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Abstract

The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for 

the future of neuroscience research. Much of this excitement has centered on the species’ 

reproductive biology and compatibility with gene editing techniques, which together have 

provided a path for transgenic marmosets to contribute to the study of disease as well as basic 

brain mechanisms. In step with technical advances is the need to establish experimental paradigms 

that optimally tap into the marmosets’ behavioral and cognitive capacities. While conditioned task 

performance of a marmoset can compare unfavorably with rhesus monkey performance on 

conventional testing paradigms, marmosets’ social cognition and communication are more similar 

to that of humans. For example, marmosets are amongst only a handful of primates that, like 

humans, routinely pair bond and care cooperatively for their young. They are also notably pro-

social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In 

this review, we describe key facets of marmoset natural social behavior and demonstrate that 

emerging behavioral paradigms are well suited to isolate components of marmoset cognition that 

are highly relevant to humans. These approaches generally embrace natural behavior and 

communication, which has been rare in conventional primate testing, and thus allow for a new 

consideration of neural mechanisms underlying primate social cognition and communication. We 

anticipate that through parallel technical and paradigmatic advances, marmosets will become an 
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essential model of human social behavior, including its dysfunction in nearly all neuropsychiatric 

disorders.

I. Introduction

There has been considerable interest recently in the common marmoset (Callithrix jacchus) 

as a neuroscientific model organism. This renewed focus on an already established animal 

model species (Bendor and Wang, 2005; Chaplin et al., 2013; Fritsches and Rosa, 1996; 

Roberts et al., 1994; Roberts and Wallis, 2000; Wang et al., 2005) has been driven, at least in 

part, by the prospect of developing primate transgenic lines (Belmonte et al., 2015; Kaiser 

and Feng, 2015). There is some debate as to the suitability of marmosets, compared to more 

widely used animal models, especially the rhesus monkey for tapping into higher aspects of 

human cognition and rodents for functional dissection of neural circuitry. On the one hand, 

marmosets share with humans core features of brain architecture and function (Bendor and 

Wang, 2005; Chaplin et al., 2013; Mitchell and Leopold, 2015) and the complex social and 

cognitive behaviors typical of the primate Order (Digby, 1995; Digby and Barreto, 1993; 

Huber and Voelkl, 2009; Voelkl and Huber, 2007). On the other hand, marmosets are a 

unique species with their own distinct evolutionary history and behavioral repertoire. Most 

notably, they are unusually small primates, and in that respect nearly opposite to humans. 

While this difference can be a hindrance in studying some aspects of brain organization and 

function, the small size offers a number of distinct experimental advantages. In weighing 

these factors against those of more widely used experimental models, many researchers have 

concluded that the marmoset model is likely to play a prominent role in the next chapter of 

neuroscience (Belmonte et al., 2015). Here we argue that this species is particularly 

promising as a model for studying neural circuits of social behaviors and their dysfunctions 

in neuropsychiatric disorders.

Primates are perhaps best distinguished from other animals by their sophisticated societies 

and the manner in which individuals understand and navigate these complexly structured 

and dynamic social systems. Like other social mammals (Barnett, 1958; Blumstein, 2013; 

Crook et al., 1976; Hofer and East, 1993; Mann et al., 2000; Wittemeyer and Getz, 2007), 

primate social hierarchies are organized along familial lines (Mitani et al., 2012), but since 

social knowledge is not limited to ego-centric relationships (Barton and Dunbar, 1997; 

Cheney and Seyfarth, 1990, 2007; Seyfarth and Cheney, 2015; Seyfarth et al., 2005), the 

capacity for communication may be much larger and the complexity of the rules governing 

social interaction may be much higher. Social rule learning is a critical component of 

primate cognitive development (Byrne and Bates, 2010; Cheney et al., 1995; Seyfarth and 

Cheney, 2012; Tomasello and Call, 1997), for which primates appear to have specialized 

mechanisms (Flombaum and Santos, 2005; Hare et al., 2001; van de Waal et al., 2013; 

Voelkl and Huber, 2007). Nonhuman primates can exhibit social tactics familiar to humans, 

such as deception and strategic alliances (Byrne and Whiten, 1989; le Roux et al., 2012; 

Palombit et al., 1997). Thus the social landscape of primates is fraught with unique 

challenges and opportunities (Toarmino et al., In Press).

Miller et al. Page 2

Neuron. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Circuits for interpreting social landscapes and making decisions must be adaptive and 

accommodate learning over both short and long time scales to understand the context and 

consequences of behavior. Primates excel in modeling and predicting the actions of other 

group members based on knowledge of their respective relationships gained during prior 

interactions (Byrne and Bates, 2010; Cheney and Seyfarth, 1990, 2007; Toarmino et al., In 

Press). An individual's social participation and knowledge encompasses visual observation, 

active communication, the testing of social rules, and strategic thinking – skills that together 

have shaped the evolution of the primate brain (Adolphs, 2009; Frith and Frith, 1999; 

Ghazanfar and Santos, 2004). These core human behaviors are notably affected in a range of 

human mental disorders, where it is the interaction with other members of society that is 

most obviously affected (Kennedy and Adolphs, 2012). However, our understanding of the 

brain circuits that steer real-world human social interaction is limited, in large part due to the 

constraints of measuring brain activity in humans and the limits of existing behavioral 

paradigms in relevant models.

A major challenge for studying active social behavior in primates has been the limitations of 

existing paradigms. Marmosets may be better suited for developing and implementing such 

paradigms than other species, particularly as a model for human social interaction. Like 

humans, marmoset are amongst the few primates that pair-bond (Digby and Barreto, 1993) 

and engage in cooperative care of their young (French, 1997; Solomon and French, 1997). 

