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Abstract. Recent progress in bioinformatics has facilitated the 
clarification of biological processes associated with complex 
diseases. Numerous methods of co‑expression analysis have 
been proposed for use in the study of pairwise relationships 
among genes. In the present study, a combined network based 
on gene pairs was constructed following the conversion and 
combination of gene pair score values using a novel algorithm 
across multiple approaches. Three hippocampal expression 
profiles of patients with Alzheimer's disease (AD) and normal 
controls were extracted from the ArrayExpress database, 
and a total of 144 differentially expressed (DE) genes across 
multiple studies were identified by a rank product (RP) method. 
Five groups of co‑expression gene pairs and five networks 
were identified and constructed using four existing methods 
[weighted gene co‑expression network analysis (WGCNA), 
empirical Bayesian (EB), differentially co‑expressed genes 
and links (DCGL), search tool for the retrieval of interacting 
genes/proteins database (STRING)] and a novel rank‑based 
algorithm with combined score, respectively. Topological 
analysis indicated that the co‑expression network constructed 
by the WGCNA method had the tendency to exhibit 
small‑world characteristics, and the combined co‑expression 
network was confirmed to be a scale‑free network. Functional 
analysis of the co‑expression gene pairs was conducted by 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis. The co‑expression gene pairs were mostly 
enriched in five pathways, namely proteasome, oxidative phos-
phorylation, Parkinson's disease, Huntington's disease and AD. 
This study provides a new perspective to co‑expression anal-
ysis. Since different methods of analysis often present varying 
abilities, the novel combination algorithm may provide a more 

credible and robust outcome, and could be used to complement 
to traditional co‑expression analysis.

Introduction

Generally, complex diseases result from a combination of 
genetic perturbations and their interactions (1). During the past 
few decades, a considerable number of gene biomarkers have 
been successfully identified to be associated with complex 
diseases through genome‑wide analysis of gene expression 
profiles (2,3). However, biomolecules in living organisms rarely 
act individually but interact to achieve biological functions (4). 
Network‑based approaches have been developed as powerful 
and informative tools to identify candidate biomarkers or ther-
apeutic targets based on transcript data (5‑7). These methods 
generally utilize the knowledge of physical or functional 
interactions between molecules, and have been successfully 
applied in various diseases, such as cancer.

Various types of intermolecular interactions have been 
disclosed, including protein‑protein interactions, protein 
phosphorylation networks, DNA methylation networks and 
gene co‑expression. These interactions can be represented as 
networks with nodes that denote molecules, and edges that 
denote interactions between them. Genes in the same pathways 
or functional complex often exhibit similar expression patterns 
across multiple experiments and various organisms (8). Thus, 
the creation of a co‑expression network from high‑throughput 
data has become a popular alternative to the conventional 
methods of analysis, as it allows researchers to study the 
whole spectrum of pairwise associations of genes  (9). By 
constructing a co‑expression network, the regulatory relation-
ships underlying different conditions can be estimated (10).

Co‑expression networks can have small‑world  (11) and 
scale‑free properties (12). A scale‑free network is a network 
in which the node degree distribution follows a power law, and 
is characterized by a small number of highly connected nodes, 
the majority of which interact with only a few neighbors, and 
a high robustness to withstand random failure. A small‑world 
network is considered to be efficient, in that it enables the rapid 
integration of information (13). It has two independent struc-
tural features, comprising a low average shortest path length 
and a high clustering coefficient.

