mosbech et al. 2013), overexpression of USP3, but
not USP16, suppressed IR-induced 53BP1 foci (Fig. 2E,F).
Interestingly, USP51 had a larger suppressive effect than
USP3. In addition, overexpression of USP3 suppressed
the recruitment of RNF168 to DNA damage foci (Doil
et al. 2009; Mattiroli et al. 2012), whereas overexpression
of USP16 had only a minor effect. Importantly, overex-
pression of USP51 had no apparent effect on the formation
of IR-induced RNF168 foci (Fig. 2G,H). The differential ef-
fect of these three DUBs on the formation of 53BP1 and

RNF168 foci did not appear to be related to their level of
expression (Fig. 2F,H). Taken together, these results sug-
gest that USP16, USP3, and USP51 are involved in the dif-
ferent steps of DDR and USP51 functions downstream
from the recruitment of RNF168 to DNA breaks.

USP51 regulates H2AK13,15ub

The RNF168 E3 ligase ubiquitylates H2A at K13,K15,
which in turn triggers the recruitment of DDR proteins
such as 53BP1 and BRCA1 to DNA breaks (Doil et al.
2009; Stewart et al. 2009; Gatti et al. 2012; Mattiroli
et al. 2012). Therefore, we hypothesized that USP51 may
be a specific DUB for H2AK15ub. To test this hypothesis,

Figure 1. USP51 depletion results in the formation of spontaneous DDR foci. (A,B) Depletion of USP51 results in the formation of DDR
foci, including 53BP1, K63ub, and BRCA1 foci. U2OS cells infected with two different shRNAs (shUSP51/1 and shUSP51/2) or nontarget
shRNA (NT) were stained with antibodies against 53BP1, K63ub, and BRCA1. Representative images are shown in A. The percentage of
cells showingmore than three (53BP1) or five (BRAC1 and K63ub) foci from three independent experiments is shown in the bottom panel
of B. USP51 knockdown efficiency is shown in the top panel of B. (C,D) UPS51 catalytic activity is necessary to prevent the formation of
53BP1 foci in response toUSP51 depletion. The shRNA-resistant formofUSP51 or catalytically inactiveUSP51 (USP51/CI) was expressed
in USP51-depleted U2OS cells, and immunofluorescence was performed using antibodies against 53BP1. Representative images are
shown in C. (D) USP51 protein expression and quantification of 53BP1 foci from three independent experiments are shown in the top
and bottom panels, respectively. Over 100 cells were counted for each experiment to obtain the results in B and D.
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we first immunoprecipitated Flag-H2A under denaturing
conditions from cell lines stably expressing Flag-H2A
after depletion of USP51 and analyzed ubiquitylated
H2A species byWestern blotting. USP51 depletion result-
ed in a marked increase in ubiquitylated H2A (Fig. 3A).
Next, we used a cell line expressing Flag-tagged H2A
(K118,119R) or H2A (K13,15R) mutants to define which
ubiquitylated species are altered by USP51 depletion
because H2AK118,119ub and H2AK13,15ub are two ma-

jor monoubiquitylated species, with H2AK118,119ub be-
ing the dominant one. Briefly, mononucleosomes were
immunoprecipitated from these cells using Flag-H2A
(K118,119R) or Flag-H2A (K13,15R) mutant proteins,
and ubiquitylated species were analyzed by Western blot
using antibodies against the Flag epitope. Ubiquitylated
H2A from H2A (K118,119R) nucleosomes (Fig. 3B), but
not from H2A (K13,15R) nucleosomes (Supplemental
Fig. S3A), was elevated upon USP51 depletion. These

Figure 2. USP51 functions downstream fromRNF168 recruitment in response to IR. (A,B) Overexpression of USP51, but not its catalyt-
ically inactive mutant, suppresses IR-induced 53BP1, BRCA1, and ubiquitin FK2 foci. U2OS cells were transiently transfected with Flag-
USP51 or USP51/CI mutants and exposed to 10 Gy of IR. Immunofluorescence using antibodies against the Flag epitope, 53BP1, BRCA1,
and FK2 antibody was performed. Representative images (A) and quantification (B) of IR-induced foci (IRIF) from three independent ex-
periments are shown. (C,D) Overexpression of USP51 fails to suppress IR-induced γH2AX and MDC1 foci. The experiments were per-
formed as described above except that EGFP-USP51 was used. Note that, unlike Flag-USP51, EGFP-USP51 was also detected in
nuclear speckles. (E,F ) Overexpression of USP3 and USP51, but not USP16, suppresses IR-induced 53BP1 foci. The experiments were per-
formed as described in A, and representative images (E) and quantification (F ) of IR-induced 53BP1 foci are shown. (F, bottom panel) The
expression levels of Flag-USP3, Flag-USP16, and Flag-USP51were detected byWestern blot inU2OS cells. (G,H) Overexpression of USP51
does not suppress IR-induced RNF168 foci. U2OS cells expressing Flag-RNF168 were transiently transfected with EGFP-USP3, EGFP-
USP16, or EGFP-USP51 and irradiated at 10Gy. Immunofluorescencewas performed using antibodies against Flag. Representative images
(G) and percentage (H) of cells with RNF168 foci are shown. About 50–70 Flag-positive or EGFP-positive cells in each experiment were
counted for B, D, F, and H.
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results suggest that USP51 regulates the ubiquitylation of
H2AK13,15 but not H2AK118,119.