Cooperative breeding in humans and marmosets is thought to have coevolved with a unique 

set of social cognitive behaviors, including prosociality (Burkart et al., 2009a; Burkart and 

van Schaik, 2010). A case in point of this prosociality is food sharing. Marmosets allow 

group members to remain in close proximity during feeding (Day et al., 2003) and share 

foods with unrelated conspecifics even without an opportunity for reciprocity (Burkart et al., 

2007). Most of the cognitive elements underlying prosocial behavior are likely to be a shared 

feature of the primate brain; however, the cooperative behaviors shared by marmosets and 

humans are uncommon among primates, including those great apes most similar to humans 

(Hare et al., 2007; Wobber et al., 2010). It is only through the interaction with species-

specific societies that these and other types of cooperative behaviors are expressed in some 

primate societies. Marmosets also exhibit sophisticated forms of observational social 

learning (Burkart et al., 2009b) and are one of the only non-ape species to demonstrate 

imitation (Bugnyar and Huber, 1997; Voelkl and Huber, 2000). Because marmosets are small 

in body size (~300-400g), they can be housed in the laboratory in their species-typical 

family units that naturally give rise to rich interaction and social communication in 

laboratory conditions. The marmoset brain, though lissencephalic (smooth), possesses the 

shared neural architecture of primates (Chaplin et al., 2013; de la Mothe et al., 2006, 2012; 

Mitchell and Leopold, 2015; Solomon and Rosa, 2014), including potential homologous 

cortical substrates underlying complex perceptual processes, such as pitch discrimination 

(Bendor and Wang, 2005; Song et al., 2016; Wang and Walker, 2012). Modern technological 

methods make it feasible to track the activity of neural circuits under such conditions 

(Eliades and Wang, 2008a, b; Eliades and Wang, 2013; Miller et al., 2015; Roy and Wang, 

2012). Thus, just as active exploration of natural landscapes by rats led to the discovery of 

place cells and grid cells, the core building blocks of circuits for spatial cognition (O'Keefe 

and Dostrovsky, 1971), studies of marmosets exploring their social landscape may lead to 
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similarly fundamental insights into social brain function. While it is possible that some of 

the resemblance is only superficial, such as cooperative parenting (Saito, 2015), the extent to 

which shared social behaviors are supported by homologous neural mechanisms remains an 

empirical question.

The primary aim of this review is to highlight recent experimental, technological and 

conceptual advances that provide a foundation for developing the marmoset into a model for 

the neuroscientific study of social behaviors as are found in humans and their psychiatric 

disorders. First, we briefly review the merits and limitations of current animal models of 

human social circuits. We then discuss how active visual and acoustic signaling in 

marmosets could provide a road map for developing models of natural human social 

interaction. We conclude with a brief discussion of the prospects for gene editing methods in 

the marmoset and how these could be combined with natural social experimental paradigms 

to understand the basis for human neuropsychiatric disease.

II. Rodent and Monkey Models of Human Social Behavior

Establishing animal models of human social behavior necessitates evidence of similarities in 

sociality, as well as its underlying neurobiological mechanisms. Certain core features of 

social behavior are shared among mammals, as are the corresponding features of circuits in 

the brain. Much of what we understand about the neurobiology of social interaction comes 

from research in rats, mice, and voles (Beery and Kaufer, 2015; Insel and Young, 2001; 

Young, 2002). This is despite peripheral adaptations that are very different from humans, 

most notably the importance of olfaction for social perception (Barnett, 1958; Grant, 1963; 

Wolff and Sherman, 2007). Rodents engage in intricate parental care (Insel and Young, 

2001), demonstrate reciprocal cooperation in some situations (Viana et al., 2010), and aid 

distressed cage mates even at a cost to themselves (Bartal et al., 2011). Social interactions 

amongst rodent species are typically mitigated by the issuance of specific signals, such as 

vocalizations (Arriaga and Jarvis, 2013; Portfors, 2007) and odor cues (Arakawa et al., 2008; 

Lin et al., 2005), which can be perceived by conspecifics at a distance. Nearby interactions 

are also facilitated by tactile behavior (Bobrov et al., 2014; Brecht, 2007; Grant, 1963). 

These cues convey information ranging from social recognition to the presence of a 

predators or other threats (Johnston, 2003; Shelley and Blumstein, 2005; Wesson, 2013), and 

facilitate forms of social learning, such as that for food preference (Galef and Kennett, 1987; 

Laland and Plotkin, 1993). These social tendencies have often been used to support the use 

of rodents as models of human social behavior. Indeed, humans exhibit analogous social 

behaviors, as do many other gregarious mammals (Bradbury and Vehrencamp, 2011; 

Gariepy et al., 2014; Hecht et al., 2012; Heinrich, 2011; Madden et al., 2009, 2011; Mann et 

al., 2000; Rendell and Whitehead, 2001; Wittemeyer and Getz, 2007). Rather than serve as a 

model of human-specific sociality, these aspects of rodent sociality likely reflect more 

general mammalian characteristics that evolved prior to our last common ancestor and the 

divergence of the species (Emes et al., 2003; Li et al., 1990; Murphy et al., 2001) (Figure 1).

