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Valid biomarkers of motor system function after stroke could improve clinical decision-making. Electroencephalography-based

measures are safe, inexpensive, and accessible in complex medical settings and so are attractive candidates. This study examined

specific electroencephalography cortical connectivity measures as biomarkers by assessing their relationship with motor deficits

across 28 days of intensive therapy. Resting-state connectivity measures were acquired four times using dense array (256 leads)

electroencephalography in 12 hemiparetic patients (7.3 � 4.0 months post-stroke, age 26–75 years, six male/six female) across 28

days of intensive therapy targeting arm motor deficits. Structural magnetic resonance imaging measured corticospinal tract injury

and infarct volume. At baseline, connectivity with leads overlying ipsilesional primary motor cortex (M1) was a robust and specific

marker of motor status, accounting for 78% of variance in impairment; ipsilesional M1 connectivity with leads overlying ipsile-

sional frontal-premotor (PM) regions accounted for most of this (R2 = 0.51) and remained significant after controlling for injury.

Baseline impairment also correlated with corticospinal tract injury (R2 = 0.52), though not infarct volume. A model that combined

a functional measure of connectivity with a structural measure of injury (corticospinal tract injury) performed better than either

measure alone (R2 = 0.93). Across the 28 days of therapy, change in connectivity with ipsilesional M1 was a good biomarker of

motor gains (R2 = 0.61). Ipsilesional M1–PM connectivity increased in parallel with motor gains, with greater gains associated with

larger increases in ipsilesional M1–PM connectivity (R2 = 0.34); greater gains were also associated with larger decreases in

M1–parietal connectivity (R2 = 0.36). In sum, electroencephalography measures of motor cortical connectivity—particularly be-

tween ipsilesional M1 and ipsilesional premotor—are strongly related to motor deficits and their improvement with therapy after

stroke and so may be useful biomarkers of cortical function and plasticity. Such measures might provide a biological approach to

distinguishing patient subgroups after stroke.
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Introduction
Motor deficits are the most common impairments after

stroke, present in 85% of patients acutely and persisting

in �50% of stroke survivors (Rathore et al., 2002). Many

different brain states can produce the same pattern of

motor deficits; however, it is likely that a subset of these

is more likely to respond favourably to restorative therapies

(Cramer, 2008b). Identifying accurate neural markers of

motor impairment could maximize therapeutic effects by

informing individualization of therapy selection, timing,

and duration (Burke and Cramer, 2013). Furthermore, an

examination of how neural markers differ across therapies

could provide insight into differences in the neurobiology

that underlie specific therapeutic approaches.

In the search for neuroimaging markers of motor status

after stroke, prior studies have generally emphasized meas-

ures of injury or regional brain function. For example,

measures of white matter integrity or of lesion load

within descending motor tracts have been found to correl-

ate with degree of motor impairment in patients with

chronic hemiparetic stroke (Lindenberg et al., 2010; Zhu

et al., 2010). In addition, gains in motor status resulting

from experimental therapies have been associated with

increased activity in secondary sensorimotor regions

(Johansen-Berg et al., 2002a; Schaechter et al., 2012).

However, such approaches do not directly evaluate net-

work interactions, which can provide key insights on het-

erogeneity in stroke recovery (Carter et al., 2012b) and are

the focus of the current study.

Convergent evidence supports the value of a network-

based approach for understanding the relationship between

dysfunctional neural activity and behavioural deficit after

stroke (Grefkes and Fink, 2011). This has been well

demonstrated in connectivity studies using functional

MRI, where greater motor deficits were associated with

reduced connectivity across cortical motor regions

(Grefkes et al., 2008; Carter et al., 2010). Thus, reduced

connectivity between key nodes of the cortical motor

system could serve as a marker of reduced efficiency in

processing sensorimotor signals in the stroke-injured brain

(de Vico Fallani et al., 2009). Consistent with this, rat

models report motor dysfunction after experimental

stroke is paralleled by reduced connectivity between cor-

tical motor regions, and behavioural recovery is related to

restoration of functional connectivity between cortical

motor areas (van Meer et al., 2010). Similarly, human

functional MRI studies report that individuals with persist-

ent motor deficits demonstrate significantly reduced con-

nectivity across ipsilesional cortical motor regions during

movement (Grefkes et al., 2008; Sharma et al., 2009),

and that behavioural recovery occurs in concert with

increased connectivity among cortical motor regions

(James et al., 2009). Together, these findings suggest that

measures of cortical motor connectivity may be good bio-

markers of post-stroke sensorimotor signal processing.

The current study approached these issues using dense

array EEG, which has advantages such as low cost, high

safety, and high accessibility in complex medical settings.