To provide further evidence supporting the hypothesis
that USP51 targets H2AK13,15ub, we asked whether
overexpression of USP51 affects H2AK13,15ub levels
upon IR, which induces H2AK13,15ub. USP51 was over-
expressed in 293T cells stably expressing Flag-H2A
(K13,15R) or Flag-H2A (K118,119R). Flag-H2A immuno-
precipitation was performed under denaturing conditions
(Fig. 3C), or Flag-H2A (K118,119R)-containing or Flag-
H2A (K13,15R)-containing mononucleosomes were puri-
fied (Fig. 3D). Consistent with previous results (Mattiroli
et al. 2012), cells treated with IR showed an increase in
H2AK13,15ub (Fig. 3C,D), and overexpression of USP51,
but not USP51/CI, suppressed IR-induced H2AK13,15ub
levels on H2A purified under denaturing conditions (Fig.
3C) and H2A in purified mononucleosomes (Fig. 3D, left
panel). However, overexpression of USP51 had no appar-
ent effect on the levels of H2AK118,119ub (Fig. 3D, right

panel). Thus, USP51 is involved in regulation of IR-in-
duced H2AK13,15ub.

Next, we compared the effect of USP3, USP16, and
USP51 overexpression on H2AK13,15ub levels following
IR in cells expressing Flag-H2A (K118,119R). Overexpres-
sion of USP51 led to a more pronounced reduction in IR-
induced H2AK13,15ub than USP3 overexpression (Fig.
3E; Supplemental Fig. S3B), whereas USP16 overexpres-
sion had no apparent effects. These results indicate that
USP3 and USP51 regulate H2AK13,15ub in response to
DNA damage.

USP51 regulates H2AK15ub at DNA damage sites

While it is known thatRNF168 ubiquitylatesH2AK13,15,
it is not known whether H2AK13,15ub is localized to
DNA damage sites in vivo. We generated an H2AK15ub-
specific mouse monoclonal antibody using an H2A
peptide conjugated at K15 with a ubiquitin peptide

Figure 3. USP51 regulates H2AK13,15ub in 293T cells. (A,B) USP51 depletion results in an increase in H2A ubiquitylation. 293T cell
lines stably expressing Flag-tagged H2A or H2A (K118,119R) mutant were infected with lentivirus encoding the indicated shRNAs. (A)
After 72 h, Flag-H2A or the mutant was purified under denaturing conditions and analyzed by Western blotting. (B) Mononucleosomes
containing Flag-H2A (K118,119R) were purified from the cells expressing Flag-H2A (K118,119R) and analyzed by Western blotting.
(WCL) Whole-cell lysate; (arrows) monoubiquitylated and diubiquitylated H2A. (C,D) USP51 overexpression suppresses IR-induced
H2AK13,15ub. The Flag-H2A (K118,119R) or Flag-H2A (K13,15R) stable line was transfected with the EGFP-USP51 or EGFP-USP51/
CI mutant. Flag-H2A (under denatured conditions) (C ) or mononucleosomes containing the Flag-H2Amutant (D) were purified. Purified
proteins were detected byWestern blot. (E) Overexpression of USP3 andUSP51, but not USP16, suppresses IR-inducedH2AK15ub. EGFP-
USP3, EGFP-USP16, or EGFP-USP51was expressed in the Flag-H2A (K118,119R) stable line, and Flag-H2A-containingmononucleosomes
were immunoprecipitated. Antibodies used for immunoprecipitation (IP) and immunoblotting (IB) are indicated.
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(Ac-ARAKAK[GGRL]TRSSC). The antibody specifically
recognized monoubiquitylated and diubiquitylated H2A
generated by recombinant RNF168 but not unmodified
H2A in vitro (Supplemental Fig. S4A). Moreover, this
antibody did not recognize H2AK119ub (Supplemental
Fig. S4B) and diubiquitin (Supplemental Fig. S4C). Deple-
tion of USP51, but not USP3 and USP16 in 293T cells
(Supplemental Fig. S4D,F) or knockout of USP51 inmouse
embryonic stem (ES) cells (Supplemental Fig. S4G), result-
ed in an increase in ubiquitylated species detected by
H2AK15ub antibodies in a RNF168-dependent manner.
Similarly, the antibody recognized IR-induced monoubi-
quitylated and diubiquitylated H2A but not H2A isolated
from293T cells (Supplemental Fig. S4H). These results are
identical to those obtained using H2A mutant lines to
detectH2AK15ub (Fig. 3). Together, these studies indicate
that the H2AK15ub antibody can recognize ubiquitylated
species of H2A catalyzed by RNF168 specifically.
Next, we asked whether H2AK15ub is localized at