The neurobiology of rodent social interaction has led to several important discoveries on 

underlying neural circuits and neurochemicals relevant to many social vertebrates, including 

humans. Studies of oxytocin in rodents, for example, have shown that this neuropeptide is 
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critical to a broad range of social behaviors, such as maternal care, attachment and affiliation 

(Insel and Young, 2001). Oxytocin knock-out mice (OTKO) develop normal olfactory bulbs 

but have significantly impoverished social recognition (Ferguson et al., 2000). Notably, 

oxytocin plays a similarly fundamental role in social attachment for humans (Feldman, 

2012; Feldman et al., 2015; Kosfeld et al., 2005). Likewise, social aggression and 

recognition in mice are mediated by the vasopressin 1b receptor in hippocampal CA2 

pyramidal neurons (Caldwell et al., 2008; Pagani et al., 2015; Wersinger et al., 2002). Mice 

with lesioned (Stevenson and Caldwell, 2014) or optogenetically inactivated (Hitti and 

Siegelbaum, 2014) CA2 showed a significant reduction in social recognition (Dudek et al., 

2016). Although direct evidence of CA2 function in humans is limited, some patients with 

social neuropsychiatric disorders (e.g. schizophrenia, autism, etc) have exhibited 

abnormalities in CA2 (Meyer-Lindberg et al., 2011). These similarities in the neurobiology 

of social behavior in rodents and humans likely reflect a common mammalian heritage and 

have maintained their adaptive value and function in most, if not all, mammals because the 

social contexts in which they function have remained critical in all mammalian societies 

(e.g. parental care, recognition, affiliation, etc).

However, because individual mammalian taxa have evolved distinctive, idiosyncratic social 

behaviors, rodent studies must be complemented by studies in primates. Many of these 

idiosyncratic behaviors relate directly to aspects of social interaction. Each species faces a 

unique set of challenges in its social landscape and must employ distinct strategies for social 

interactions. As sociality varies immensely among mammals, individual species’ brains are 

marked by very different social adaptations. In primates, social behavior relies strongly upon 

visual and acoustic communication and, in contrast to most mammals, depends minimally 

on chemical and olfactory signaling. In the visual domain, the interpretation of faces and 

bodily postures is particularly important, with primates’ high visual acuity permitting the 

analysis of these visual cues from a distance of several meters or more. Most experimental 

work to date has focused on faces, which are particularly important for human social 

communication. Faces are inherently salient, are controlled with a high degree of precision 

by specialized muscles and neural mechanisms, and serve as the basis for conveying a 

spectrum of meaningful social signals (Fridlund, 1994; Leopold and Rhodes, 2010). At each 

moment, a person's face carries a wealth of information for a perceiver, including individual 

identity, gender and emotional state (Micheletta et al., 2015; Parr and Heintz, 2009; 

Preuschoft, 1995, 2000). The importance of facial communication is reflected in the fine 

differentiation of facial musculature in primates and the putative specialization for face 

processing in high-level visual cortex and subcortical structures (Desimone et al., 1984; 

Gothard et al., 2007; Hoffman et al., 2007; Maior et al., 2010; Perrett et al., 1985; Sugase et 

al., 1999; Tsao et al., 2006; Vick et al., 2007; Weiner and Grill-Spector, 2015). Brain 

imaging and electrophysiological experiments have shown that multiple ‘face patches’ are 

evident in the temporal lobe of humans, rhesus monkeys, and marmosets (Hung et al., 2015; 

Kanwisher et al., 1997; Tsao et al., 2008), suggesting that such a network might be a core 

feature of the primate social brain. Current studies are investigating specialization among 

such regions for extracting different types of information from faces, such as head 

orientation, direction of gaze, individual identity, body context, and facial motion (Fisher 
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and Freiwald, 2015a, b; Freiwald and Tsao, 2010; Hoffman and Haxby, 2000; Leopold et al., 

2006; Polosecki et al., 2013).

While much has been learned regarding layout and basic response properties of face-

specialized areas, our knowledge vis-à-vis social interaction runs up against the limitations 

imposed by conventional paradigms in which animals are restrained. For example, 

neurophysiological investigations of face selectivity have primarily relied on contrasting 

responses to the brief presentation of stimuli from different visual categories. A recent study 

found that responses collected under such circumstances were minimally predictive of the 

role of individual cells under more naturalistic viewing conditions (McMahon et al., 2015). 

Face-selective neurons recorded during free viewing of natural social videos responded to 

features other than faces, such as the perceived distance to an individual or group. 

Furthermore, neighboring neurons within a few hundred microns of one another responded 

at very different times during the video. Importantly, individual neurons were highly 

deterministic in their responses when the same video clip was repeated, thus the difference 

among neurons reflected a genuine specialization to different features of the video. Free 

viewing of video stimuli revealed a fascinating new dimension of social perception; neurons 

in the amygdala were sometimes highly sensitive to where an animal was looking. 

Specifically, a population of neurons responded the most when the subject looked at the eye 

of an animal in the video, while a subclass of neurons responding only during “eye contact”, 

when the animal in the video was also looking at the camera (Mosher et al., 2014). Given the 

importance of eye contact and the rules governing it for primate social communication, these 

neural responses may be critical for understanding high-level aspects of primate social 

signaling, such as communication, attachment, threat, and gaze-following. Together, these 

early studies using free viewing of social videos illustrate that even a relatively moderate 

relaxation of conventional testing paradigms can lead to deep new insights into the 

neurobiological basis of primate social perception.

Other behavioral and neurophysiological experiments in rhesus monkeys have used 

paradigms that emphasize active decision making, especially during direct social interaction 

between animals. As a precursor, an early experiment studying the inclination of subjects to 

select which photo they preferred to look at demonstrated distinct preferences for certain 

socially relevant stimuli (e.g. female perinea) over others (e.g. low ranking males) (Deaner et 

al., 2005), with these choices reflected in the activity of neurons in parietal cortex (Klein et 

al., 2008). Such choice behavior depends not only on the stimulus but also on the impact a 

choice has on another animal observer (Chang et al., 2011). For example, in one experiment, 

the choice of one animal (the Actor) determined whether the Actor, the Observer, both, or 

neither animal received a reward. Distinct areas of frontal cortex and anterior cingulate 

cortex played complementary roles in subjects’ choices based on outcome (Chang et al., 

2013). In perhaps the most compelling of these results, neurons in the dorsal anterior 

cingulate were monitored while two monkeys interacted during a Prisoner's Dilemma game, 

where the monkeys could choose to cooperate for a larger reward outcome in the long term 

(Haroush and Williams, 2015). Individual cingulate neurons were sensitive to distinct 

aspects of these interactions, including predictions about the other monkey's ensuing choice. 