With the development of bioinformatics analysis, a variety 
of algorithms have been developed to evaluate these biological 
networks (14,15), both in terms of experimental measurements 
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and computational prediction techniques. Correlation‑based 
methods are perceived as being the most straightforward for 
exploration of gene co‑expression networks (15). Weighted 
gene co‑expression network analysis (WGCNA), as a statis-
tical approach based on correlations, has been widely used to 
analyze transcriptional profiles, and has been demonstrated 
to be an informative approach for the functional annotation 
of uncharacterized genes (16). In a recent study conducted 
by Allen et al (15), WGCNA was one of the best‑performing 
methods for the construction of global co‑expression networks. 
Moreover, an empirical Bayesian (EB) approach aims to 
identify differential co‑expression by examining correla-
tions among gene pairs (17). It effectively avoids the problem 
of inconsistent co‑expression between different studies by 
producing a false discovery rate (FDR)‑controlled list of 
differential co‑expression pairs without sacrificing power. 
This approach is applicable within a single study and across 
multiple studies. Differentially Co‑expressed Genes and Links 
(DCGL) is an R‑package for the identification of differentially 
co‑expressed genes and links from gene expression microarray 
data (18). It examines gene expression correlation using exact 
co‑expression changes of gene pairs between two conditions, 
and thus can differentiate significant co‑expression changes 
from relatively trivial ones (19). In addition, the database Search 
Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
provides a comprehensive, quality‑controlled collection of 
protein‑protein associations for a large number of organ-
isms (20). It integrates and ranks associations derived from 
high‑throughput experimental data, database and literature 
mining, and predictions based on genomic context analysis, 
respectively. STRING has an integrated scoring scheme for 
the interactions, and provides a high level of confidence.

The aforementioned co‑expression‑based methods have 
been used in a number of studies and have shown their useful-
ness in the interpretation of biological results and identification 
of important gene modules (17,21,22). Each method has certain 
advantages. However, different approaches often produce 
different co‑expression data for the same experiment (15). 
Thus, in the present study, a novel algorithm was applied to 
combine four existing methods to identify co‑expression gene 
pairs and networks. Topological features, including clustering 
coefficient, average shortest path length and degree distribu-
tion were investigated and compared to evaluate whether each 
network tended to be a scale‑free or small‑world network. The 
study initially focused on identifying differentially expressed 
(DE) genes between Alzheimer’s disease (AD) patients 
and normal controls on the basis of hippocampal transcript 
profiles. To compare the approaches, the related scores of 
gene pairs were obtained using the STRING database, DCGL 
package, EB analysis and WGCNA algorithm, respectively. 
Considering the non‑uniform outcomes from different 
approaches, all scores from the four methods were converted 
and united using a rank‑based model and a combined score 
of each gene pairs was obtained. Then, gene co‑expression 
networks obtained from the four approaches respectively and 
a combined network were constructed, and topological proper-
ties were further analyzed. The aim was to provide a novel tool 
for the analysis of gene interactions with a higher credibility 
and rapid transmission of information, concentrating on the 
scores of each gene pair across multiple approaches.

Materials and methods

Data recruitment and preprocessing. In the present study, three 
hippocampal transcript profiles of AD patients and normal controls 
deposited in ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) 
were examined: E‑GEOD‑1297  (23), E‑GEOD‑28146  (24), 
and E‑GEOD‑5281 (3,25). These datasets contained data for 
54 patients with AD and 30 normal controls. The characteris-
tics of the studies are shown in Table I.

Prior to analysis, the original expression information from 
all conditions was subjected to data preprocessing. For each 
dataset, in order to eliminate the influence of nonspecific 
hybridization, background correction and normalization 
were carried out by the robust multichip average (RMA) 
method (26) and quantile‑based algorithm (27), respectively. 
Perfect match and mismatch values were revised using the 
Micro Array Suite 5.0 algorithm (28), the value of which was 
selected via the median method. The gene expression values of 
all data were transformed to a comparable level. The data were 
then screened using the feature filter method of the genefilter 
package (version 1.52.0; bioconductor.org/packages/genefilter). 
Each probe is mapped to one gene, where the probe is discarded 
if it does not match any genes.
Detection of DE genes. Since the three sets of AD data 
had different origins, a rank product (RP) algorithm was 
implemented to integrate the array datasets (RankProd; 
Version 2.42.0; bioconductor.org/packages/RankProd/). This 
method can determine how significant changes are and how 
many of the selected genes are likely to be truly differentially 
expressed. It also allows for the flexible control of the FDR 
and family‑wise error rate in the multiple testing situation of 
a microarray experiment (29). Considering a situation of the 
microarray experiment with two replicates (A and B), RP for a 
certain gene g will be as follows:

where rank is the position of gene g in the list of genes in the 
replicate A. RPg can be taken as a P‑value when all ranks 
are equally likely, but cannot be used directly to assess the 
significance of an observed change in. Therefore, a simple 
permutation‑based estimation procedure is used to determine 
how likely it is to observe a given RP value or better in a random 
experiment, thus converting the RP value to an E value (30). 
Subsequently, for each gene g, a conservative estimate of the 
percentage of false‑positive (pfp) is calculated if this gene is 
considered as significantly differentially expressed:

Rank (g) denotes the position of gene g in a list of all genes 
sorted by increasing RP value. This method can decide how 
large a pfp will be accepted and extend the list of accepted 
genes up to the gene with this qg value. In the present study, a 
pfp cut‑off value of <0.01 was used.

Construction of gene co‑expression network for DE genes
Scoring of gene co‑expression using STRING database. Gene 
and protein interactions have been annotated at various levels of 
detail ranging from raw data repositories to highly formalized 
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pathway databases in online resources. In the present study, 
the possible functional associations of DE genes were inves-
tigated using STRING (http://string‑db.org/), which provides a 
comprehensive, quality‑controlled collection of protein‑protein 
associations for a large number of organisms with a global 
perspective (31). In the STRING database, most of the avail-
able information on genes (proteins) can be aggregated, scored 
and weighted with known and predicted associations. A scored 
association between two proteins could be transferred between 
organisms. Following assignment of association scores and 
transfer between species, a final combined score between 
any pair of proteins was computed, which increased confi-
dence with a higher score than the individual sub‑scores. The 
combined score took into account the prediction and known 
scores obtained from each protein interaction. Subsequently, 
a graphical protein‑protein network was constructed and the 
topological features of the network were further analyzed.

Identifying differential co‑expression by DCGL. Biological 
functions result from numerous gene products acting together, 
and highly co‑expressed genes take part in similar biological 
processes and pathways. The DCGL 2.0 package was applied 
to identify differentially co‑expressed (DC) genes and links. 
DCGL (version 2.0; lifecenter.sgst.cn/main/en/dcgl.jsp) is a 
R Package for revealing differential regulation from differen-
tial co‑expression. It contains four modules: Gene filtration, 
link filtration, differential co‑expression analysis (DCEA) and 
differential regulation analysis (DRA) modules. Differential 
co‑expression profile (DCp) and differential co‑expression 
enrichment (DCe) are involved in the DCEA module for 
extracting DC genes and DC links. DCp operated on the 
filtered set of gene co‑expression value pairs, where each pair 
comprised two co‑expression values determined under two 
different conditions separately. The subset of co‑expression 
value pairs associated with a particular gene, in two groups for 
the two conditions separately, was written as vectors X and Y 
(n is number of co‑expression neighbors).

A length‑normalized Euclidean distance was used to 
measure the differential co‑expression (dC) of this gene.

A permutation test was performed to assess the significance 
of dC. In this test, the disease samples and normal controls 

were randomly permuted, new Pearson correlation co‑efficient 
(PCC) was calculated, gene pairs were filtered based on the 
new PCC, and new dC statistics were calculated. The sample 
permutation was repeated N times, and a large number of 
permutation dC statistics formed an empirical null distribu-
tion. The P‑value for each gene could then be estimated.