In addition, the high temporal resolution of EEG may be

particularly salient in studies of the motor system, as it per-

mits measurement of connectivity in the beta (20–30 Hz)

range, a frequency range that is associated with motor

system function (Pfurtscheller et al., 1996; Roopun et al.,

2006; Deeny et al., 2009). The current study examined a

resting-state EEG measure of functional connectivity, coher-

ence with ipsilesional primary motor cortex in the beta

band, as a neural marker of motor impairment and a bio-

marker of change in motor status across a period of inten-

sive therapy in patients with chronic stroke. The study

hypothesized that this motor system measure of resting-

state EEG functional connectivity would: (i) perform better

than MRI measures of structural injury such as total infarct

volume and corticospinal tract lesion load as a neural

marker of baseline motor impairment; (ii) demonstrate spe-

cificity, i.e. correlate with motor behaviour but not non-

motor behaviours; and (iii) change in parallel with motor

gains over 28 days of intensive therapy.

Additional hypotheses were focused on neurobiological

insights based on the spatial distribution of this EEG con-

nectivity measure. Studies using PET and functional MRI in

patients with stroke have found that greater activation

within ipsilesional premotor areas is associated with

better motor outcomes (Seitz et al., 1998; Carey et al.,

2006), and that larger increases in ipsilesional premotor

activation parallel better motor recovery (Johansen-Berg

et al., 2002a; Mihara et al., 2013). Conversely, greater ac-

tivation within contralesional primary motor areas is asso-

ciated with poorer motor outcomes (Johansen-Berg et al.,

2002b; Ward et al., 2003a), and larger increases in con-

tralesional primary motor area activation parallel worse

motor recovery (Loubinoux et al., 2003; Wei et al.,

2013). Therefore, the current study further hypothesized

that: (i) greater connectivity between ipsilesional primary

motor cortex (M1) and ipsilesional premotor cortex (PM)

would be associated with better baseline motor status, and

furthermore that increases in connectivity between ipsile-

sional M1 and ipsilesional PM would parallel greater

gains with therapy; and (ii) greater connectivity between

ipsilesional M1 and contralesional M1 would be associated

with poorer baseline motor status, and furthermore that

increases in connectivity between ipsilesional M1 and con-

tralesional M1 would parallel reduced motor gains with

therapy. Additional analyses explored EEG coherence as a

predictor of motor gains across therapy.

Materials and methods

Study design

Subjects with hemiparesis and chronic stroke were
recruited. All subjects signed informed consent in accordance
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with the University of California, Irvine Institutional Review
Board.

Inclusion criteria included age 418 years, stroke that
occurred 3–24 months prior to first behavioural assessment,
Fugl-Meyer score of 22–55 (normal = 66), and English speak-
ing. Exclusion criteria included deficits in communication or
attention that would interfere with reasonable study
participation, contraindication to MRI scanning, active major
neurological or psychiatric disease, or another diagnosis sub-
stantially affecting the arm. A skull defect that could result in
an EEG breach rhythm was not a specific exclusion criterion
but was not present in any subject.

Approximately 1 week after the initial screening visit, sub-
jects returned for structural MRI and EEG assessments. As
previously described (Takahashi et al., 2008), after the initial
screening, subjects underwent two baseline assessments of
upper extremity motor status to insure behavioural recovery
was at a stable plateau, i.e. any difference between Baseline 1
and Baseline 2 Fugl-Meyer scores was 53 points, smaller than
the minimal detectable change (See et al., 2013).

Treatment protocol

The protocol included 28 days of intensive home-based re-
habilitation targeting the upper extremity (Dodakian et al.,
2014) (Fig. 1A). In sum, each day, subjects completed a 2-h
session focused on arm motor rehabilitation therapy. The daily
therapy sessions included standard physical therapy and occu-
pational therapy exercises guided by slide show diagrams, as
well as virtual reality computer games designed to emphasize
control of range, speed, timing and accuracy of hand move-
ments. Content of therapy was adjusted according to individ-
ual deficits.

EEG recording and signal processing

Three minutes of awake, eyes-open, resting-state brain activity
was acquired by dense array surface EEG using the 256-lead
Hydrocel net (Electrical Geodesics, Inc.). The netted design of
the Hydrocel system allows for rapid application of the 256
leads. For the typical subject, net preparation (including
head measurement, net preparation in saline solution, net

placement, and net adjustments) was 510 min, recording
time was 3 min, and net removal was 55 min. As a result,
average start-to-finish time for a complete EEG exam was
15–20 min, with no EEG exam exceeding 30 min.

Participants were seated upright with feet flat on the floor.
During recording, lights were dimmed, and participants were
requested to minimize movements/speaking and to focus their
gaze at the centre of a fixation cross displayed on a laptop. An
investigator in the room visually confirmed subject compliance
with these instructions. Data were collected with a high input
impedance amplifier (Net Amp 300, EGI) using Net Station
4.5.3 (EGI) at 1000 Hz sampling rate.