These and related studies (Azzi et al., 2012; Lee, 2010) illustrate that social information is 

weighed when primates make decisions, and that neurons associated with decision-making 
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are impacted by the nuances of the context and related social perception. More importantly, 

they suggest that certain neurobiological processes may only be evident during active social 

interactions. Decisions are not solely based on the value of a particular stimulus, but on the 

relative choices of another conspecific in the interaction. Given that much of the 

sophistication evident in primate social cognition relates to the acquisition of social 

knowledge and its implementation for strategies to succeed in the primate social landscape, 

further study of active social interactions and signaling is likely to be particularly significant 

in future discoveries about the neurobiology of primate social behavior.

To unravel the neural basis of human social behavior, animal models have been and will 

continue to be critical. The strength of rodent models is the precision modern technologies 

afford for dissecting neural circuits (Ashton-Jones and Deisseroth, 2013; Deisseroth, 2011; 

Oh et al., 2014), along with the relative ease in setting up direct social interaction (Gunaydin 

et al., 2014; Peca et al., 2011). The strengths of primate models are shared perceptual 

domains and immediate relevance to humans. In the next section, we argue that marmosets 

provide a path to apply the advantages of circuit dissection to the primate brain. The 

marmoset model supporting this effort is rooted in important aspects of its natural behavior, 

as well as recent technical and conceptual advances that afford the opportunity to study the 

neurobiology of active social interactions in the primate brain.

III. Paradigms to Investigate the Neurobiology of Marmoset Social Behavior

Marmosets are prolific explorers of their social landscape. In addition to the sophisticated 

facets of social behavior discussed above, marmosets possess an expansive system for social 

signaling for navigating the complex nuances of their societies. Communication in this 

species includes social grooming (Lazaro-Perea et al., 2004) and scent marking behavior 

(Abbott, 1984; Abbott et al., 1997; Lazaro-Perea et al., 1999; Smith, 2006; Smith et al., 

2001), but as is typical amongst primates, there is a clear dominance of visual (de Boer et 

al., 2013; Kemp and Kaplan, 2013) and vocal signaling (Bezerra and Souto, 2008; Chen et 

al., 2009; Miller et al., 2010b; Miller and Wang, 2006; Norcross and Newman, 1993; 

Pistorio et al., 2006). Traditional head-restrained preparations constrain neurobiological 

studies of social signaling in marmosets, as in other primates. Where this small New World 

primate differs, however, is that neural studies of their social behavior are not limited to this 

paradigm. Because marmosets can live in large extended family groups in captivity and 

engage in normal social interactions, it is possible to study the neural basis of natural 

interactions in an experimentally controlled fashion. In Old World primates, such as the 

rhesus monkey, such studies are difficult due to the high costs associated with building 

suitably large enriched habitats as well as the more aggressive disposition of the species. 

Techniques developed for recording single-unit activity in freely-moving marmosets 

significantly expands the range of behaviors that can be studied with electrophysiology 

(Eliades and Wang, 2008a; Roy and Wang, 2012). Neurophysiology is but one of the many 

methods used to study neural function. Several other techniques could be modified from 

existing technology employed in rodents for use in these small-bodied primates, including 

calcium imaging (Flusberg et al., 2008; Helmchen et al., 2001; Sadakane et al., 2015) and 

optogenetics (MacDougall et al., 2016; Watakabe et al., 2015). Ultimately, the greatest value 
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of marmosets may emerge when methods to record and manipulate neural activity are 

applied to the study of active social behavior and signaling.

Social signaling in primates presents something of a paradox. Despite many examples of 

high social aptitude within the rules of their society (Hare et al., 2001, 2006; Rosati et al., 

2010), the repertoire of social signals (e.g. facial expressions, vocalizations, piloerection, 

etc) is notably limited. One might expect that the demonstrable complexity in social 

interaction might be matched by a broad “vocabulary” for social communication. Yet, one of 

the lessons from primate ethology is that communication does not amount to a catalogue of 

social signals, but must instead be seen within the broader context of an existing social scene 

of interacting individuals, where environment, social dominance, and recent history strongly 

influence how the limited number of signals is used and interpreted (Engh et al., 2006; 

Seyfarth and Cheney, 2014). Even in the case of human language, which is much richer in its 

content, the meaning behind a word or sentence is often highly contextual (Dunbar, 2003; 

Fitch et al., 2010). Future studies of active social signaling, likely in the marmoset, may shed 

greater light on the roles of social monitoring, memory and other cognitive operations in 

language comprehension. Importantly, it also provides a path to study neural mechanisms 

relevant to language, which need not be limited to vocal signals (McGurk and MacDonald, 

1976). Thus, isolated aspects of social communication can be studied in other taxa (e.g. 

signal processing, vocal-learning, etc). But the idiosyncratic nuances of how social signals 

weave into the fabric of the primate social landscape, and the distinct neural processes that 

may emerge as a result of coordinating interactions in these scenes (Hasson et al., 2012), 

may necessitate a primate model.

Marmosets provide unique opportunities for laboratory studies of the neural basis of active 

communication. We discuss two components of marmoset social signaling - gaze following 

and antiphonal calling - as representative case studies of how this approach can be applied in 

the species.