DCe was also used to identify DC genes and DC links, 
which based on the ‘Limit Fold Change’ (LFC) model. First, 
correlation pairs were divided into three sets according to the 
pairing of signs of co‑expression values and the multitude of 
co‑expression values: Pairs with same signs (N1), pairs with 
different signs (N2) and pairs with differently‑signed high 
co‑expression values (N3). The first two sets were processed 
with the ‘LFC’ model separately to produce two subsets of DC 
links (K1, K2), while the third set (N3) was added to the set 
of DC links directly. Therefore, K = N3 + K1 + K2 DC links 
were determined from N gene links. For a gene (gi), the total 
number of links (ni) and DC links in particular (ki) associated 
with it were counted. Binomial probability model was used to 
estimate the significance of the gene being a DC gene.

Differentially co‑expression summarization (DCsum) was 
implemented to combine the results from the DCp and DCe 
methods.

Identification of differential co‑expression by EB. Several 
approaches have been developed for differential regulation 
analysis by the identification of DC gene pairs. However, 
these methods are frequently underpowered, prone to false 
discoveries or computationally intractable under the condi-
tions of large cardinality of the space to be interrogated and 
influential outliers (32). To address this limitation, Dawson 
and Kendziorski  (17) presented an effective EB approach 
that provided a FDR controlled list of notable pairs along 
with pair‑specific posterior probabilities to identify DC gene 
pairs without sacrificing power; the EB approach is suitable 
for use within and across experiments, has exhibited improved 
runtimes and may be a useful complement to existing DE 
methods by simulations and case studies respectively. In 
the present study, the identification of DC gene pairs was 
conducted using the following steps: Three inputs of matrix X, 
the conditions array and the pattern object were required. 
The expression values in an m‑by‑n matrix of X (where m is 
the number of genes/probes under consideration, and n is the 
total number of microarrays over all conditions) were normal-
ized with background normalization and median correction 
and were represented on the log2 scale. The members of the 

Table I. Characteristics of the individual datasets included in this study.

Accession number	 Year	 Sample size (cases/controls)	 Platform

E‑GEOD‑1297	 2004	 31 (22/9)	 Affymetrix HG‑U133A
E‑GEOD‑28146	 2011	 30 (22/8)	 Affymetrix HG‑U133Plus2
E‑GEOD‑5281	 2007	   23 (10/13)	 Affymetrix HG‑U133Plus2
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conditions array with length n took values 1‑K (where K indi-
cated the total number of conditions). It was used to define 
the equal co‑expression/differential co‑expression classes with 
an ebarraysPatterns object based on the unique values in the 
conditions array. Intra‑group correlations for all p=m*(m‑1)/2 
gene pairs from X and the conditions array were calculated 
using bi‑weight mid‑correlation. A p‑by‑K of D matrix with 
correlations was obtained. The mclust algorithm  (33) was 
used to initialize the hyper‑parameters to find the compo-
nent normal mixture model that could best fit the empirical 
distribution of correlations. The values of the component in 
the normal mixture model with component means, stan-
dard deviations and weights would be used to initialize the 
Expectation‑maximization (EM) algorithm. In this step, the 
initial estimates of the hyper‑parameters were used to generate 
posterior probabilities of differential co‑expression. Finally, a 
soft threshold was provided by controlling the posterior prob-
abilities of differential co‑expression to identify particular 
types of DC gene pairs. DC genes were distinguished from 
gene pairs having invariant expression by controlling the 
posterior expected FDR at 0.05 and a co‑expression network 
was constructed to represent the correlation between each pair 
of genes.