Preprocessing

EEG data were exported to MATLAB 7.8.0 (MathWorks, Inc.)
for subsequent preprocessing and analysis steps. For 3 min of
recording time, 180 1-s epochs of EEG data were collected.
Data were re-referenced offline to the mean signal across all
electrodes. Preprocessing steps to remove extra-brain artefacts
were applied, as described previously (Wu et al., 2014). In
sum, continuous EEG data were low-pass filtered at 50 Hz,
segmented into non-overlapping 1-s epochs, and then mean
detrended. Next, visual inspection removed epochs contami-
nated by muscle activity, including neck and face movements.
EEG data then underwent independent component analysis
decomposition, in which components representing eye blinks,
eye movements, and cardiac rhythms were removed (Delorme
and Makeig, 2004; Delorme et al., 2007). The remaining com-
ponents were transformed back to channel space before
undergoing an additional round of visual inspection to
ensure absence of all extra-brain artefacts in the remaining
data. Across all EEG recordings (12 subjects � 4 EEG
exams/subject), 171.4 � 12.0 [mean � standard deviation
(SD)] of the 180 epochs per EEG exam (93.6%), were retained
for subsequent analyses.

Coherence

Functional connectivity between brain regions was estimated
from EEG coherence between electrodes overlying the corres-
ponding regions (Nunez and Srinivasan, 2006). Coherence

Figure 1 Experimental setup. (A) Experiment timeline. Behavioural and EEG assessments were performed at baseline, then after 2 weeks of

therapy, following the 1 week break, and at end of 28 days of therapy. A baseline structural MRI scan was also acquired. (B) The group showed

statistically and clinically significant gains in upper-extremity motor status, as measured by the Fugl-Meyer Arm Motor Assessment (FM)

(mean � standard error), across therapy [t(11) = 5.89, P = 0.0001].
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ranges from zero to one, with a coherence value near one
indicating EEG signals have similar phase and amplitude dif-
ference at all time points, and a coherence value near zero
indicating signals have a random difference in phase and amp-
litude. Although coherence has been widely adopted in EEG
studies as a surrogate marker of communication between cor-
tical neural sources (Nunez and Srinivasan, 2006), there is
potential that an observed increase in coherence may result
from increased input from a tertiary common neural source
(Saltzberg et al., 1986).

The high beta (20–30 Hz) frequencies are associated with
function of the motor system (Pfurtscheller et al., 1996;
Roopun et al., 2006). Therefore, the primary metric in the
present study was mean coherence in the high beta frequency
range using a seed region over ipsilesional M1, a central motor
execution node of the cortical motor system (Hardwick et al.,
2013). For the 256-lead system used, the M1 seed was defined
as either C3 or C4 (left or right M1, respectively), which some
studies have suggested largely reflects activity from the precen-
tral gyrus (Homan et al., 1987), and its six immediately sur-
rounding leads. Coherence matrices from individuals with
infarcts in the right hemisphere were flipped across the midline
for subsequent analyses.

Partial least squares modelling

Partial least squares (PLS) analyses are particularly well suited
for analysing very large data sets that contain many predictors,
for which multiple comparisons would reduce statistical
power, as is common in neuroimaging data (Krishnan et al.,
2011), and for analysing data sets that have multicollinearity
among predictors. Similar to previous studies from our group
(Krishnan et al., 2013; Wu et al., 2014), the current study used
the N-way Toolbox for MATLAB (Andersson and Bro, 2000)
to implement PLS analyses. The resultant PLS model from each
analysis was then used to identify electrodes of interest for
characterizing brain function–behaviour relationships.

The mathematics of PLS can be conceptualized as a variant
of independent component analysis. With both PLS and inde-
pendent component analysis, a multivariate signal such as EEG
is reduced to a series of additive subcomponents. In independ-
ent component analysis, the objective is to maximize represen-
tation of variance in the independent variable in as few
components as possible. Conversely, in PLS, the objective is
to maximize representation of variance in the dependent vari-
able in as few components as possible. This is accomplished by
optimizing a least squares fit for a partial correlation matrix
between the independent and dependent variables. For the pre-
sent analyses, the independent variable was EEG coherence
and the dependent variable was Fugl-Meyer score. As prepro-
cessing steps, data were first mean detrended and then under-
went a direct orthogonal signal correction to allow for more
efficient PLS models with fewer components (Westerhuis et al.,
2001). From the PLS regression, a series of models with suc-
cessively more components were generated that maximally ac-
counted for variance in the dependent variable. The fitted PLS
model included as many components as were required to
achieve 80% of variance in the dependent variable explained.

To test predictive strength of each PLS connectivity model,
cross-validation was performed using a leave-one-out and pre-
dict approach. With this validation method, data from each
subject are iteratively removed from the PLS model, and the

removed subject’s behavioural data are predicted from his/her
EEG coherence data using the PLS model generated from the
remaining n � 1 subjects. This method of cross-validation was
selected because a leave-one-out and predict validation scheme
has established utility for accurately assessing generalization of
results to an independent data set, particularly with smaller
sample sizes (Huang et al., 2011; Kang et al., 2013).