Gaze-Following

More than other mammals, primates rely on vision to monitor their social landscape and 

coordinate social interactions (Allman, 1977). Key to this process is the face and the 

direction it is pointed. The direction of a conspecific's gaze also provides conspecifics with 

critical information about relevant information in the environment, such as food, predators 

and pertinent social interactions. Primates use each other's gaze direction as a spatial cue to 

direct their attention towards common points of interest, a group of behaviors termed ‘joint 

attention’(Tomasello, 1995). The significance of this visual behavior in primates is 

evidenced by its rapid development and role in more sophisticated aspects of social 

cognition. In human infants, for example, recognition of whether a face is making direct eye 

contact or not emerges by 1-4 months, while the ability to follow the direction of an averted 

gaze is evident soon after (4-6 months) (Farroni et al., 2002; Farroni et al., 2003; Gomez, 

2005). By comparison, other aspects of face processing, such as recognition of emotional 

expression (Herba and Phillps, 2004) and individual identity (Carey and Diamond, 1994; 

McKone et al., 2012) appear later in childhood. Joint attention provides a key channel to 

communicate the location of important items, for example, in predator avoidance or food 
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foraging. The basic features of joint attention are found across primates, and where data are 

available, also appear early in development (Tomasello et al., 2005), although at differing 

levels of sophistication across species (Rosati and Hare, 2009).

Marmosets, like other primates, are keenly interested in social stimuli such as faces (Hung et 

al., 2015; Mitchell et al., 2014). Evidence for the reading of faces and bodily postures comes 

from studies of observational learning of adult foraging skills by juvenile observers (Schiel 

and Huber, 2006). While marmosets routinely direct their gaze to faces and bodies (Mitchell 

et al., 2014), the kind of information that they extract and utilize is an open area of research. 

Close inspection of Figure 2 (panel A) reveals that gaze is primarily directed to internal 

facial features. This observation suggests that detailed information related to identity or 

facial behavior is gathered rather than more general species-related information, which 

might be gathered from external features like the ear tufts.

In contrast, there already is clear evidence that marmosets use gaze information as a cue for 

shared attention in both experimental and natural contexts. Although Old World primates use 

the eyes to determine direction of gaze in addition to head, Calltrichids appear to rely 

predominantly on head-direction cues (Santos and Hauser, 1999). This difference likely 

reflects the fact that larger monkeys and apes often move their eyes only to shift gaze, while 

marmosets tend to rotate their head rather than their eyes when shifting their gaze (Heiney 

and Biazquez, 2011; McCrea and Gdowki, 2003). Marmosets have been shown to perform 

geometrical gaze following, using gaze cues of other individuals to orient towards objects 

beyond their line of sight (Burkart and Heschl, 2006), although their understanding of what 

is seen by the other individual (i.e, visual access) is less clear (Burkart et al., 2007; Rosati 

and Hare, 2009). Determining the extent to which a primate can infer the mental state or 

knowledge of a conspecific based on where they are looking is an inherently challenging 

experimental question (Flombaum and Santos, 2005; Hare et al., 2001, 2006) which has not 

been explicitly studied in marmosets. In natural contexts, several behaviors that coordinate 

activity between group members are likely to rely on the shared attention signals mediated 

by gaze following. The “mobbing” behavior exhibited by groups when a terrestrial predator 

intrudes on their territory provides one example (Epple, 1975; Ferrari and Ferrari, 1990; 

Passamani, 1995). When a predator is detected, a group of marmosets engage in an elaborate 

and coordinated response (Barros et al., 2002; Clara et al., 2008). A marmoset detecting a 

threat will orient itself towards its location, maintain gaze on it, and repeatedly emit a sharp 

“mobbing” (tsik) call. The extent to which this orientation cue is used by other group 

members to detect the predator has not been manipulated experimentally. Marmosets are 

also willing to follow the gaze of human experimenters, for example, in searching for 

particular food locations (Burkart and Heschl, 2006). These behaviors could be leveraged 

under experimental contexts to provide a platform for studying gaze and social interactions. 

With paradigms suitable to track gaze-following in less restrained contexts, such as family 

groups living in a home cage, it would be possible to study its emergence in ontogeny 

(Teufel et al., 2010; Tomasello et al., 2001) and developmental neurobiology. Marmosets 

possess a system of face-selective regions across temporal cortex (Hung et al., 2015) similar 

to that in rhesus monkeys and humans (Tsao et al., 2006; Tsao et al., 2008) (i.e. ‘face-

patches; Figure 3). Focused neurophysiological recordings in these and neighboring 

locations (Marciniak et al., 2014) as marmosets engage in gaze-following and other 
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communication behaviors involving faces and facial expressions is likely to be particularly 

significant for determining the functional role that this circuit plays in active social 

signaling.

Antiphonal Calling

Marmosets are highly vocal primates. Their proclivity to produce vocal signals at high rates 

contrasts with many Old World primates, including rhesus monkeys, and is thought to be an 

adaptation to the dense vegetation in the forest habitats marmosets have lived throughout 

their evolutionary history (Morrill et al., 2013; Rylands et al., 2009). Limits imposed on 

visual signaling from vegetation may have necessitated the use of vocal signals for 

maintaining social contact with conspecifics. Using its rich vocal repertoire, the species 

engages in near tonic level of vocal signaling to communicate with conspecific group 

members and maintain social interactions in their forest habitat (Agamaite et al., 2015; 

Bezerra and Souto, 2008; Epple, 1968). The significance of vocal signals for mitigating 

social interactions in marmosets presents an opportunity to investigate the dynamic 

relationship between social behavior, cognition and communication in this primate model.