Identifying differential co‑expression by WGCNA. Gene 
co‑expression networks, which represent a major applica-
tion of correlation network methodology, are instrumental 
for describing the pairwise relationships among gene 
transcripts (34,35) and facilitate the understanding of their 
function and identification of their key players. In the present 
study, WGCNA (36), a systems biology method for performing 
a correlation network analysis of large and high‑dimensional 
data sets, was used to describe correlation patterns among gene 
expression profiles. Also, co‑expression network construction 
as a function in the WGCNA package was demonstrated. 
Genes were denoted as nodes of a gene co‑expression network 
which were labeled by indices i, j=1,2,……n, and correlations 
between gene pairs were presented as edges. The network can 
be illustrated with its adjacency matrix A, a symmetric n x n 
matrix with entries aij in (0,1) which encodes the strength of 
the network link between genes i and j. An intermediate quan-
tity of co‑expression similarity is first defined to calculate the 
adjacency A of an unsigned network (value between 0 and 1), 
in which positive and negative correlations are treated equally. 
However, the use of an absolute value for the correlation may 
obscure biologically relevant information of the distinction 
between gene activation and repression. A signed co‑expres-
sion measure between xi and xj is used to preserve the sign of 
the correlation, which is defined with a simple transformation 
of the correlation:

The difference between signed and unsigned similarities 
lies in how they treated negatively correlated genes. There will 
be a high similarity in an unsigned network of genes with a 
high negative correlation compared with a low similarity in a 
signed network (37).

Then, A=[aij] is defined using a thresholding procedure 
of the co‑expression similarity. For an unweighted network, 

the adjacency is defined to be 1 (aij=1) and 0 otherwise if the 
absolute correlation between expression profiles is above a 
pre‑defined threshold τ and deemed separated otherwise, as 
described in the following formula:

The hard thresholding of unweighted networks may lose 
the continuous nature of the underlying co‑expression infor-
mation (36). By contrast, a weighted network adjacency can be 
defined by raising the co‑expression similarity sij to a power 
β≥1, which is referred to as soft thresholding. It can allow the 
adjacency to take on values in succession between 0 and 1 
to preserve the continuous nature of the co‑expression infor-
mation. The continuous measure for the assessment of gene 
connection strength is as follows:

This formula implies that the weighted adjacency aij 
between two genes is proportional to their similarity in the 
form of log (aij) = β x log(sij).

Conversion and combination of gene association scores 
of the four methods. Following analysis of the gene interac-
tions using the above four methods, the score of each gene 
pair was obtained. Since the results differed because of the 
various approaches taken, all score values of gene pairs were 
processed further to make them uniform at the same standard 
and converted to the form of rank/(total number of gene pairs). 
A novel algorithm was implemented to convert the scores of 
all gene pairs in this study. Four matrices were presented in 
three columns comprising gene pairs and the new score of 
each pair. By multiplication of the four matrices, a new matrix 
with a combined score of each gene pair was produced and 
sorting was conducted using a rank‑based method similar to 
the application used in DE gene detection. Gene pairs were 
obtained ultimately following the management of all scores 
with a q‑value package of FDR<0.1. A combined gene interac-
tion network was then constructed by linking gene pairs.

Topological analysis. Following the calculation of scores 
using the four existing methods and the novel algorithm, 
and the construction of five networks, the clustering coef-
ficient and short average path length of each were obtained 
and compared to investigate whether or not the networks 
had the classic small‑world network property. Furthermore, 
considering that protein/gene interaction networks in general 
are scale‑free (38), which means that they have power‑law (or 
scale‑free) degree distributions, the fitting coefficient R2 of 
the power‑law y=axb of the five networks was also compared. 
The evaluation of topological parameters was conducted using 
the Network Analyzer Version 2.7 (39) plugin in Cytoscape 
Version 3.1.0 (40).

Functional enrichment analysis. Highly co‑expressed 
genes generally participate in similar biological processes 
and pathways. To further investigate the biological func-
tional enrichment of the co‑expression gene pairs that were 
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identified, a signaling pathway analysis was performed to 
assess the functional relevance of selected genes based on 
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base (www.genome.jp/kegg/), a widely used comprehensive 
resource for the pathway mapping of genes. DE genes identi-
fied by RP were first imported to the online tool Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
http://david.abcc.ncifcrf.gov/tools.jsp), and all pathways these 
genes were enriched in was obtained. Then, on the basis of the 
DE genes in each pathway, the number of enriched co‑expres-
sion gene pairs identified by the four existing methods and the 
new combined approach, respectively, were calculated and 
compared.