Leads where coherence with ipsilesional M1 was most
strongly related to behavioural status were identified by setting
an arbitrary threshold for each model using the approach
described by Menzies et al. (2007): correlation coefficients
were thresholded at |ri|40.8 � rmax, where ri is the correlation
coefficient at the ith lead and rmax is the largest |ri| value across
all 249 leads (256 total electrodes minus the seven seed leads
overlying M1).

Magnetic resonance imaging

High resolution T1-weighted images were acquired with a
Philips Achieva 3 T MRI scanner using a 3D magnetization-
prepared rapid gradient echo (MPRAGE) sequence (repetition
time = 8.5 ms; echo time = 3.9 ms; slices = 150; voxel
size = 1 � 1 � 1 mm3). Infarct volume and the per cent of the
corticospinal tract affected by stroke (corticospinal tract
injury) were calculated using previously described methods
(Burke, et al., 2014b). Infarct volume was outlined by hand
on a T1-weighted MRI image. Corticospinal tract injury was
quantified by overlapping each subject’s infarct in MNI stereo-
taxic space with a normal M1 corticospinal tract generated
from healthy controls (Dawes et al., 2008; Zhu et al., 2010;
Riley et al., 2011).

Statistical analyses

Change in motor impairment score was analysed by a two-
tailed paired t-test, with statistical significance set at P5 0.05.
Simple bivariate analyses between a clinical measure (behav-
iour or demographic) and brain state (MRI injury or EEG
coherence) were performed using two-tailed linear regression
models with statistical significance set at P5 0.05. Parametric
statistical methods were used, as all measures were normally
distributed or could be transformed to a normal distribution.
Statistical tests were performed using the MATLAB 7.8.0 stat-
istical package.

Results

Subjects

Twelve subjects, age 26–75 (mean = 54.0 � 16.6 years), six

male and six female, in the chronic phase of stroke recov-

ery (mean time post-stroke = 7.3 � 4.0 months) with per-

sistent hemiparesis were recruited. All 48 EEG exams (four

exams/subject � 12 subjects, Fig. 1A) were completed suc-

cessfully, with no EEG exam excluded for reasons such as

excessive movement or muscle artefact during data acqui-

sition or hardware malfunction.

The patient group showed heterogeneity in both size and

location of brain infarcts (Table 1). Overall, the group
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showed mild-moderate arm motor impairment at Exam 1

(mean Fugl-Meyer = 39 � 12, range 23–56, normal = 66).

At baseline, motor deficits were stable, as the group did

not show a significant change in Fugl-Meyer score across

the two baseline behavioural assessments [t(11) = �0.20,

P = 0.85]. Across therapy, motor deficits improved signifi-

cantly, as Fugl-Meyer scores increased by 4.5 � 2.7 points

(Fig. 1B), achieving statistical significance [t(11) = 5.89,

P = 0.0001] and exceeding the minimal clinically important

difference (See et al., 2013).

Connectivity is a robust and specific
cross-sectional marker of
motor status

The PLS connectivity model at Exam 1 (‘Exam 1 PLS

model’) identified a pattern of beta coherence with M1

that correlated strongly with Exam 1 Fugl-Meyer score

(fitted R2 = 0.96). Cross-validation using the leave-one-out

approach found that the Exam 1 PLS model remained

highly accurate (validated R2 = 0.78, Fig. 2A), i.e. connect-

ivity between ipsilesional M1 and the rest of the scalp ac-

counted for 78% of the variance in Exam 1 Fugl-Meyer

score across the 12 subjects.

To better understand the Exam 1 PLS model, those leads

where variance in connectivity with M1 was most strongly

related to Exam 1 Fugl-Meyer score were identified. These

were clustered in ipsilesional PM (indicated by black dots

in Fig. 2A). Focusing on these ipsilesional premotor leads,

bivariate linear regression found that individuals with

higher ipsilesional M1–PM connectivity at Exam 1 had

higher Exam 1 Fugl-Meyer scores. Furthermore, variance

in ipsilesional M1–PM connectivity accounted for a major-

ity of the variance in Exam 1 Fugl-Meyer scores (R2 = 0.51,

P = 0.009, Fig. 2B). This relationship between M1–PM con-

nectivity and Fugl-Meyer score measured at the same exam

remained robust across each of the four EEG exams (Exam

Figure 2 Cortical connectivity with ipsilesional M1

was a good marker of Fugl-Meyer score at baseline.