When marmosets are visually occluded from each other, they commonly engage in a 

conversational exchange known as antiphonal calling (Miller et al., 2010b; Miller and Wang, 

2006; Norcross and Newman, 1993) (Figure 4A). Adult marmosets rarely interrupt each 

other during these conversations, but rather take turns alternating successive calls in bouts of 

vocal exchanges (Miller and Wang, 2006; Takahashi et al., 2013). The rhythm of these 

exchanges is governed by rules reflecting social relationships (e.g. cagemate, non-group 

mate, sex, age etc) (Chen et al., 2009; Chow et al., 2015; Miller et al., 2010b; Miller and 

Wang, 2006; Norcross and Newman, 1997). Marmosets will cease to interact with callers 

who deviate from the correct temporal pattern (Miller et al., 2009a). Callers exert control 

over several aspects of signal production during this behavior, ranging from a motor plan 

about the structure of the vocalization to avoiding sources of acoustic interference (Miller et 

al., 2009b; Roy et al., 2011). During an experiment in which noise was broadcast with 

different periodicities, for example, pairs of marmosets would coordinate the timing of their 

behavior to both avoid the interference and maintain turn-taking within the constraints of the 

environment (Roy et al., 2011). The dynamics of these vocal exchanges are also learned 

during ontogeny (Chow et al., 2015). Young marmosets must learn to take turns, use the 

correct call type and follow the appropriate periodicity of the exchange based on the social 

context. Evidence also suggests that parents may play a role in guiding the development of 

this behavior (Chow et al., 2015). Several characteristics of this behavior parallel 

conversations in humans (Bruner, 1975; Snow, 1977; Stivers et al., 2009), suggesting that 

antiphonal calling may be a valuable model for understanding the social and developmental 

influences on language.

Antiphonal calling is an ideal behavior in which to apply recent technical advances to 

neurobiological studies of primate social behavior and active social signaling. A series of 

experiments recording the activity of auditory cortex neurons as marmosets naturally 

produced vocalizations were the first to apply the freely-moving neurophysiology method 

(Eliades and Wang, 2012; Eliades and Wang, 2008b; Eliades and Wang, 2013). These 
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experiments showed that, despite being generally suppressed during vocal production, 

individual auditory neurons were more sensitive to deviations in subtle changes to auditory 

feedback during vocal production than simply hearing the same vocalization played back 

passively (Eliades and Wang, 2008b). To more explicitly test active social signaling, 

however, data from animals directly engaged in vocal interactions are necessary. A novel 

experimental paradigm was developed that involved generating ‘Virtual Marmosets’ (VMs), 

via a computer-controlled playback system, who directly engage live marmosets in their 

natural antiphonal calling interaction (Figure 4B). One of the key benefits of this method is 

that each VMs vocal behavior and vocal signals can be systematically manipulated in order 

to not only directly engage marmosets in their natural vocal interactions but also 

experimentally test the significance of various social and acoustic cues (Miller et al., 2009a; 

Miller and Thomas, 2012; Miller and Wang, 2006). This behavioral paradigm was recently 

used in a neurophysiological study of marmoset prefrontal and premotor cortex (Miller et 

al., 2015). Previous studies showed vocalization-induced immediate early gene expression 

across these areas of marmoset frontal cortex (Miller et al., 2010a; Simoes et al., 2010). 

Neurophysiological recordings during natural antiphonal calling interactions showed that 

marmoset frontal cortex neurons exhibited motor related changes in activity both prior to 

and during vocal production, including populations across ventrolateral premotor and 

prefrontal regions (Figure 5), such as Area 44 (i.e. a putative Broca's area homolog). These 

data contrast with recent studies of rhesus monkeys trained to vocalize in response to a 

visual stimulus (Coude et al., 2011; Hage and Nieder, 2013). In each of these studies, not 

only was the neural response primarily 500-1000ms prior to vocal onset but was also limited 

to only vocalizations produced in response to the stimulus. Naturally produced vocalizations 

did not elicit vocal-motor related neural responses. This is suggestive that vocal production 

during active communication in marmosets may reveal different dimensions of neural 

function. This was the first neurophysiological study of active signaling in a primate and 

serves as a foundation for more sophisticated interactive paradigms (Miller and Thomas, 

2012). Neurophysiological recordings using interactive paradigms could determine 

perceptual boundaries for social and acoustic categories. More broadly, such paradigms can 

be applied to examine a myriad of sophisticated cognitive mechanisms at play during social 

signaling (King, 2015; Miller and Bee, 2012) and the role of these behaviors in the broader 

context of navigating the intricacies of primate societies. This approach offers new avenues 

of research for marmosets as a model of language. While songbirds have often been cited as 

a model of language (Doupe and Kuhl, 1999), most of the important insights from that work 

have centered on sensory-motor learning and motor control (Brainard and Doupe, 2000; 

Dave and Margoliash, 2000; Long and Fee, 2008; Roberts et al., 2012). The marmoset 

model offers a complementary approach to study language-related aspects of social 

communication that are unique to primates and, given the close phylogenetic mechanisms, 

likely to be supported by common brain mechanisms.

Caveats and Considerations of Natural Behavior

The use of natural social behaviors in neuroscientific studies has many merits, but they are 

not without their limitations. One of the great strengths of traditional primate 

neurophysiological approaches is the ability to rigorously control and study neural function 

in awake, behaving animals. Subjects are highly trained to perform a regimented task in 
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which many of the factors that may modulate neural activity are controlled. This approach 

allows for the precise measurement of repeatable stimulus classes. This degree of control is 

not possible in freely-moving, naturally behaving animals. Exactly how the inherent 

variability in social behaviors affects the various endogenous and exogenous factors that 

modulate neural activity in primate neocortex is not known. One likely factor in the 

differences reported in ventrolateral prefrontal cortex responses to vocalizations in freely-

moving marmosets (Miller et al., 2015) and restrained rhesus monkeys (Gifford et al., 2005; 

Romanski et al., 2005), in which neurons are driven by the acoustic stimuli, relates to 

variability in baseline neural activity during stimulus presentations in the former. While 

clearly the brain is able to function without the need to control for these factors, the sources 

of variance also confound our ability to test and parse their relative contributions to neural 

function. Ultimately, progress on this front necessitates a balance of these issues. Our 

selection of gaze-following and antiphonal calling as examples of how to pursue these issues 

was to highlight the opportunity to examine facets of natural primate social behaviors, while 

also maintaining some degree of experimental control.