Results

Integrated analysis of DE genes in multiple studies. In the 
present study, three sets of hippocampal expression data asso-
ciated with AD were integrated to identify DE genes using the 
RP method. After data preprocessing of three different data-
sets, the number of genes in E‑GEOD‑1297, E‑GEOD‑28146 

and E‑GEOD‑5281 were 12,493, 20,109 and 20,109, respec-
tively. Finally, a total of 144 DE genes were detected, including 
8 upregulated genes and 136 downregulated genes, under an 
estimated pfp<0.01.

Co‑expression analysis of four existing methods. 
Co‑expression networks of DE genes were constructed using 
STRING, DCGL, EB and WGCNA analysis, respectively, 
and the co‑expression relationships between gene and gene or 
co‑expressed gene pairs were determined.

Scoring of gene associations based on STRING. A 
combined score was computed using the known and predicted 
associations, considering that various sources of association 
data are benchmarked independently in the STRING data-
base. The combined score indicates a higher confidence level 
when more than one type of information supports a given 
association. A graphical protein‑protein interaction network 
was constructed with 74  nodes and 166  edges (Fig.  1A). 
Also, all scores of gene pairs were obtained in the context of 
inputting 144 DE genes. A clustering coefficient of 0.300 and 
mean shortest path of 2.925 were computed. After conducting 

Figure 1. Graphical representation of co‑expression networks identified by four existing method. Genes are denoted as nodes and interactions between 
gene pairs are presented as edges. (A) Search tool for the retrieval of interacting genes/proteins database, (B) differentially co‑expressed genes and links, 
(C) empirical Bayesian and (D) weighted gene co‑expression network analysis.

  A   B

  C   D
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degree distribution by nonlinear curve fitting according to 
the power law (y=axb), a fitting coefficient (R2=0.786) was 
produced.

Construction of a gene co‑expression network using 
DCGL. The DCGL 2.0 package in R was applied to identify 
DC genes and DC links, in which DCp and DCe methods 
involved in the DCEA module were employed. A total of 
43 co‑expression gene pairs were identified, and the two genes 
in each gene pair were DC genes. Finally, a co‑expression 
network with 16 nodes and 43 edges was built using Cytoscape 
(Fig. 1B). A clustering coefficient of 0.178 and mean shortest 
path of 1.783 were computed. Likewise, the degrees of all 
nodes were determined and a fitting coefficient (R2=0.037) of 
their degree distribution was obtained, which indicated that 
this network was not a scale‑free network.

Construction of a gene co‑expression network using EB 
methods. The EB approach was used to identify DC gene 
pairs based on 144 DE genes. A total of 88 protein pairs with 
FDR≤0.05 were produced and the relational values of all 
pairs were yielded following the analysis of gene expression 
relationships using meta‑analysis. A gene interaction network 
containing 76 nodes and 88 edges was constructed using the 
88 protein pairs in this analysis (Fig. 1C). The network was 
binary, with all interactions being unweighted and undirected. 
In addition, a clustering coefficient of 0.0 and mean shortest 
path of 2.038 were obtained. The degrees of all proteins were 
determined and a fitting coefficient of R2=0.477 for their 
degree distribution was obtained following nonlinear regres-
sion according to the power law.

Construction of gene co‑expression network using 
WGCNA. Using the WGCNA package, a total of 2,271 
protein pairs were produced, and a co‑expression network 
with 107 nodes and 2,271 edges was built using Cytoscape 
(Fig. 1D). The degrees of all nodes were determined and a 
fitting coefficient (R2=0.071) of their degree distribution was 
obtained following nonlinear regression, which also presented 
a non scale‑free property.

