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Abstract

B-amyloid peptide (AB) aggregation has been thought to be associated with the pathogene-
sis of Alzheimer’s disease. Recently, we showed that L17A/F19A substitutions may
increase the structural stability of wild-type and Arctic-type AB4o and decrease the rates of
structural conversion and fibril formation. However, the underlying mechanism for the
increase of structural stability as a result of the alanine substitutions remained elusive. In
this study, we apply nuclear magnetic resonance and circular dichroism spectroscopies to
characterize the AB,o structure, demonstrating that L17A/F19A substitutions can augment
the a-helicity of the residues located in the a/B-discordant segment (resides 15 to 23) of
both wild-type and Arctic-type AB4o. These results provide a structural basis to link the a-
helicity of the a/B-discordant segment with the conformational conversion propensity of AB.

Introduction

B-amyloid peptide (AB), consisting of 39-42 residues, is derived from the proteolytic product
of a type I transmembrane glycoprotein called B-amyloid precursor protein (ABPP). Alzhei-
mer’s disease (AD) is highly associated with AP aggregation. The molecular mechanism for A
aggregation remained unclear. The conformational change is occurred during the AP aggrega-
tion process. Recently, we have applied small AB-binding molecules to probe the aggregation
mechanism of AB4. The results indicated that the small molecules targeted to interact with the
hydrophobic central region (L;;VFFA,,) of wild-type A4 can stabilize its conformation and
block the formation of amyloid fibril [1]. Our previous structural characterizations by using
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nuclear magnetic resonance (NMR) spectroscopy, equilibrium denaturation and site-directed
mutagenesis have also demonstrated that the secondary structure of the hydrophobic central
region of AP was more prone to unfold than that of the rest of the regions in AB. Double
replacements of the two residues (L17/F19) in this region by Alanine could block conforma-
tional changes and reduce cytotoxicity of wild-type Ay [2]. Arctic-type AByo (AB4o(E22G)),
causing one of the familial Alzheimer’s diseases (FAD), has been known to show a stronger
aggregative ability than wild-type AB,o. By introducing double replacements (L17A/F19A) into
Arctic-type Ay, similar effects were also observed for this FAD-linked ARy variant [3], sug-
gesting that the conformational stability in the hydrophobic central region of AP plays a critical
role in the conformational conversion tendency of AP. There were also many studies of the
hydrophobic central region of A, which supported the view that the hydrophobic central
region is highly correlated with AP aggregation and can be utilized for designing inhibitors [4-
11].

The molecular mechanism for L17A/F19A substitutions to stabilize the conformations of
the AP peptides remained unknown. By using circular dichroism (CD) spectroscopy, Johann-
son and coworkers showed that the overall o-helical propensity of AB;, ,g was increased after
V18A/F19A/F20A replacements. This triple Ala-substituted AB;,_,g was predicted to form an
o-helix in the region of the o/B-discordant segment, suggesting that V18A/F19A/F20A replace-
ments abolished the discordance, resulting in inhibition of fibril formation of AB;,_»s [12]. It is
likely that double replacements (L17A/F19A) could enhance the o-helicity in this region, in
turn leading to an increase of their structural stability. However, it lacks the structural evidence
to support this inference.

To demonstrate this hypothetic mechanism, we characterized the effects of L17A/F19A sub-
stitutions on the structures of wild-type and Arctic-type AB,o by using nuclear magnetic reso-
nance (NMR) and CD spectroscopies. Stable isotope labeled AB,o, AB4o(E22G), AB4o(L17A/
F19A) and AB,4o(L17A/F19A/E22G) were prepared in this study for NMR structural characteri-
zation. The propensity of secondary structure in these peptides were characterized in a residue-
specific manner. An augmentation of o-helicity in the a/B-discordant segment was observed
for both wild-type and Arctic-type A, after L17A/F19A substitutions. These results may
explain the reason why L17A/F19A substitutions increase the conformational stability of these
two APy peptides.

Materials and Methods
Sample Preparation

All AB peptides used in this study were produced using the protocols as described previously
[13]. The cDNA of wild-type AB4o was served as a template for the site-directed mutagenesis to
create the cDNA of AP,y mutants. All procedures followed the methods as described by manu-
facturer (QuikChange Lightning, Stratagene). Preparation of the stable isotope-labeled
(**C/"™N and '°N) AP peptides followed the methods as described in [2, 14].