IV. Transgenic Marmosets: Implications for Social Neuropsychiatry

Neuroscience is in the midst of an empirical revolution. The advent of gene-editing 

techniques has afforded the opportunity to map, manipulate and record facets of neural 

function that were not possible only a decade ago (Ashton-Jones and Deisseroth, 2013; Tye 

and Deisseroth, 2012). Many of the most exciting advances from the application of these 

techniques have come from rodent models, while progress in primates has been more modest 

(Geritis and Vanduffel, 2013). The recent development of transgenic lines with germline 

transmission in marmosets (Sasaki et al., 2009) has pushed this species to the forefront of 

neuroscience as it highlights the prospect of a broader genomic tool kit (Belmonte et al., 

2015) and the potential for primate models of human neuropsychiatric and 

neurodegenerative disease (Okano et al., 2012). While transgenic techniques have been 

implemented in other primate species, including recent work applying the CRISPR/Cas9 

system and Talen mediated gene editing in rhesus monkeys (Kang et al., 2015; Niu et al., 

2014; Wan et al., 2015), it is characteristics of marmoset reproductive biology that make the 

species particularly attractive for developing a broad range of transgenic disease models. 

Because of the short short gestation (~140days) and natural propensity to produce multiple 

offspring at each birth (Tardif et al., 2003) in marmosets, for example, a large population of 

a particular transgenic line could be generated relatively quickly. Though it should be noted 

that genetic chimerism of paternal twins may present certain challenges (Ross et al., 2007). 

The lissencephalic (i.e. smooth) cortical surface of the marmoset brain provides a different 

advantage for transgenic lines expressing a genetically-encoded calcium indicator (GECI) 

molecules (Broussard et al., 2014), such as GCaMP, or opsin molecules (Emiliani et al., 

2015), that allow cell-specific control of neural activity. Because nearly all areas of the brain 

are accessible directly under the skull, optical imaging and activation methods can be 

implemented more effectively in marmosets than in many other primates. There is untold 

potential for transgenic marmosets in many areas, but as outlined above, their behavioral 

biology lends itself particularly well to experiments in the social domain. The types of 

behavioral paradigms discussed in the previous section would provide unique avenues to 
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phenotype these primates following gene insertions and deletions in disease models, while 

modern optical imaging and activation methods could be aptly applied to studies of social 

circuits in the marmoset brain.

Primates are social animals with many attributes that are specific to our Order. 

Neuropsychiatric disorders that affect our ability to function in the social domain are 

immensely damaging. Autism Spectrum Disorder (ASD), for example, is a 

neurodevelopmental disorder that can manifest in different ways but individuals typically 

exhibit a range of deficits in social interaction and communication (Frith and Happe, 2005). 

Many humans on the ASD exhibit clear deficits in social signaling, such as avoiding looking 

at faces and eyes (Grice et al., 2005; Jones and Klin, 2013) and language 

impairments(Bartak et al., 1975; Charman et al., 2003). Because of ASD's prevalence and 

debilitating effects, extensive efforts have been made to understand the underlying causes. 

Recent advances in genomics have begun to identify the numerous genes that may underlie 

ASD (Abrahams and Geschwind, 2008), such as Shank3 (Durand et al., 2006; Moessner et 

al., 2007). Deletions of the Shank3 gene in mice results in anomalous social behavior 

(Duffney et al., 2015; Peca et al., 2011). Notably, the changes in mouse social behavior are 

typically characterized by the avoidance of, or reduction in time interacting with, 

conspecifics and atypical patterns of social interactions. Although these broad behavioral 

changes are often symptomatic of ASD, they certainly do not capture the breadth of social 

deficits evident in humans as discussed above. While mice and human do exhibit some 

similarities as a result of their shared mammalian heritage, much has obviously changed in 

the evolution of each taxa's brain and behavior since the taxa diverged (Shultz et al., 2011). 

Deletion of Shank3 in a primate may also impact primate social behaviors, but in ways that 

are notably distinct from other mammals. A primate model is critical to further explicating 

the genetic basis of ASD. Due to the broad experimental techniques available to study the 

neurobiology and behavior of marmoset social interactions, a Shank3 marmoset model 

would be able to diagnose not only general changes to social behavior in these animals but 

also key deviations in primate specific social signaling and behavior (e.g. eye gaze, 

coordinated vocal interactions, etc) using some of the behavioral paradigms discussed above. 

Furthermore, because the functional neuroanatomy of the primate brain has been conserved, 

changes in the behavioral phenotype following genetic manipulations would more likely 

have a similar impact on the underlying neural circuits in human and nonhuman primates 

than may be expected with a rodent model (Kaiser and Feng, 2015). The ability to identify 

the interaction between genes, neurons and behavior represents a powerful approach to 

explicating the mechanisms underlying neuropsychiatric disorders in the primate brain.