DNA damage sites using immunofluorescence. In the ab-
sence of IR treatment, several foci were revealed using
H2AK15ub antibodies. Most of these foci did not appear
to have 53BP1 staining. In IR-treated cells, H2AK15ub
foci increased dramatically compared with untreated
cells. Importantly, the majority of these foci colocalized
with 53BP1 foci (Fig. 4A), and depletion of RNF168 result-
ed in the loss of almost all IR-induced H2AK15ub and
53BP1 foci (Fig. 4A,B). These results provide additional ev-
idence supporting the idea that H2AK15ub antibodies are
specific for the recognition of IR-induced H2AK15ub in
cells and indicate that H2AK15ub generated by RNF168
is localized at DNA damage sites.
Overexpression of USP51 and USP3, but not USP51/CI

or USP16, led to a reduction of H2AK15ub foci and a
decrease of total H2AK15ub levels following IR (Fig. 4C,
D; Supplemental Fig. S4I). H2AK15ub was also detected
at laser-induced DNA damage strips (Fig. 4E,F). Depletion
ofUSP51 resulted in amarked increase inH2AK15ub at la-
ser-inducedDNA breaks (Fig. 4E,F). Taken together, these
results showfor the first time thatH2AK15ubcatalyzedby
RNF168 is localized at DNA damage sites and indicate
that USP51 is the DUB regulating H2AK15ub levels.

USP51 binds to H2A and deubiquitylates
H2AK13,15ub in vitro

To test whether USP51 is an H2AK13,15ub DUB, we first
tested whether USP51 can bind to histone H2A. Purified
His-tagged USP51 was used to pull down recombinant
H2A–H2B dimers in vitro. His-USP51 bound to H2A,
but His-tagged Asf1, a histone H3–H4 chaperone, did
not (Fig. 5A), suggesting that USP51 bound to H2A in vi-
tro. In cells, H2A and its modified species could be coim-
munoprecipitated with EGFP-USP51 (Fig. 5B). These
results show that USP51 binds toH2A–H2B,with a prefer-
ence for modified forms of H2A in cells.
Next, we performed in vitro deubiquitylation assays to

determine whether USP51 removes ubiquitin from
H2Aub. Recombinant mononucleosomes were ubiquity-
lated by recombinant RNF168 in vitro (Supplemental

Fig. S4A) and used as substrates in deubiquitylation as-
says. Recombinant USP51, but not USP51/CI, efficiently
removed ubiquitin in a time-dependent manner (Fig.
5C). Under the same conditions, USP51 had no apparent
activities on H2AK118,119ub isolated from cells stably
expressing Flag-H2AK13,15R (Fig. 5D). USP51 could deu-
biquitylate H2AK13ub (Supplemental Fig. S5A) as well as
diubiquitin linked through either Lys27 or Lys63 of ubiq-
uitin (Supplemental Fig. S5B). Taken together, these re-
sults show that USP51 is a DUB for H2AK13,15ub and
exhibits enzymatic activities against H2AK15ub from
mononucleosomes and ubiquitin chains in vitro.