CD Spectroscopy

All purified A peptides that have been verified by mass spectrometry were pretreated with
100% TFE (trifluoroethanol) and then dried by nitrogen gas. The dried Ap molecule was dis-
solved in 10 mM K,HPO,/KH,PO, buffer solution containing 100 mM SDS-d,s (sodium
dodecyl sulfate-d,s) (pH 6.0). All AB molecules (50 uM) were used for analysis by CD spectros-
copy (Aviv410 spectropolarimeter, Aviv Biomedical, Inc., Lakewood, NJ USA). The spectra
were collected at 296 K and the wavelengths were scanned from 190 to 260 nm in 0.2-nm
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increments. The measurement was carried out three times. The secondary structure contents
of AP were estimated by using CDNN program [15, 16].

NMR Spectroscopy

For NMR studies, the dried AR molecule was dissolved in 10 mM K,HPO,/KH,PO, buffer
solution containing 100 mM SDS-d,s, 10% (v/v) D,O/H,0, 0.02% NaN; and the internal
chemical shift standard, TSP (3-(trimethylsilyl)propionic-2,2,3,3,-d,4 acid) (pH 6.0). The NMR
data processing and the determination of backbone chemical shifts followed the methods as
described in [2, 14].

Results

We first characterized the effect of L17A/F19A substitutions on the secondary structure con-
tents of wild-type and Arctic-type A4y by using CD spectroscopy. The CD spectra of wild-
type AP and AB4o(L17A/F19A) in SDS solution were shown in Fig 1A. Both peptides exhib-
ited two major bands in their CD spectra with minima at 206 and 220 nm (negative ellipticities
at 206 and 220 nm). This spectral pattern is an indicative of o-helical structure for both pep-
tides. In addition, the intensities at 206 and 220 nm were more negative for AB4o(L17A/F19A)
than for wild-type Ay, indicating that the a-helicity of AB,o(L17A/F19A) is higher than that
of wild-type AB4o. The effect of L17A/F19A substitutions on the CD spectrum of Arctic-type
AP, in SDS solution was shown in Fig 1B. The spectral patterns shown in Fig 1B were similar
to those in Fig 1 A. The intensities at 206 and 220 nm were a little bit more negative for
AB4o(L17A/F19A/E22G) than for AB,(E22G), suggesting that the conformation of
AB4o(L17A/F19A/E22G) contains higher a-helicity than that of AB,o(E22G). We also used the
CDNN program [15, 16] to analyze the CD spectra to estimate the secondary structure con-
tents of wild-type AB4o, AB4o(L17A/F19A), AB4o(E22G) and AB4o(L17A/F19A/E22G). The
results were shown in Table 1. Both double Ala-substituted A peptides displayed higher o-
helix and lower B-strand contents than their native forms. These findings indicated that double
replacements (L17A/F19A) increased the o-helicity of both wild-type and Arctic-type Ao.
Since CD spectra can only provide information of overall structural differences, the region of
these double Ala-substituted peptides for the increases of a-helical contents remained
characterized.

We next applied NMR spectroscopy to analyze the structural differences between the double
Ala-substituted AB peptides and their native forms. Fig 2A showed the 2D "H-">N-HSQC spec-
trum of °N-labeled AB4o(L17A/F19A) in SDS solution. The assigned residues were indicated
in the figure. The effect of L17A/F19A substitutions on the 2D "H-""N-HSQC spectrum of
wild-type AB4o was shown in Fig 2B. It is apparent that some amide proton and nitrogen cross-
peaks of wild-type APy displayed noticeable chemical shift changes after the replacements of
L17 and F19 with alanines. Compared to the previously assigned backbone resonances of wild-
type APy [14], these cross-peaks were identified as E11, H13-K16, V18, F20, E22, D23 and
G25 (excluding L17 and F19). Fig 2C showed the backbone amide chemical shift differences
between wild-type AP, and AB4o(L17A/F19A). Most of these residues that showed noticeable
chemical shift changes after L17A/F19A substitutions were located within the o/B-discordant
segment of wild-type ABy. Fig 3A and 3B showed the 2D "H-'°N-HSQC spectrum of '°N-
labeled AB4o(L17A/F19A/E22G) without and with superimposition of the 2D 'H-1>'N-HSQC
spectrum of '>N-labeled AB4o(E22G), respectively. Comparison of the 2D "H-""N-HSQC spec-
tra for AB4(E22G) and AB4o(L17A/F19A/E22G) in Fig 3B showed that noticeable chemical
shift changes also occurred on some amide proton and nitrogen cross-peaks of AB,,(E22G)
after L17A/F19A substitutions. Cross-peaks that displayed noticeable chemical shift changes
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Fig 1. CD spectra of wild-type A4, and Arctic AB4o variant in 100 mM SDS solution. (A)
Superimposition of CD spectra of AB4o(L17A/F19A) (light grey) and wild-type AB4o (black) in 100 mM SDS
solution. (B) Superimposition of CD spectra of AB4o(L17A/F19A/E22G) (light grey) and AB4o(E22G) (black) in
100 mM SDS solution.

doi:10.1371/journal.pone.0154327.g001
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Table 1. The secondary structure contents estimated from the CD spectra of Ap peptides.