(A) Topographic map of correlation coefficients of PLS model cor-

relating baseline ipsilesional M1 connectivity across whole scalp and

baseline Fugl-Meyer (FM) score (fitted R2 = 0.96, cross-validated

R2 = 0.78). The left side of the figure is ipsilesional, the right side is

contralesional, green electrodes indicate the ipsilesional M1 seed,

and the black dots indicate leads overlying the ipsilesional frontal-

premotor cortical region (PM). (B) Greater degree of ipsilesional

M1–premotor connectivity was correlated with higher Fugl-Meyer

score (R2 = 0.51, P = 0.009).

Table 1 Subject characteristics

Patient

No.

Age

(years)

Gender Affected

arm

Infarct

volume (cm3)

Infarct site Months

post-stroke

Baseline

Fugl-Meyer

score

1 66 M R 3.0 Left pontine 8.4 55

2 39 M L 21.5 Right cingulate 5.4 42

3 75 F R 5.0 Left frontal 5.5 51

4 68 M L 100.6 Right frontal 6.3 39

5 39 M R 0.4 Left internal capsule/temporal 4.8 56

6 47 M R 10.3 Left temporal 8.5 49

7 43 F L 59.1 Right frontal 10.2 25

8 65 F R 1.2 Left internal capsule 3.6 38

9 70 F L 32.2 Right parietal 5.6 23

10 26 F R 30.1 Left parietal 18.4 36

11 70 F L 25.7 Right parietal 4.7 23

12 40 M L 0.8 Right pontine 5.6 36
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2: R2 = 0.67, P = 0.001; Exam 3: R2 = 0.37, P = 0.036; and

Exam 4: R2 = 0.46, P = 0.014).

To examine the specificity of the relationship between

motor deficits and ipsilesional M1–premotor connectivity

in the Exam 1 PLS model, this connectivity measure was

also examined in relation to two non-motor assessments,

the Geriatric Depression Scale score and the Mini-Mental

State Examination score (MMSE). Neither correlated sig-

nificantly (Geriatric Depression Scale: P = 0.85; MMSE:

P = 0.25), indicating that ipsilesional M1–PM connectivity

at Exam 1 demonstrates specificity as a neural marker of

motor status. In addition, a new PLS model was generated

examining ipsilesional M1 connectivity in relation to

Geriatric Depression Scale. This too did not reach signifi-

cance, further supporting that whole scalp connectivity

with ipsilesional M1 demonstrates specificity for function

of the motor system.

An additional analysis examined connectivity between

ipsilesional M1 and contralesional M1 (defined as the hom-

ologous leads over the contralesional hemisphere) in rela-

tion to motor status. Connectivity between ipsilesional M1

and contralesional M1 at Exam 1 was not significantly

related to Exam 1 Fugl-Meyer score (P = 0.87). A second-

ary analysis examined connectivity between ipsilesional M1

and contralesional PM at Exam 1, and this was also not

related to Exam 1 Fugl-Meyer score (P = 0.41).

MRI measures of injury as
cross-sectional markers of motor
status

Infarct volume, a global measure of injury, did not correl-

ate with Exam 1 Fugl-Meyer score (P4 0.05), but per cent

corticospinal tract injury, a measure more related to motor

system injury, did (R2 = 0.52, P = 0.008). The strength of

this brain injury-behaviour relationship was similar to the

strength of the brain function-behaviour relationship (i.e.

ipsilesional M1–premotor connectivity, R2 = 0.51, above).

Clinical measures were poor predictors of baseline motor

impairment. Time post-stroke (P = 0.85), age (P = 0.81),

mood (Geriatric Depression Scale, P = 0.55), and cognitive

status (MMSE, P = 0.30) did not correlate significantly with

Exam 1 Fugl-Meyer score.

Neural structure and function in
combination contribute to
motor status

Neural structure (injury) and functional factors each had an

independent role in explaining motor status. A partial cor-

relation was performed to determine the degree of associ-

ation that EEG connectivity and corticospinal tract injury

each had with Exam 1 Fugl-Meyer score. Both corticosp-

inal tract injury (R2 = 0.58, P = 0.007) and ipsilesional M1–

PM connectivity (R2 = 0.42, P = 0.03) remained significant;

note that corticospinal tract injury and baseline ipsilesional

M1–PM connectivity were not significantly correlated

(P = 0.12).

Furthermore, the combination of corticospinal tract injury

and EEG connectivity was found to be a better marker of

motor status than either measure alone. Corticospinal tract

injury and EEG connectivity were combined through two

methods. When corticospinal tract injury was added as an

additional predictor in the Exam 1 PLS model of EEG con-

nectivity, prediction was improved significantly [R2 = 0.93,

F(0.05,1,10) = 21.04, P = 0.0001]. Corticospinal tract injury

and M1–PM connectivity were also combined in a multivari-

ate least squares regression model, which also significantly

improved prediction [R2 = 0.86, F(0.05,1,10) = 6.70,

P = 0.03].