Combination of all gene pairs and construction of a 
co‑expression network. In the present study, a novel algorithm 
was implemented to convert the score values of all gene pairs 
obtained from the four existing approaches in the form of 
rank/(total number of gene pairs). Multiplication of the four 
matrices produced a new matrix containing a combined score 
for each gene pair, and a simple rank‑based permutation proce-
dure was conducted. Then, a combined gene co‑expression 
network was constructed that comprised 37  nodes linked 

by a total of 57 connections (Fig. 2A). The distribution of 
the number of links per node was scale free with R2=0.881. 
Thus, the results conformed to a scale‑free network whose 
degree distribution followed the power law (y=axb, a=12.464, 
b=‑0.840; Fig. 2B).

Topological analysis of the five networks. Topological 
parameters of the five networks were compared, including 
the clustering coefficient, mean shortest path length and the 
fitting coefficient R2 (Table II). The results showed that the 
network constructed by the WGCNA method had the greatest 
tendency to display small‑world characteristics, as it had the 
smallest mean shortest path length and the largest clustering 
coefficient. However, the combined network showed a higher 
fitting coefficient R2 than the other four networks, indicating 
its scale‑free property.

Functional enrichment analysis. Firstly, all pathways that DE 
genes enriched were identified as background. To investigate 
the biological functional enrichment of the co‑expression gene 
pairs identified by the different methods, the number of gene 
pairs enriched in each pathway was calculated and compared. 
The top five pathways were shown in Fig. 3. Co‑expression 
gene pairs obtained using the EB and DCGL methods could 
not be enriched in any of the pathways that were identified, 
while co‑expression gene pairs identified by STRING, 
WGCNA and the novel method were enriched in similar path-
ways. Following combination of the four existing methods, the 
co‑expression gene pairs were found to be mostly enriched in 
proteasome, oxidative phosphorylation, Parkinson's disease, 
Huntington's disease, and AD pathways.

Discussion

Co‑expression network‑based approaches are powerful tools 
for the systematic identification of molecular mechanisms 
underlying biological processes, and a variety of algorithms 
have been developed to study these biological networks. 
Co‑expression networks present binary relationships between 
individual genes, and also encode obscure higher level forms 
of cellular communication. In the present study, a co‑expres-
sion network was constructed using a list of gene pairs with 
combined scores across multiple approaches. Three sets of 
hippocampal data associated with AD were employed and a 
total of 144 DE genes were identified using the RP package. 
From these DE genes, co‑expression gene pairs were extracted 
by STRING, DCGL, EB and WGCNA approaches respectively, 

Table II. Topological parameters of co‑expression networks constructed using four existing approaches and the new algorithm.

Measure	 STRING	 DCGL	 EB	 WGCNA	 Combined

R2	 0.786	 0.037	 0.477	 0.071	 0.810
Clustering coefficient	 0.300	 0.178	 0.0	 0.820	 0.172
Mean shortest path length	 2.925	 1.783	 2.038	 1.578	 3.618

STRING, search tool for the retrieval of interacting genes/proteins database; DCGL, differentially expressed genes and links; EB, empirical 
Bayesian; WGCNA, weighted gene co‑expression network analysis.
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and the score value of each gene pair was computed. Different 
approaches often give different results. To achieve a more reli-
able result, a novel algorithm was presented to produce a new 
score for each gene pair by combining the above four methods. 
Then, five networks were constructed, and their degree 
distribution and network topological properties (clustering 
coefficient and mean shortest path length) were compared.

Previous studies have analyzed the topological proper-
ties of gene co‑expression networks, and have indicated that 
co‑expression networks have small‑world and scale‑free prop-
erties (41,42). Such properties are typical of biological networks 
in which the nodes are connected when they are involved in 
the same biological process. Featherstone and Broadie (43) 
demonstrated that the uneven distribution of gene degrees in 

Figure 2. Combined co‑expression network using the novel algorithm and its degree distribution. (A) Combined co‑expression network based on the novel 
scores of each gene pair across four methods. A total of 37 nodes and 57 edges composed this combined network. (B) Scatter‑gram of gene degree in 
this co‑expression network. The combined co‑expression network was a scale‑free network whose degree distribution followed a power law (y=axb, where 
a=12.464, b=‑0.840, R2=0.881).