V. Conclusions

Here we argued that the greatest value of marmosets in neuroscience is as a model of the 

neural circuitry underlying social behavior and its disorders. Certainly, the marmoset model 

is more broadly applicable to several other areas of neuroscience research (Fox et al., 2010; 

Mitchell and Leopold, 2015; Philippens et al., 2010; Roberts and Wallis, 2000). However, 

facets of the species behavioral biology, such as small size, rich social signaling systems and 

cooperative society, as well as the broader array of neural recording techniques possible in 

this species, make them particularly amenable to questions about sociality.
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As with any research model organism, the marmoset is not without its limitations, some 

examples of which have been addressed previously (Mitchell and Leopold, 2015). Two often 

voiced shortcoming of the marmoset are that, first, the phylogenetic separation from humans 

is too great, and second, that the lissencephalic brain is simply too different to allow for 

comparison with humans. These concerns have some degree of validity, though they are 

often overstated. Humans’ common ancestor with New World monkeys lived about ten 

million years earlier than its common ancestor with rhesus monkeys (Figure 1). Extensive 

comparative studies in primate species have shown that this phylogenetic separation alone is 

unlikely to account for large differences in the brain, since anthropoid primates (i.e. 

monkeys and apes) have a very similar constellation of brain areas (Kaas, 2013). Whether 

there are subtler differences in the brain that endowed the clade of Old World monkeys with 

cognitive abilities absent in New World monkeys remains to be demonstrated. At the same 

time, it must be said that the marmoset, in being one of the smallest anthropoid primates, 

also has one of the smallest brains. It is the absolute brain size, rather than the lissencephaly 

per se, that may shape aspects of marmoset cognition and behavior in a direction opposite to 

that of humans, who possess the largest primate brain (Mitchell and Leopold, 2015).

Most knowledge about the primate brain derives from the rhesus monkey, with findings from 

this work shaping our conception of the human brain, as well as our interpretation of direct 

measurement of human brain activity via fMRI (Alexander et al., 1986; Connor, 2007; 

Desimone et al., 1984; Felleman and Van Essen, 1991; Gold and Shadlen, 2007; Middleton 

and Strick, 1994; Romo and de Lafuente, 2013; Romo et al., 2004; Salzman et al., 1990; 

Tsao et al., 2006; Tsao and Livingstone, 2008; Tsao et al., 2008; Tsunada et al., 2016; 

Ungerleider and Mishkin, 1982). That the marmoset differs in some ways from the rhesus 

should be taken as an advantage, rather than a disadvantage. The two species offer 

complementary perspectives on our primate brain, which can be well directed to studying 

some of the most personal and fascinating aspects of human cognition.

The types of active social signaling paradigms highlighted in this manuscript represent a 

potentially powerful approach for which the marmoset is particularly well-suited, but they 

are by no means the only ones that are likely to be fruitful. Since marmosets display a 

similarly flexible pattern of sociosexual behavior as humans (Buss and Schmitt, 1993; 

Cavanaugh et al., 2015; Cavanaugh et al., 2014), continued research on the neurochemical 

basis of social attachment and recognition in marmosets (Cavanaugh et al., 2015; Cavanaugh 

et al., 2014; Mustoe et al., 2015; Smith et al., 2010), for example, provides direct 

comparisons to many analogous studies in rodents discussed earlier on this topic and offers 

the opportunity to identify shared and derived features of these core mammalian social 

behavioral systems in primates. Furthermore, marmoset active social signaling paradigms 

represent potential models for understanding the neural mechanisms underlying facets of 

language, in particular the intricate interplay between social communication and social 

cognition. This would include, but not be limited to, modeling social monitoring, 

recognition, and decision-making. Like transgenic marmoset models, the application of 

modern molecular techniques using viruses (Watakabe et al., 2015), such as two-photon 

calcium imaging (Sadakane et al., 2015) and optogenetics (MacDougall et al., 2016), to 

studies of the marmoset brain are able to build on the richness of marmoset social behaviors 

and existing experimental paradigms to explicate the underlying functional neural circuitry. 
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While much work remains, we anticipate that a marmoset model of human social behavior is 

uniquely suited as a powerful approach to expand the frontiers of Neuroscience.
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Figure 1. 
Cladogram showing the evolutionary divergence between humans, rodents and each of the 

main primate taxonomic groups, and estimated time points of divergence. [MYA-Millions of 

Years Ago].
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Figure 2. 
Scan patterns of a marmoset attending to social stimuli (Mitchell et al., 2014). Note the 

repeated saccades to the face in each image. In panel B, the first saccade away from the face 

was in the direction of the gaze.
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Figure 3. 
Evidence of the ‘Face-Patch’ system in the extrastriate cortex of marmosets (Hung et al., 

2015). fMRI functional map contrasting faces and objects reveals five discrete areas that 

significantly more responsive to face stimuli in awake marmosets. A sixth face patch, 

indicated by a red circle and labeled area MV, was detected with ECoG but not with fMRI 

due to signal dropout. Color bar below represents the t value scale.
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Figure 4. 
Antiphonal calling conversations in marmosets. (A) Plots spectrograms of two visually 

occluded marmosets engaged in an antiphonal conversational exchange. The vocalizations of 

each individual monkey is shown in the spectrogram shown on each row. A 2-pulse Phee call 

is indicated at the top. (B) Shows an antiphonal conversation between a live marmoset 

(above) Virtual Marmoset (VM; below). Note that marmosets directly engage VMs similarly 

to live marmosets. This behavioral paradigm affords the unique opportunity to actively 

participate in primate social signaling while also maintaining experimental control for 

explicit tests of social recognition and decision-making.
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Figure 5. 
Vocal-motor activity in marmoset frontal cortex neurons during natural vocal production 

(Miller et al., 2015). Two representative examples of neurons recorded during natural vocal 

production are shown. A schematic drawing at top shows the anatomical location of each 

cell in marmoset frontal cortex. Below plots the response during vocal production (Raster 

and PSTH). Grey bars on each line of the Raster plot the onset and offset of each 2-pulse 

phee, while vertical black lines indicate an action potential. The red vertical lines in the 

PSTH indicate the average onset and offset of each pulse of the phee.
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