Changes in connectivity are a
good biomarker of motor gains
with therapy

A separate analysis examined how change in EEG connect-

ivity performed as a biomarker of change in motor status

over the 28 days of therapy. The PLS model examining

change in connectivity and change in Fugl-Meyer score

from Exam 1 to Exam 4 (‘Change PLS model’) had a

fitted R2 = 0.92 and cross-validated R2 = 0.61. The leads

from the Change PLS model most strongly related to

change in Fugl-Meyer score over this period were clustered

in regions overlying ipsilesional parietal (PAR) and ipsile-

sional PM (indicated by black dots in Fig. 3A). Greater

gains in Fugl-Meyer from Exam 1 to Exam 4 were related

to larger increases in ipsilesional M1–PM connectivity

(Fig. 3B, R2 = 0.34, P = 0.04) and to larger decreases in

ipsilesional M1–PAR connectivity (Fig. 3C, R2 = 0.36,

P = 0.04); note that change in ipsilesional M1–premotor

connectivity and change in ipsilesional M1–PAR connectiv-

ity from Exam 1 to Exam 4 were not significantly corre-

lated (P = 0.96). Change in connectivity between

ipsilesional M1 and contralesional M1 regions did not cor-

relate with change in Fugl-Meyer score (P = 0.65).

Baseline connectivity predicts gains
from therapy

The PLS model of connectivity with ipsilesional M1 at

Exam 1 predicting change in Fugl-Meyer score across ther-

apy (from Exam 1 to Exam 4) had a fitted R2 of 0.97 and a

cross-validated R2 of 0.79 (Fig. 4A). The leads from this

Exam 1 predictive model that most strongly related to

change in Fugl-Meyer score were clustered in a region

overlying ipsilesional parietal operculum (PARoperc).

Greater gains in Fugl-Meyer from Exam 1 to Exam 4

were predicted by lower M1–PARoperc connectivity at

Exam 1 (Fig. 4B, R2 = 0.60, P = 0.003).
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Clinical and MRI measures at Exam
1 do not predict motor gains from
therapy

None of the clinical measures (age, time post-stroke, Exam

1 Fugl-Meyer score, Geriatric Depression Scale score,

Edinburgh handedness score, and MMSE score) predicted

change in Fugl-Meyer score from Exam 1 to Exam 4. In

addition, neither of the MRI-based measures of injury (in-

farct volume and per cent corticospinal tract injury) pre-

dicted change in Fugl-Meyer score across therapy.

Discussion
Patient care and clinical trials often rely on bedside assess-

ments for decision-making after stroke. Biomarkers may be

able to inform such decisions, e.g. to define therapy content

(Dodakian et al., 2013), to stratify patients in a trial

(Cramer, 2010), or to assess changes in brain function

across a period of therapy (Burke, et al., 2014a) based

on a patient’s specific biological state. Evidence suggests

that measures of cortical connectivity have the potential

to serve as such biomarkers (Grefkes et al., 2008; de

Vico Fallani et al., 2009; Carter et al., 2010; van Meer

et al., 2010). However, cortical connectivity has generally

Figure 3 Change in ipsilesional M1 connectivity was a

significant biomarker of motor gains across therapy.

(A) Topographic map of correlation coefficients in the PLS model

correlating change in ipsilesional M1 connectivity across whole scalp

and change in Fugl-Meyer score across the 28 days of therapy (fitted

R2 = 0.92, cross-validated R2 = 0.61). (B) Greater degree of ipsile-

sional M1 connectivity with ipsilesional frontal-premotor cortical

regions (PM) was correlated with higher Fugl-Meyer (FM) gains

(R2 = 0.34, P = 0.04); compared to the ipsilesional premotor elec-

trodes identified in the Exam 1 PLS model, premotor electrodes in

this change PLS model were more ventrally located. (C) Greater

degree of ipsilesional M1 connectivity with ipsilesional parietal (PAR)

cortical regions was correlated with smaller Fugl-Meyer gains

(R2 = 0.36, P = 0.04).

Figure 4 Cortical connectivity with ipsilesional M1 at

baseline predicted motor gains across therapy.

(A) Topographic map of correlation coefficients in the PLS model

correlating ipsilesional M1 connectivity across whole scalp at base-

line with change in Fugl-Meyer score across the 28 days of therapy

(fitted R2 = 0.97, cross-validated R2 = 0.79). (B) Greater degree of

ipsilesional M1 connectivity with ipsilesional parietal operculum

(PARoperc) predicted smaller Fugl-Meyer gains (R2 = 0.60,

P = 0.003).
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been measured using MRI, which may have limitations in

clinical application. A previous report found an EEG-based

measure of connectivity was useful for predicting motor

skill acquisition in healthy subjects (Wu et al., 2014). The

current study extended this approach and found the same

EEG-based measure (resting coherence between ipsilesional

M1 and the rest of the cortex, in the high beta band) was a

robust marker of baseline motor status, biomarker of

change in motor status across 28 days of intensive therapy,

and predictor of gains from therapy. Ipsilesional M1 con-

nectivity with ipsilesional PM regions was consistently

associated with favourable motor status, whereas measures

of ipsilesional M1 connectivity with contralesional M1

were not significant. These findings support the potential

of EEG-based measures of cortical connectivity as bio-

markers after stroke.

