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Abstract

Background/Aims—Tempol is a protective antioxidant against ischemic injury in many animal 

models. The molecular mechanisms are not well understood. Nuclear factor erythroid 2-related 

factor (Nrf2) is a master transcription factor during oxidative stress, which is enhanced by 

activation of protein kinase C (PKC) pathway. Another factor, tubular epithelial apoptosis, is 

mediated by activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, Akt) signaling 

pathway during renal ischemic injury. We tested the hypothesis that tempol activates PKC or 

PI3K/Akt/Nrf2 pathways to transcribe many genes that coordinate endogenous antioxidant 

defense.

Methods—The right renal pedicle was clamped for 45 minutes and the left kidney was removed 

to study renal ischemia/reperfusion (I/R) injury in C57BL/6 mice. The response was assessed from 

serum parameters, renal morphology and renal expression of PKC, phosphorylated-PKC (p-PKC), 

Nrf2, heme oxygenase-1 (HO-1), Akt, phosphorylated-Akt (p-Akt), pro-caspase-3 and cleaved 

caspase-3 in groups of sham and I/R mice given vehicle, or tempol (50 or 100 mg/kg, 

intraperitoneal injection).

Results—The serum malondialdehyde (MDA, marker of reactive oxygen species) doubled and 

the BUN and creatinine increased 5- to 10-fold after I/R injury. Tempol (50 or 100 mg/kg) 
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prevented the increases in MDA but only tempol (50 mg/kg) lessened the increases in BUN and 

creatinine and moderated the acute tubular necrosis. I/R did not change expression of PKC or p-

PKC but reduced renal expression of Nrf2, p-Akt, HO-1 and pro-caspase-3 and increased cleaved 

caspase-3. Tempol (50 mg/kg) prevented these changes produced by I/R whereas tempol (100 

mg/kg) had lesser or inconsistent effects.

Conclusion—Tempol (50 mg/kg) prevents lipid peroxidation and attenuates renal damage after 

I/R injury. The beneficial pathway apparently is not dependent on upregulation or phosphorylation 

of PKC, at lower tempol doses, does implicate upregulation of Akt with expression of Nrf2 that 

could account for the increase in the antioxidant gene HO-1 and a reduction in the cleavage of the 

cellular damage marker pro-caspase-3.
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Introduction

Acute kidney injury (AKI) is a common and catastrophic complication in hospitalized 

patients [1, 2]. Although AKI has been studied extensively, the intracellular signaling 

pathways that are involved in AKI remain unclear [3].

Renal ischemia/reperfusion (I/R) injury is a common cause of AKI. It initiates a complex 

and interrelated sequence of events within the kidney that culminate in renal injury and 

death of renal cells [4]. Endothelial dysfunction and tubular cell injury through ATP 

depletion, accumulation of intracellular Ca2+, reactive oxygen species (ROS) and 

proinflammatory cytokines, and apoptotic pathway have all been implicated [5, 6]. Of these, 

the excessive generation of ROS causes damage and death of renal tubular epithelial cells 

[7]. The role of ROS in the pathophysiology of I/R injury is supported by increased 

formation of lipid peroxidation and other toxic products following renal injury [8, 9].

Nuclear factor erythroid 2-related factor (Nrf2) is a master regulator of antioxidant defense 

gene [10] and a master transcription factor released during oxidative stress [11]. The 

accumulated Nrf2 in the nucleus binds to antioxidant response elements (ARE) on the genes 

for phase 2 enzyme that upregulate many proteins involved in the metabolism of ROS during 

I/R injury [12-14]. Therefore, we hypothesize that upregulation of Nrf2 signaling may 

reduce renal damage and enhance repair after I/R injury.

Activation of the protein kinase C (PKC) pathway enhances Nrf2 expression and can protect 

kidney against I/R damage [15, 16]. However, tubular epithelial apoptosis is another factor 

that is induced by renal I/R injury and could account for acute tubular necrosis. Indeed, the 

phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway can mediate cell survival in many cell 

types [17], including renal cells [18]. This pathway was originally recognized to play a 

critical role in regulating cell growth and survival [19] and more recently has been 

implicated in the protection of liver and kidney against I/R injury by moderating the 

inflammatory response [20, 21]. This may involve in activation of Nrf-2 but its specific role 
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is not established. Renal cell injury culminates in regeneration and repair, or in renal cell 

apoptosis.