ABao(L17A/F19A)

Helix
Antiparallel
Parallel
Beta-turn
Random coil

ABao
32.10 £ 0.26%
13.47 + 0.45%
7.60 +0.10%
18.00 + 0.10%
26.13 £ 0.29%

37.97 £ 0.91%
9.03 +0.81%
6.40 +0.10%
17.10+£0.17%

21.67 £0.21%

ABa4o(E22G)

26.13 £ 0.35%
24.10 £ 0.78%
8.70 + 0.10%
19.43 £ 0.12%
28.63 £ 0.40%

ABao(L17A/F19A/E22G)

28.90 £+ 0.26%
18.50 + 0.69%
8.13 + 0.06%
18.73 + 0.06%
27.37 £0.21%

The secondary structure contents were shown as the average * standard deviation from three individual CD experiments. Statistical analysis of the
secondary structure contents was done by using GraphPad Prism Software (GraphPad Software, La Jolla, CA, USA). For helix, antiparallel and random
coil values, the difference between AB4, and AB4o(L17A/F19A) by one-way ANOVA analysis with a Tukey Multiple Comparison Test showed statistical
significance (o < 0.05). There is no statistically significant difference for parallel and beta-turn values. The difference between AB4o(E22G) and AB4o(L17A/
F19A/E22G) also show statistical significance for helix, antiparallel and random coil values, and no statistical significance for parallel and beta-turn values.

doi:10.1371/journal.pone.0154327.t001

were identified as S8, E11, H13-Q15, V18, F20-N27 (excluding L17 and F19), as compared to
the previously assigned backbone resonances of AB,(E22G) [14]. The backbone amide chemi-
cal shift differences between AB4(E22G) and AB,o(L17A/F19A/E22G) were shown in Fig 3C.
The majority of these residues that displayed noticeable chemical shift changes after L17A/
FI19A substitutions were also located within the o/B-discordant segment of AB,,(E22G). This
effect induced by L17A/F19A substitutions was very similar to that observed in wild-type AB4o.
Our NMR characterizations suggested that the increases of o-helicity observed by CD spectros-
copy might mainly occur at the residues in the a/B-discordant segment of these double Ala-
substituted peptides.

Since sequence effect may also induce chemical shift changes of amide proton and nitrogen
cross-peaks, the chemical shift changes resulting from L17A/F19A substitutions might not
solely come from the alteration of o-helical propensity. To verify whether the increases of o-
helical propensities occurred at the residues in the o/p-discordant segment of these double
Ala-substituted peptides, we further analyzed the '>C* secondary chemical shifts of all mutant
APy peptides, and compared them with those of their native forms [14]. It has been reported
that the >C* chemical shift is sensitive to protein backbone structure [17]. The *C* secondary
chemical shift which is defined as the deviation of the observed '*C* chemical shift of an
amino acid residue from its ">C* chemical shift in a random coil conformation has been used
as a measure of secondary structure propensity [18]. For an amino acid residue in an o-helical
conformation, it has an average '*C* secondary chemical shift of 3.09 + 1.0 ppm [17]. This
value was used to estimate the percent o-helicity (% a-helicity) of an amino acid residue as
well. Weinstock et al. showed that the percent a-helicity of an amino acid residue calculated
from structure is quantitatively in agreement with that calculated from '>C* secondary chemi-
cal shift, demonstrating that '*C* secondary chemical shift is correlated to percent a-helicity
[19]. The more positive '*C* secondary chemical shifts represents the higher percent a-helicity.
According to this correlation, we obtained that the replacements of L17 and F19 with alanines
mainly augment the o-helicity of residues Q15, V18, F20 and E22-G25 (excluding L17 and
F19) of wild-type AB,o in SDS solution. Fig 4A showed that the 13ce secondary chemical shifts
of these residues were significantly more positive for AB4(L17A/F19A) than for wild-type
AB4o. The similar phenomenon was also observed in residues Q15-G25 of AP,y (L17A/F19A/
E22G) and AB4(E22G), as shown in Fig 4B, suggesting that residues Q15-G25 (excluding L17
and F19) of AB,4o(L17A/F19A/E22G) adopted a higher o-helicity than those of AB,,(E22G).