USP51 regulates the resolution of DNA damage foci

To investigate the USP51 action in DDR, we first ana-
lyzed chromatin binding of USP51 following IR using a
chromatin fractionation assay. Chromatin-bound γ-
H2AX increased immediately following IR and then de-
creased after 1 h, suggesting that some IR-induced breaks
are repaired after 1 h. During this time interval, chroma-
tin-bound USP51 was reduced immediately following IR
and started to accumulate 1 h after IR (Fig. 6A). Interest-
ingly, chromatin-bound H2AK15ub was also detected im-
mediately following the reduction of chromatin-bound
USP51 and was barely detectable 4 h after IR. Monitoring
the formation of IR-induced H2AK15ub foci revealed
that depletion of USP51 accelerated the formation of
H2AK15ub foci at early time points and peaked at 4 h after
IR (Supplemental Fig. S6A,B). After 4 h, USP51 depletion
resulted in persistent IR-induced H2AK15ub foci com-
pared with control cells (Fig. 6B,C; Supplemental Fig.
S6C). These results are consistent with the idea that
USP51 is a negative regulator for the formation of IR-in-
duced H2AK15ub foci and also functions to remove
H2AK15ub after DNA repair.
RNF168-mediated H2AK15ub is required for the re-

cruitment of downstream proteins, including 53BP1, to
DNA damage foci. We next monitored the assembly and
disassembly of 53BP1 foci in USP51-depleted U2OS cells
as well as USP51 knockout mouse ES cells after IR (Fig.
6D–G; Supplemental Fig. S7). In U2OS cells, USP51 deple-
tion appeared to increase the rate of IR-induced RNF168
and 53BP1 foci formation compared with nontargeting
control cells (Supplemental Fig. S7A) during the first
hour after IR. Afterward, 53BP1 foci disappeared at a
slower rate in both USP51-depleted U2OS cells and
USP51 knockout ES cells compared with the correspond-
ing controls (Fig. 6D–G; Supplemental Fig. S7B,C). These
results support the idea that USP51 negatively regulates
the assembly of DNA damage foci initially and is then re-
quired for the removal of H2AK15ub and subsequent dis-
assembly of proteins at DNA damage sites after damaged
DNAs are repaired.

USP51 depletion impairs cell viability and repair
efficiency

Next, we asked whether the alterations of USP51 affect
cell survival and DNA repair efficiency. USP51-depleted

UPS51 and DNA damage response

GENES & DEVELOPMENT 951

http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.271841.115/-/DC1


U2OS cells andmouseUSP51 knockout ES cells exhibited
increased sensitivity toward IR (Fig. 7A–C). Expression of
human USP51, but not its catalytic inactive mutant in

mouse USP51 knockout ES cells, rescued IR sensitivity.
Moreover, the increased IR sensitivity in USP51-depleted
cells was likely due to increased DNA damage after IR

Figure 4. USP51 regulates H2AK15ub levels at DNA damage sites. (A,B) IR-induced H2AK15ub foci colocalize with 53BP1 foci and are
dependent on RNF168. U2OS cells with or without RNF168 depletion (shRNF168) were irradiated at 2.5 Gy. After 1 h, immunofluores-
cencewas performed using antibodies against H2AK15ub and 53BP1. Representative images (A) and knockdown efficiency (B) of RNF168
are shown. (C,D) Overexpression of USP3 and USP51 suppresses IR-induced H2AK15ub foci. U2OS cells expressing Flag-USP3, Flag-
USP16, or Flag-USP51 were irradiated at 10 Gy. Immunofluorescence images (C ) as well as percentage (D) of cells with H2AK15ub
foci from three independent experiments are shown. About 50–70 cells from each experimentwere counted. (E,F ) USP51 depletion results
in the accumulation of H2AK15ub at DNA damage sites induced by laser irradiation. Laser-induced DNA damage strips were marked by
immunofluorescence using antibodies against the DSB repair complex protein NBS1. Representative images (E) and relative fluorescence
intensity (mean ± SD) (F ) from three independent experiments are shown.
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(Supplemental Fig. S8A). Interestingly, overexpression of
USP51 also led to increased IR sensitivity (Supplemental
Fig. S8B). These results indicate that USP51 levels must
be regulated in cells to efficiently deal with DNA lesions.
Next, we determined how depletion of USP51 affected

NHEJ and HR, two distinct DSB repair pathways to repair
IR-induced DNA damage in eukaryotic cells (Bunting
et al. 2010), using NHEJ and HR reporter assays (Seluanov
et al. 2004; Mao et al. 2007; Patel et al. 2011). Depletion
of USP51 resulted in increased NHEJ and HR effici-
ency compared with controls (Fig. 7D,E). The increased
NHEJ and HR efficiencies were likely due to increased
H2AK15ub in USP51-depleted cells because they could
be antagonized by simultaneous depletion of RNF168
(Supplemental Fig. S9A,B). These results support the

idea that USP51 is required for regulating proper DNA re-
pair, most likely through H2AK15ub.