The current study found that, among 12 patients with

hemiparetic chronic stroke, functional connectivity with

ipsilesional M1 across the brain had a robust relationship

with baseline impairment, with a cross-validated R2 of

0.78, and furthermore was a powerful predictor of motor

gains across the period of therapy, with an R2 of 0.79. By

comparison, an MRI-based measure of motor system injury

(per cent corticospinal tract injury) had a comparable rela-

tionship with baseline motor status at baseline (R2 = 0.52)

but did not significantly predict treatment gains. The

strength of the current results speak to clinical applications

of the current methods as reliable biomarkers of brain state

that can be serially measured in patients with stroke. EEG

has poorer spatial resolution as compared to neuroimaging

modalities such as MRI. In addition, localization is limited

by the fact that recordings are obtained at the scalp, and so

current results are presented as occurring in the leads

overlying a brain area rather than strictly within cortical

regions per se. Nonetheless, EEG-based methods may have

substantial clinical utility given their established safety

record, low expense per exam, and relative ease and rap-

idity of data acquisition across complex medical settings.

Increasingly, multimodal approaches that consider both

brain function and brain structure have been found to have

advantages for explaining variance across patients with

stroke (Gerloff et al., 2006; Stinear et al., 2007; Carter

et al., 2012a; Burke Quinlan et al., 2015). Consistent

with these reports, the current study found that a combin-

ation of a brain functional assessment (motor network con-

nectivity derived from dense array EEG) and a brain

structural assessment (of motor system injury, corticospinal

tract injury based on MRI) demonstrated improved predic-

tion of motor impairment status as compared to either

measure alone. While motor system injury and a measure

of motor system function (M1–PM beta coherence) each

explained�50% of variance in motor impairment, predic-

tion was improved (R2 = 0.86) when structural and func-

tional measures were combined in a multivariate model.

Prediction was also improved when corticospinal tract

injury was included with connectivity measures in a PLS

model of baseline impairment (validated R2 = 0.93). Thus,

the current results represent a progression from previous

studies that separately demonstrated EEG measures of con-

nectivity and MRI measures of motor system damage to

each be a good marker of motor status after stroke (Zhu

et al., 2010; Dubovik et al., 2012). The current results are

also in line with previous studies demonstrating that both

brain structure (injury) and brain function (connectivity via

functional MRI) contribute to motor status after stroke

(Carter et al., 2012a; Burke Quinlan et al., 2015).

Current methods also provide some insights into the

neural events underlying the EEG findings. At baseline,

larger ipsilesional M1–premotor connectivity correlated

with better motor status, accounting for much of the

Exam 1 PLS model (Fig. 2B) and explained a majority of

the variance in Exam 1 Fugl-Meyer scores. Ipsilesional

M1–PM connectivity remained informative across the 28

days of therapy, increasing in parallel with motor gains

(Fig. 3B). These results are consistent with abundant data

describing an association between good motor recovery

after stroke and increased activation of ipsilesional pre-

motor during motor tasks (Carey et al., 2002; Ward

et al., 2003a; Kantak et al., 2012). Although much of the

previous work regarding the role of ipsilesional PM in

motor recovery after stroke was derived from task-related

data, several recent studies suggest brain activity acquired

at rest is representative of engagement of brain networks

during a task (Deco et al., 2011; Saleh et al., 2012).

Furthermore, several recent studies demonstrate that indi-

vidual differences in brain function at rest are predictive of

subsequent performance (Hampson et al., 2006; Tambini

et al., 2010; Wu et al., 2014). Additionally, studies that

examine connectivity measures derived from both resting

and task-related data have produced similar results with

respect to ipsilesional M1–PM connectivity and its relation-

ship with behavioural status after stroke (Sharma et al.,
2009; Wang et al., 2010; Rehme et al., 2011). The simila-

rities across these reports are consistent with the parallels

between current resting-state results and previously re-

ported findings from task-related studies.