The redox-cycling antioxidant tempol has been much studied. It can act both as a superoxide 

dismutase (SOD) and as a catalase member[22], thereby reducing tissue levels of both 

superoxide (O2
•−) and hydrogen peroxide (H2O2). Indeed, a mouse model of chronic kidney 

disease (reduced renal mass/high salt diet) excreted > 6-fold more 8-isoprostane F2α 

(generated by interaction of O2
•− and arachidonate) and 2-fold more H2O2 [23]. All of these 

were almost restored to levels of sham operated mice by tempol administration. Tempol can 

protect the kidneys against acute inflammation by restoring hypoxia inducible factor-1α 

(HIF-1a) expression, increasing renal parenchymal PO2 and down-regulating transforming 

growth factor β1 (TGF-β1) expression [24]. Unbalance among oxygen, NO, and ROS is an 

important component of the pathogenesis of I/R-induced AKI. Indeed, tempol can improve 

tissue NO and PO2, reduce TGFβ and the associated inflammation and protect the kidney 

from I/R-induced injury [25-28]. However, the mechanism has not been well elucidated. 

Thus, the aim of the present investigation is to investigate the protective role of tempol in 

renal I/R injury and its interaction with the PKC and/or PI3K/Akt pathways.

Materials and Methods

Reagents

Unless otherwise stated, all reagents were obtained from Sigma-Aldrich (St Louis, MO, 

USA).

Experimental Animals and Protocols

Male C57BL/6 mice weighing 24-28 g (12 weeks old) were obtained from Zhejiang Medical 

Animal Centre (Hangzhou, China). Mice were housed under climate-controlled conditions 

with a 12-h light/dark cycle and provided with standard food and water. All experimental 

protocols and animal handling procedures were performed in accordance with the National 

Institutes of Health (NIH, USA) guidelines for the care and use of laboratory animals and 

were approved by the Committees for Animal Experiments at Zhejiang University in China. 

Tempol (50 or 100 mg/kg, intraperitoneal injection) was administered at 60 minutes prior to 

the renal I/R injury [29, 30].

Kidney ischemia/reperfusion model

Mice were randomly divided into four groups: (1) sham; (2) I/R group (vehicle group); (3) 

I/R + tempol (50 mg/kg) group; and (4) I/R + tempol (100 mg/kg) group. To induce I/R 

model, mice were anesthetized with 3% chloral hydrate. The right renal pedicle clamped for 

45 minutes and left nephrectomy performed to produce severe renal injury. Thereafter, the 

clamp was released to allow reperfusion. Sham-operated mice were dissected as above, but 

with no occlusion of the renal pedicle. The rectal temperature was monitored throughout and 

maintained at 37 ± 0.5°C with a heating blanket. All mice were sacrificed by decapitation at 

24 h after reperfusion, and the kidneys were dissected and collected for further analysis.
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Determination of serum creatinine, BUN and MDA

Before euthanatized, blood was sampled from the inferior vena cava and centrifuged at 3000 

rpm, 4°C for 15 min. Serum creatinine and BUN were measured by an automatic 

biochemical analyzer. Serum Malondialdehyde (MDA) concentration was measured by a Kit 

(Lipid Peroxidation MDA Assay Kit, Beyotime Biotechnology, China).

Morphology

Renal tissue fixed in 4% paraformaldehyde was processed by dehydration and embedded in 

paraffin. Sections were cut at 4 μm intervals and stained with Hematoxylin-Eosin (H&E) for 

histological assessment by a designated pathologist blinded to the experimental groups.

Immunoblotting analysis

After euthanatized, the kidneys were dissected and stored at −80°C. Frozen kidney tissue 

samples were homogenized in buffer containing 50 mM Tris-HCl (pH 7.4), 0.5% Triton 

X-100, 4 mM EGTA, 10 mM EDTA, 1 mM Na3VO4, 30 mM sodium pyrophosphate, 50 

mM NaF, 1 mM phenylmethylsulfonyl fluoride, 50 μg/mL leupeptin, 30 μg/mL aprotinin 

and 1 mM dithiothreitol (DTT). The homogenate was centrifuged 5 min at 10,000 g at 4°C. 

The insoluble pelleted nuclei were resuspended in ice-cold buffer; and nuclear protein 

fractions were prepared as described previously [31].