Discussion

TheRNF8–RNF168 ubiquitylation pathway is involved in
the recruitment of proteins involved in signaling and
DNA repair to the chromatin surrounding DNA damage
sites. Herewe provide several lines of evidence supporting
themodel that USP51, a previously uncharacterizedDUB,
functions downstream from RNF168 E3 ligase and deubi-
quitylates H2AK15ub after damaged DNA is repaired to
restore chromatin to its ground state (Fig. 7F). First, we
show that while overexpression of USP51 has no apparent

Figure 5. USP51 binds to H2A and deubiquitylates H2AK13,15ub. (A) USP51 binds to H2A in vitro. Purified His-USP51 or His-Asf1 was
used to pull down H2A–H2B dimers. Immunoprecipitated proteins were detected by Western blot. (B) USP51 binds to H2A in vivo. GFP-
USP51 was transiently transfected to 293T cells and immunoprecipitated. Immunoprecipitated proteins were detected by Western blot-
ting using antibodies against H2A. (C ) USP51 catalyzes the removal of H2AK13,15ub in vitro. Recombinant mononucleosomes ubiqui-
tylated by RNF168 with Flag-ubiquitin were used as substrates for deubiquitylation reactions with recombinant USP51 or catalytically
inactive USP51/CI. The reactions were stopped at the indicated time points with SDS loading buffer, and ubiquitylated species were de-
tected using antibodies against H2A, Flag epitope, and H2AK15ub. (D) USP51 exhibits no enzymatic activity against H2AK118,119ub.
Mononucleosomes were immunoprecipitated from 293T cells expressing Flag-H2A K13,15R mutant proteins and used as substrates
for deubiquitylation assays. Recombinant mononucleosomes ubiquitylated by RNF168 were used as positive controls. (∗) Nonspecific
bonds. Full images for H2AK15ub Western blots in C and D are in Supplemental Figure S10.
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effects on the formation of IR-induced γH2AX, MDC1,
and RNF168 foci, it suppresses the formation of IR-in-
duced 53BP1, BRCA1, and H2AK15ub foci. These results
are consistent with a model in which USP51 functions
downstream from RNF168 to regulate the levels of
H2AK15ub, which is important for the recruitment of

53BP1 and BRCA1 to DNA damage foci. Second, we
show that depletion of USP51 results in a dramatic in-
crease in H2AK15ub, whereas overexpression of USP51
leads to a reduction of IR-induced H2AK15ub. Third,
USP51 interacts with H2A and removes H2AK15ub but
not H2AK119ub in vitro. Fourth, upon DNA damage,

Figure 6. USP51 regulates the resolution of DNA damage foci. (A) Chromatin association of USP51 and H2AK15ub after IR treatment.
Chromatin fractionation assays were performed using U2OS cells stably expressing Flag-USP51 with or without 10 Gy of IR. Soluble and
chromatin fractions were analyzed by Western blot using the indicated antibodies. A full image of H2AK15ub is in Supplemental Figure
S10. (B,C ) USP51 depletion results in persistent H2AK15ub foci after IR. USP51-depleted and control U2OS cells were irradiated with 2.5
Gy. Immunofluorescence was performed at the indicated time points after IR treatment using H2AK15ub antibody. (B) Representative
immunofluorescence images without IR or 12 h after IR are shown. (C ) The percentage of cells with >10 H2AK15ub foci at different
time points after IR was calculated from three independent experiments. Images acquired at other time points are in Supplemental
Figure S6C. (D,E) USP51 depletion results in persistent 53BP1 foci after IR. The experiments were performed as described above. Images
acquired at other time points are in Supplemental Figure S7B. (F,G) IR-induced 53BP1 foci were also persistent in USP51 knockout (KO)
mouse ES cells. Images acquired at other time points are in Supplemental Figure S7C. About 100 cells in each experimentwere counted in
C and E, and ∼50–70 cells were counted in G.
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chromatin-bound USP51 disassociates from chromatin
immediately following DNA damage and reassociates
with chromatin followingDNA repair. Together, these re-
sults support the idea that USP51 removes H2AK15ub,
thereby modulating DDR following repair of DNA dam-
age (Fig. 7F).
It has been shown that the formation of IR-induced