An additional hypothesis in the current study was that

increased ipsilesional M1–contralesional M1 connectivity

would be associated with lower baseline Fugl-Meyer

scores and with smaller motor gains across therapy

(Grefkes et al., 2008). However, ipsilesional M1–

contralesional M1 connectivity was not significantly related

to baseline motor status or to its change with therapy. The

reasons for this finding are uncertain but may be multifac-

torial. First, clinical characteristics of subjects enrolled in

the current study, including time post-stroke and stroke

severity, might have influenced the M1–M1 connectivity

results. Indeed, longitudinal studies (Ward et al., 2003b;

Park et al., 2011) report that it is at earlier, and not

later, points in stroke recovery that contralesional regions,

including contralesional M1, are most prominent, and that

M1–M1 connectivity is most asymmetric. Thus, the chron-

icity of patients enrolled in the current study compared to

previous studies that report significant associations between
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M1–M1 connectivity and motor status after stroke (Carter

et al., 2010; Wang et al., 2010) may partially account for

the negative M1–M1 connectivity findings in the current

study. Additionally, increased activation of contralesional

M1 after stroke has been implicated as a compensatory

mechanism in individuals with more severe stroke deficits

(Cramer and Crafton, 2006; Marshall et al., 2009) and

thus might be expected to be a less robust marker of

motor status in the mild to moderately impaired subjects

enrolled in the current study. Second, the contribution of

contralesional M1 to motor network processes after stroke

may be less apparent when brain function is probed at rest,

in contrast with the contribution of ipsilesional PM (see

above). Indeed, in subjects with chronic stroke, interhemi-

spheric inhibition measured between bilateral M1 showed

greater correlation with behavioural parameters when mea-

sured during motor preparation compared to during the

resting state (Murase et al., 2004). Further in healthy sub-

jects, M1–M1 connectivity is more apparent during move-

ment compared to at rest (Jiang et al., 2004), and is further

enhanced by increasing task complexity (Chen et al., 1997).

The current findings are concordant with a prior functional

MRI-based study that found ipsilesional M1–contralesional

M1 connectivity to be a less robust marker of motor status

after stroke compared to ipsilesional M1–premotor con-

nectivity (Rehme et al., 2011). Overall, results suggest

that M1–M1 connectivity, particularly when measured at

rest, may have limitations as a marker of motor system

function in patients with mild-to-moderate impairment in

the chronic phase of stroke.

The current study presents a novel application of PLS

regression for analysis of EEG data in a stroke population,

resulting in robust correlations between neural measures of

connectivity and motor impairment. Such an approach is

similar to graph theoretical approaches that examine

stroke-related changes in cortical motor network centrality

(Wang et al., 2010; Yin et al., 2014). While graph theory

analysis requires a priori definition of network nodes, PLS

is a whole brain approach for identifying regions of inter-

est, and may be less likely to overlook contributions from

brain regions that were not considered at the outset, such

as the contribution of larger M1–PAR connectivity across

therapy as a biomarker of smaller motor gains; increased

M1–PAR connectivity may reflect greater reliance on re-

gions posterior to ipsilesional M1, a compensatory mech-

anism associated with greater damage to the motor system

(Pineiro et al., 2001; Cramer, 2008a). Notably, the struc-

ture of the models is defined by brain states of the specific

patients enrolled in the study and are likely also influenced

by therapy content. These caveats underscore the need to

further evaluate the current model more broadly, e.g. in

separate and different stroke populations, with a different

class of therapeutic intervention, or in relation to non-

motor deficits after stroke.

High intersubject variability in response to treatment is

common after stroke and is an important concern in clin-

ical stroke research (Bath et al., 2012; Saleh et al., 2012;

Várkuti et al., 2013). Serial measurement of brain func-

tional connectivity over a course of rehabilitation therapy

has the potential to provide biological insights into this

variability and thereby improve the precision with which

post-acute care is prescribed. As the current methods dem-

onstrate a consistent relationship between ipsilesional M1–

premotor coherence and Fugl-Meyer score at each of the

four exams spanning the 28 days of therapy, the EEG-

derived measure of connectivity therefore seems to be a

reliable neural marker of motor system status after

stroke. Parallels between previous reports and the current

results with respect to ipsilesional M1–premotor connectiv-

ity and post-stroke motor status suggest validity of the cur-

rent EEG-based methods as a neural probe of motor system

function after stroke. In addition, as data could be obtained

at all 48 EEG sessions, with no EEG exam excluded due to

reasons such as hardware malfunction or excessive move-

ment artefact during data acquisition, the present EEG-

based methods may be less restrictive as compared to func-

tional MRI-based methods, which exclude some individuals

such as those with certain metal implants. EEG is a safe

and relatively inexpensive neuroimaging method that can

be rapidly performed at the bedside and so may be useful

in complex clinical settings such as acute stroke (Luu et al.,

2001), where measuring brain function has historically

been challenging. In addition, targeted engagement of a

specific brain network (Sulzer et al., 2013) such as the

ipsilesional premotor circuit (Dodakian et al., 2013) is a

strategy that might be useful for maximizing rehabilitation

gains, and that would benefit from availability of a brain

state biomarker at the bedside. Together, the current results

suggest that EEG measures of cortical connectivity may

have value as biomarkers of cortical function and plasticity

after stroke.
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