Cell lysates or nuclear extracts from kidney tissue containing equivalent amounts of protein 

were analyzed by 10-13.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDSPAGE) as described previously [32-34]. Proteins were transferred to an immobilon 

polyvinylidene difluoride membrane for 1h at 50 V. Membranes were blocked in 20 mM 

Tris-HCl (PH 7.4), 150 mM NaCl, and 0.1% Tween 20 (TBS-T) containing 5% fat-free milk 

powder for 1 h and immunodetected with antibodies to Nrf2 (polyclonal antibody; 1:2000), 

Heme oxygenase-1 (HO-1) (monoclonal antibody; 1:2000), PKC (polyclonal antibody; 

1:2000), p-PKC (monoclonal antibody; 1:2000), β-actin (monoclonal antibody; 1:5000) 

(Abcam Cambridge, UK), Akt (polyclonal antibody; 1:2000), p-Akt (ser473 monoclonal 

antibody; 1:2000) (Cell Signaling Technology, Beverly, MA, USA) and lamin B1 

(monoclonal antibody; 1:1000) (Santa Cruz Biotechnology, Santa Cruz, CA, USA). After 

incubation, membranes were incubated with the appropriate horseradish peroxidase (HRP)-

conjugated secondary antibody (1:5000). Immunoreactivity was visualized by enhanced 

chemiluminescence (Amersham Life Science, Buckinghamshire, UK) in an automated 

imaging analysis system (Tanon 5200 Multi, Tanon Science & Technology Inc, Shanghai, 

China).

Statistical analysis

The significance of the differences between the different groups was determined using a 

one-way ANOVA and considered to be significant at P < 0.05. All data are expressed as the 

mean ± SD.

Zhang et al. Page 4

Kidney Blood Press Res. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Effects of tempol on renal function after I/R injury

The serum BUN and creatinine increased 5- to 10-folds in mice after renal I/R injury 

(vehicle group) and were significantly, but modestly, reduced by tempol (50 mg/kg), but not 

by tempol (100 mg/kg) (Table 1).

Effect of tempol on lipid peroxidation after I/R injury

MDA is a convenient and stable marker of lipid peroxidation [35, 36]. Serum MDA doubled 

in mice after I/R injury but this was prevented by tempol (50 or 100 mg/kg) (Figure 1).

Effects of tempol on renal morphology after I/R injury

Renal I/R led to widespread disruption of the tubular architecture, tubule dilation, swelling 

and necrosis, and luminal congestion with loss of brush border [37] (Figure 2 A and B). 

These changes were markedly reduced in mice pretreated with tempol (50 and 100 mg/kg) 

(Figure 2 C and D).

Effect of tempol on the expression of PI3K/Akt/Nrf2 and PKC/Nrf2 pathway proteins after 
renal I/R injury

Renal I/R injury did not change the cytoplasmic expression of Nrf-2, PKC or p-PKC (Figure 

3A) but reduced p-Akt (Figure 3 B and C) and HO-1 (Figure 3 D and E) and nuclear 

expression of Nrf-2 (Figure 3 F and G). Pretreatment with the lower dose of tempol (50 

mg/kg) did not change the expression of cytoplasmic Nrf-2, PKC or p-PKC but restored the 

reduced p-Akt, HO-1 and the nuclear Nrf2 expression in I/R mouse kidneys. The high dose 

of tempol (100 mg/kg) failed to restore HO-1 or nuclear Nrf-2 expression.

Effect of tempol on expression of apoptotic signaling pathway proteins after renal I/R 
injury

Caspase-3 is an important marker of cell and tissue apoptosis. The expression of pro-caspase 

was reduced, and cleaved caspase-3 increased after I/R injury (Figure 4A, B and C). Both 

doses of tempol moderated these markers of renal cell apoptosis.

Schematic illustration of the potential mechanisms of tempol on I/R injury induced 
oxidative stress and apoptotic signaling

These data suggest that I/R injury increases ROS that down-regulate the expression of Akt 

and Nrf2, thereby reducing its antioxidant responses, promoting activation of caspase-3 and 

culminating in renal cell death and dysfunction. Pharmacological inhibition of ROS 

formation by tempol, especially at the lower dose, reduced or prevented these effects.

Discussion

AKI causes a high mortality [38]. Its primary causes are renal ischemia, hypoxia or 

nephrotoxicity [39, 40]. I/R injury increases renal ROS and decreases endogenous 

antioxidants [41]. I/R injury occurs in many clinical circumstances in which kidney damage 

can be some causes of renal transplantation, shock, and vascular surgery and administration 
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of radiology contrast agents. However, therapeutic modalities that prevent acute kidney 

injury are still extremely limited. The pathophysiological mechanism of I/R injury includes 

endothelial dysfunction, generation of ROS and pro-inflammatory cytokines and activation 

of apoptotic pathways [42]. Signal pathways activated by I/R injury include PKC, Nrf2, 

PI3K/Akt, inflammation and apoptosis [43-46].