RNF168 foci depends on the catalytic activity of
RNF168 (Panier et al. 2012). Our result that USP51 over-
expression reduces H2AK15ub but has little effect on
the formation of RNF168 foci appears to contradict this
observation. One possible explanation is that USP51 over-
expression may not completely remove H2AK15ub at IR-
induced DNA damage sites, and the residual H2AK15ub

along with histone H1 ubiquitylation catalyzed by
RNF8 (Thorslund et al. 2015) can still promote the forma-
tion of RNF168 foci.
It has been suggested previously that USP3 and USP16

may target H2AK15ub. Several lines of evidence indicate
that the major functions of these two DUBs likely impact
other ubiquitylation events. For instance, overexpression
ofUSP3 results in loss of IR-inducedRNF168 foci, suggest-
ing that USP3 functions upstream of the recruitment of
RNF168 during DDR and that USP3 regulates the ubiqui-
tylation events catalyzed by RNF8. While overexpression
of USP3 suppresses IR-inducedH2AK15ub levels, the sup-
pression is most likely due to defects in the formation of
IR-induced RNF168 foci. Furthermore, overexpression of

Figure 7. USP51-depleted cells exhibit defects in DNA repair. (A) Depletion of USP51 results in increased sensitivity to IR. U2OS cells
infectedwithUSP51 shRNAwere irradiatedwith the indicated IR doses. Cell viabilitywasmeasured byCellTiter-Blue cell viability assay
3 d after irradiation. The right panel shows the knockdown efficiency of USP51. (B,C ) USP51 knockout mouse ES cells show increased
sensitivity to IR compared with wild-type (WT) cells. USP51 knockout (KO) mouse ES cells were infected with USP51, or its catalytically
inactive mutants were irradiated with the indicated IR doses. Cell viability was measured 3 d after irradiation. Exogenously expressed
USP51 level is shown in C. (D,E) USP51 depletion results in increased NHEJ (D) and HR (E) efficiency. HeLa cells with or without
USP51 depletion were used to perform NHEJ assays, and DR-GFP cells were used for HR reporter assays. (F ) A model for the role of
USP51 in DDR. In response to DSBs, RNF8–RNF168-mediated ubiquitylation cascade leads to H2AK15ub. H2AK15ub facilitates recruit-
ment of 53BP1 and BRCA1 (not shown) to DSBs for DNA repair. After the DSB is repaired, USP51 removes H2AK15ub and facilitates dis-
assembly of 53BP1 at the DSB.
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USP16, themajorDUB forH2AK119ub, does not affect the
formation of IR-induced 53BP1 foci. This observation is
consistent with results from one report (Mosbech et al.
2013) but is in contrast to findings from another study
(Zhang et al. 2014). The discrepancy of the effect of
USP16 overexpression on the formation of IR-induced
53BP foci is likely due to different expression levels in dif-
ferent studies. In the present study, we monitored expres-
sion levels of USP3, USP16, and USP51 and found that,
when expressed at similar levels, these DUBs had a dis-
tinct effect on the formation of RNF168 and 53BP1 foci.
In addition, overexpression of UPS16 had no apparent ef-
fect on H2AK15ub. These results indicate that while it is
possible that USP3 and USP16 regulate the levels of
H2AK15ub, USP51 is likely the major DUB targeting
H2AK13,15ub, an important histone H2A ubiquitylation
associated with DDR.

It has been shown previously that RNF8–RNF168-
mediated ubiquitylation cascade is tightly regulated dur-
ing DDR (Jackson and Durocher 2013). We observed for
the first time that H2AK15ub levels increase at DNA
damage foci in response to IR, and this increase occurs
with a kinetics similar to that of γ-H2AX. Interestingly,
H2AK15ub is removed from chromatin after DNA repair.

It is not unprecedented that a histone modification is
dynamically controlled during DDR. For instance, in bud-
ding yeast, histoneH3Lys56 acetylation (H3K56ac)marks
newly synthesized H3. The H3K56ac level peaks during S
phase and is deacetylated soon after new H3–H4 is assem-
bled into nucleosomes. It is proposed that the removal of
H3K56ac is required for the restoration of chromatin after
DNA replication. H3K56ac also regulates nucleosome as-
sembly during DNA repair (Chen et al. 2008; Li et al.
2008). It has been shown that the removal of this modifi-
cation after DNA repair helps turn off checkpoint kinases.
Therefore, we suggest that the increase in H2AK15ub im-
mediately after damage helps assemble proteins at DNA
damage sites, and its removal after DNA repair not only
helps the disassembly of proteins at DNA damage sites
but also facilitates the restoration of damaged chromatin
to its original state.