  A

  B

Figure 3. Five most enriched pathways of co‑expression gene pairs identified by four existing methods and the novel algorithm. Co‑expression gene pairs 
identified by EB and DCGL methods could not be enriched in any of the identified pathways. The five pathways were proteasome, oxidative phosphorylation, 
Parkinson's disease, Huntington's disease and Alzheimer's disease. EB, empirical Bayesian; STRING, search tool for the retrieval of interacting genes/proteins 
database; WGCNA, weighted gene co‑expression network analysis; DCGL, differentially co‑expressed genes and links.
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a network, that is, a scale‑free organization, helped organisms 
to resist the deleterious effects of mutation. A similar archi-
tecture was also found in the gene co‑expression network of 
gastric cancer, which exhibited a hierarchical scale‑free archi-
tecture (44). Furthermore, previous studies have confirmed 
the small‑world property of biological networks with multiple 
data sources (45,46). However, a study conducted by Arita (47) 
indicated that the mean shortest path length of the biological 
network of Escherichia coli was much longer than previously 
thought, and the topology of this organism was not small. In the 
present study, co‑expression networks for AD were built using 
four existing approaches and a novel algorithm, respectively. 
The results showed that the co‑expression network constructed 
using the WGCNA method exhibited greater small‑world 
network properties than the other four networks did, as it had 
the smallest mean shortest path length and the largest clus-
tering coefficient. When analyzing the degree distributions of 
these co‑expression networks, the combined gene interaction 
networks whose node degree distributions followed a power 
law with a high fitting coefficient clearly exhibited scale‑free 
network characteristics.

Gene interactions are considered to be highly effective for 
use in the determination of gene functions and the identification 
of groups of genes that encode proteins in the same pathway. 
Previous studies have investigated the pathway enrichments 
associated with AD. Karim et al (48) demonstrated using an 
Ingenuity Pathway Analysis tool that synapse‑associated path-
ways in neurons were tightly associated with the development 
and progression of AD. A more recent study highlighted cell 
adhesion molecules and purine metabolism pathways in AD by 
integrating genome‑wide association study and brain expres-
sion data (49). In the present study, the co‑expression gene 
pairs identified by the novel algorithm were mostly enriched 
in proteasome, oxidative phosphorylation, Parkinson's 
disease, Huntington's disease and AD. Consistent with this, 
Zabel et al  (50) confirmed that proteasome and oxidative 
phosphorylation changes were closely associated with neuro-
degenerative disorders, such as AD, Parkinson's disease and 
Huntington's disease. Furthermore, in the present study, it was 
found that co‑expression gene pairs identified by the EB and 
DCGL methods could not be enriched in any pathways that were 
identified, which was in contrast to the STRING and WGCNA 
analysis, and the novel method of the present study. Different 
methods for conducting co‑expression network‑based analysis 
often present varying abilities; thus, careful consideration is 
required when selecting synthetic methods, dependent on the 
nature of the research being undertaken.

In this study, a novel merged approach was used to identify 
co‑expression gene pairs and enriched pathways, and this 
approach was compared with various network construction 
methods. Network analysis showed that the co‑expression 
network constructed by the WGCNA method was most 
inclined to exhibit small‑world properties, and the combined 
co‑expression network exhibited scale‑free network features. 
Moreover, the co‑expression gene pairs were mostly enriched 
in proteasome, oxidative phosphorylation, Parkinson’s disease, 
Huntington’s disease and AD pathways. Each method of anal-
ysis has certain advantages and disadvantages. Considering the 
applications and limitations of each co‑expression method, the 
novel algorithm developed in the present study may provide a 

new method for the analysis of gene interactions with a greater 
credibility and strength.
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