Our results confirm reports that tempol protects the kidney from ischemic damage [25-28], 

but shows a complex and dose-dependent mechanism. Although there were some 

inconsistent results between the doses of tempol used, the current study demonstrated the 

following findings: (1) I/R renal injury increases lipid peroxidation (a marker of ROS). (2) 

Both doses of tempol reduced the morphologic renal damage and corrected the activation of 

the apoptotic pathway (from the expression of caspase and pro-caspase). (3) The lower dose 

of tempol restored Nrf2 activation (from nuclear expression), downstream signaling (from 

HO-1 expression) and upstream activation (from p-Akt expression), but paradoxically the 

high dose of tempol was not effective. The PKC, p-PKC was not activated by I/R injury, nor 

was the cytoplasmic Nrf2 expression altered.

Oxidative stress is involved in acute kidney injury due to ischemia-reperfusion and 

chemotherapy-induced nephrotoxicity. Tempol can directly metabolize ROS, including both 

superoxide and hydrogen peroxide. However, tempol has also been shown to reset the 

endogenous anti-oxidant defense system so as to provide additional, and more prolonged, 

anti-oxidant effect [22, 28]. This study demonstrates that one important mechanism of 

cellular defense after tempol involves upregulation of Nrf2 and its downstream genes, 

including HO-1. However, this pathway was only activated after lower dose of tempol. On 

the other hand, low and high doses of tempol prevented lipid peroxidation, activated Akt, 

and prevented cellular apoptosis and renal damage. This suggests that there may be multiple, 

dose-dependent effects of tempol to alleviate oxidative stress and its consequences in the 

kidney that may underline some previous inconsistent reports in the literatures [25]. The data 

suggested that the renal injury induced by ischemia/reperfusion was related to oxidative 

stress and that tempol restored the expression of Nrf2-dependent cytoprotective pathways 

and that blocked ischemia/reperfusion-induced apoptosis.

Conclusion

Our findings using the ischemia model demonstrated that tempol effectively prevented 

against I/R-induced renal injury through PI3K/Akt/Nrf2 and caspase-3, not PKC/Nrf2 

signaling pathway.
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Fig. 1. 
Effect of renal I/R injury and tempol on serum MDA. Data are expressed as mean ± SD from 

7 independent animals (n=7). * p <0.05 vs sham group; # p <0.05 vs vehicle group.
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Fig. 2. 
Tempol attenuates the morphologic changes of I/R injury. Representative H&E staining 

kidney sections taken from sham-operated group (A), I/R group (vehicle group) (B) and I/R 

pretreated with tempol (50 and 100 mg/kg) (C and D). Figures are representative of at least 

three experiments performed on different groups (n=3).
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Fig. 3. 
Effect of tempol on the expression of PKC/Nrf2 and PI3K/Akt/Nrf2 pathways induced by 

ischemia/reperfusion. Data are expressed as mean ± SD from 5 independent animals (n=5). * 

p <0.05 vs sham group; # p <0.05 vs vehicle group.
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Fig. 4. 
Effect of tempol on the expression of caspase-3 pathway in renal I/R injury. Data are 

expressed as mean ± SD from 5 independent animals (n=5). * p <0.05 vs sham group; # p 
<0.05 vs vehicle group.
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Fig. 5. 
Diagrammatic representation of the effect of tempol on the oxidative stress-mediated the 

changes of PI3K/Akt/Nrf2 and apoptotic signaling in renal I/R injury.
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Table 1

Effects of tempol on renal functional parameters at 24 h reperfusion after transient renal ischemia

Experimental group Serum BUN
(mmol/L)

Serum creatinine
(μmol/L)

Sham 12.8 ± 0.7 20.9 ± 3.8

Vehicle 67.3 ± 3.9 ** 211.3 ± 17.5 **

Vehicle+Tempol, 50mg/kg 59.9 ± 4.6 **# 172.4 ± 29.1 **#

Vehicle+Tempol, 100mg/kg 63.8 ±6.3** 224.7 ± 14.8 **

Data are expressed as mean ± SD from seven independent animals ( n=7).

**
p < 0.01 vs sham group;

#
p < 0.05 vs vehicle group
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