UPS51 likely has multiple functions in DDR and/or
genome maintenance

We showed that depletion of USP51 results in increased
NHEJ and HR efficiency, which is dependent on the pres-
ence of RNF168 in cells. These results suggest that the
effect of USP51 depletion on NHEJ and HR is likely due
to elevated levels of H2AK15ub at DNA damage sites.
The increasedNHEJ andHR efficiency in USP51-depleted
cells is reminiscent of the effects of depletion of TRIP12
and UBR5, two E3 ligases that negatively regulate
RNF168 (Gudjonsson et al. 2012): In cells depleted with
TRIP12 and UBR5, RNF168 levels increase, resulting in
the spreading of 53BP1 from chromosome break sites
and increased NHEJ efficiency (Gudjonsson et al. 2012),
possibly due to an increase in H2AK15ub levels. While
we did not detect a major expansion of IR-induced
53BP1 foci inUSP51-depleted cells, depletion ofUSP51 re-

sults in a delayed disassembly of IR-induced H2AK15ub
and 53BP1 foci, which may underlie the observed increas-
es in NHEJ and HR repair efficiency.

Onewould predict that the increase inNHEJ and HR af-
ter USP51 depletion would render cells resistant to IR. In
contrast, USP51-depleted cells were sensitive to IR com-
pared with control cells. There are at least two nonmutual
explanations for the discordant phenotypes observed for
the USP51-depleted cells. First, in addition to removal
H2AK15ub after DNA repair, USP51 may function at
multiple steps of DDR. Supporting this idea, USP51 disas-
sociates from chromatin immediately following DNA
damages and then reassociates with chromatin after
DNA repair. Moreover, depletion of USP51 facilitates
the formation of H2AK15ub and 53BP1 foci during the
early stages of DDR. These results suggest that USP51,
in addition to its role in removing H2AK13,15ub after
DNA repair, is a negative regulator of initial DDR. Sec-
ond, in addition to H2AK15ub, USP51 may have other
substrates. It is known that most of E3 ubiquitin ligases
have more than one substrate (Schwartz and Ciechanover
1999). In principle, a DUB likely hasmore targets than one
E3 ligase because there are far fewer genes encoding DUBs
than E3 ligases in the human genome. Therefore, it is
quite possible that the cell cycle defects and formation
of increased spontaneous DNA foci observed in USP51-
depleted cells are due to the deregulation of protein ubiq-
uitylation other thanH2AK15ub. Future studies are need-
ed to determine these issues and understand how USP51
chromatin disassociation/association is regulated in re-
sponse to DNA damage.

In summary, we identified USP51, a previously un-
characterized DUB, as a bona fide DUB that removes
H2AK13,15ub. Our results indicate that removal of
H2AK13,15ub is involved in disassembly of proteins at
DNA damage foci after DNA repair and is important for
proper DDR and maintenance of genome integrity.

Materials and Methods

Antibodies

The following antibodies were used in this study: rabbit
anti-53BP1 (Rappold et al. 2001), anti-γH2Ax (Millipore, clone
JBW301), rabbit anti-γ-H2AX (Cell Signaling Technologies,
2577), anti-MDC1 (Millipore, clone P2B11), anti-BRCA1 (Santa
Cruz Biotechnology, D-9), anti-ubiquitin (Enzo, FK2), anti-Flag
(Sigma, M2), rabbit anti-Flag (Sigma, F7425), rabbit anti-EGFP
(Abcam, ab6556), anti-tubulin (Developmental Studies Hybrid-
oma Bank, 12G10), and anti-H2A (Millipore, 07–146). Polyclonal
anti-USP51 antibody was generated by immunizing the USP51
peptide (144 PRAWRGSRRRSRPG 157) in rabbits and purifying
antisera through the USP51 peptide-conjugated beads. Monoclo-
nal anti-H2AK15ub antibody (clone EDL H2AK15-4, IgG2b, κ)
was generated in the Mayo Clinic Antibody Hybridoma Core
(Supplemental Material).

Mononucleosome immunoprecipitation

Mononucleosomes were purified as previously described (Chan
et al. 2013). Chromatin from the stable cell lines expressing
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Flag-H2A or Flag-H2Amutants were digested by 1U ofmicrococ-
cal nuclease per 1000 cells (New England Biolabs, M0247S) for
20min at 37°C. After clarification by centrifugation, the digested
nucleosomes were incubated with 30 µL of anti-Flag M2 agarose
beads (Sigma) overnight at 4°C. The beads were then washed four
times using washing buffer (50 mM HEPES-KOH at pH 7.4, 200
mM NaCl, 0.5% Triton X-100, 10% glycerol, 100 mM EDTA,
proteinase inhibitors) for 5 min each time. Proteins were eluted
by 1 mg/mL Flag peptide (Sigma) for 30 min at 16°C and precipi-
tated by TCA.

In vitro ubiquitylation and deubiquitylation assays

In vitro ubiquitylation assays were performed as described previ-
ously (Mattiroli et al. 2012; Fradet-Turcotte et al. 2013; Liu et al.
2013). Briefly, 2.5 µg of mononucleosomes was incubated with
30 nM yeast E1, 1.5 µM UbcH5a, 4 µM RNF168 (1–113), 10 µM
Flag-ubiquitin, and 3 mM ATP in ubiquitylation buffer (50 mM
Tris-HCl at pH 7.5, 100 mM NaCl, 10 mMMgCl2, 1 mM ZnCl2,
1 mMDTT) for 2 h at 30°C. The ubiquitylated nucleosomes were
then dilutedwith deubiquitylation buffer and immunoprecipitat-
ed with anti-Flag M2 beads. The immunoprecipitated mononu-
cleosomes were eluted with Flag peptide and used as substrates
in the deubiquitylation assays and the screen of monoclonal anti-
body against H2AK15ub. The ubiquitylated nucleosomes were
incubated with 10 ng/µL purified USP51 or USP51/CI for the in-
dicated time points at 30°C. After deubiquitylation reactions, pro-
teins were precipitated by TCA, resuspended in 1× SDS loading
buffer, resolved on SDS-PAGE, and detected by Western blot us-
ing the Flag antibody.

Assays for NHEJ and HR efficiency

NHEJ was performed as described previously (Patel et al. 2011).
Briefly, HeLa cells were infected with the lentivirus for USP51
shRNA or nontarget shRNA control. After selection for 2 d, cells
were cotransfected with pmCherry and linearized Pem1-EGFP-
Ad2. pmCherry was used to normalize transfection efficiency.
Cells were collected for FACS analysis, and GFP-positive cells
were counted to determine the NHEJ efficiency. The ratio be-
tween GFP+ and mCherry+ cells was used as a measure of NHEJ
efficiency. HR assays were performed following published proce-
dures (Luo et al. 2012). Briefly, HeLa-DR-GFP cells were infected
with the lentivirus for USP51 shRNA or nontarget shRNA con-
trol. After 2 d of selection, cells were cotransfected with I-SceI
(pCBA-I-SceI) endonuclease to induce DSB and pmCherry to con-
trol transfection efficiency. Cells were harvested 2 d after I-SceI
transfection and subjected to flow cytometric analysis. The ratio
between GFP+ and mCherry+ cells was used as a measure of DSB
repair efficiency.

Laser irradiation and immunofluorescence staining

U2OS cells were cultured on 35-mm glass-bottomed dishes (Mat-
Tek Cultureware, P35G-15-14-C). Cells were then infected with
lentivirus expressing shUSP51 or nontarget control. Forty-eight
hours after infection, DNA damagewas introduced to cells via ir-
radiation with 551-nm dye laser in a line pattern. A customized
laser microirradiation system was previously described (Pei
et al. 2011; Chen et al. 2013). Briefly, the system consists of an in-
vertedmicroscope (Nikon), a laser ablation unit (Photonic Instru-
ments), and microscope automation and imaging software
(Metamorph, Molecular Devices). An attenuator plate (50%
transmission) and four pulses per spot were used to set the
total laser energy delivered to each focused spot in the line pat-

tern. Immediately following laser irradiation, cells were fixed
with 4% paraformaldehyde (Electron Microscopy Sciences) for
10 min and then permeabilized with phosphate-buffered saline
(PBS) containing 0.2% Triton X-100 for 10 min at room tempera-
ture. Immunofluorescence staining was then performed as de-
scribed previously (You et al. 2009). Mouse antibodies against
H2AK15ub were used at 1:100, and rabbit antibodies against
NBS1 were used at 1:200. Primary antibodies were detected
with goat anti-mouse Alexa fluor 488-conjugated and goat anti-
rabbit Alexa fluor 568-conjugated secondary antibodies. DNA
was visualized using 1 µg/mL Hoechst 33342 staining. Cells
were imaged using the Nikon microscope and the MetaMorph
software described above. The relative signal intensity of
H2AK15ub on the laser-induced DNA damage strips was quanti-
fied as the H2AK15ub intensity normalized to that of NBS1 (con-
trol). Signal intensity of H2AK15ub or NBS1wasmeasured as the
fold increases relative to the background signal in an adjacent re-
gion outside the strip but within the nucleus. For each laser strip
signal, an average of three randompositions on the strip was com-
pared with an average of three random positions on the back-
ground, and then relative signals were determined for each time
point and experimental condition. Quantified results shown in
Figure 4F were obtained from three independent experiments. Er-
ror bars in the figures indicate standard deviation.
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