Previously, Wishart et al. used chemical shit index (CSI) to determine secondary structure. An
o-helix is identified as a group of three or more consecutive amino acid residues whose >C*
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Fig 2. Comparison of the 2D "H-'>N-HSQC spectra of wild-type AB4o and AB4o(L17A/F19A). (A) 2D "H-"*N-HSQC spectrum of AB4o(L17A/F19A) in 100

mM SDS solution. (B) Superimposition of 2D 'H-"*N-HSQC spectra of AB4o(L17A/F19A) (black) and wild-type AB4o (light grey) in 100 mM SDS solution.

Residues with noticeable chemical shift changes were labeled. (C) The effect of L17A/F19A replacements on the backbone amide resonances of wild-type
AB4o. The weighted chemical shift differences ([("™Appm)>+ (NAppm/10)]?) were plotted as a function of residue number. "™NA,,, and NA,,, were the "HY
and "N chemical shift differences between wild-type AB4o and AB4o(L17A/F19A), respectively.

doi:10.1371/journal.pone.0154327.9002

secondary chemical shift were greater than 0.7 ppm [20]. It can be seen that the ">C* secondary
chemical shift of D23 in AB4,(E22G) was much less than 0.7 ppm, however, the ?C* secondary
chemical shift of D23 in AB,(L17A/F19A/E22G) was greater than 0.7 ppm. This result suggested
that the lost o-helicity at D23 of Arctic-type ARy [14] might be restored after L17A/F19A
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Fig 3. Comparison of the 2D 'H-'>N-HSQC spectra of AB,4o(E22G) and AB4o(L17A/F19A/E22G). (A) 2D 'H-">N-HSQC spectrum of AB4o(L17A/F19A/
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AB4o(E22G). The weighted chemical shift differences ([(H™Appm)?+(MAppm/10)]*2) were plotted as a function of residue number. "NA,, . and NA,,m were the

"HN and "*N chemical shift differences between AB.o(E22G) and AB4o(L17A/F19A/E22G), respectively.

doi:10.1371/journal.pone.0154327.9003

substitutions. The results of '>C* secondary chemical shift analysis further supported the fact
that L17A/F19A substitutions mainly increased the o-helicity of the o/B-discordant segment in

both wild-type and Arctic-type ARyo.
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Discussion

The structure of AP is dependent on the environments in which A exists. It may adopt either
random coil or a-helical conformation in different environments, such as in aqueous solution
and SDS solution [21, 22]. The reason for using aqueous SDS solution to probe the o-helical
propensity of AP and the relevance of this environment to biological systems have been dis-
cussed from a structural perspective in our previous publication [14]. In fibrillar form, A
mainly adopts B-strand conformation [23, 24]. The structure of nascent wild-type Ay resid-
ing in cellular membranes before unfolding remained unclear. However, the structure of C99,
the transmembrane C-terminal domain of ABPP (ABPPg;,.770), in lipid environments has been
reported [25, 26]. The structure of wild-type AB,, in SDS solution resembles the structure of
the AByy domain (ABPPg¢;,.71;) in C99 in lipid environments and can be considered as the ini-
tial structure of wild-type A4 in cellular membranes. From a structural perspective, these sug-
gested that AP peptides have to undergo a structural conversion from o-helix to B-strand
during the aggregation process. From a thermodynamical point of view, the activation energy
of structural conversion from o-helix to B-strand is closely related to the secondary structure
propensity. For instance, a higher a-helical propensity would result in a higher activation
energy for structural conversion from o-helix to B-strand. Thus, the secondary structure pro-
pensity of AP would be one key factor in governing its structural conversion tendency. Previ-
ously, Johannson and coworkers applied an in silico approach to predict amyloid fibril-
forming proteins and proposed that these proteins contained an o/B-discordant sequence
which is expected to form a B-strand but displays an o-helical structure in some environments
and supposed to be prone to undergo a conformational transition from a-helix to B-strand. Ap
peptide was predicted to contain an o/B-discordant sequence located in the region of residues
16-23 [27], suggesting that the tendency for structural conversion of A might be mainly gov-
erned by the secondary structure propensity of its o/B-discordant segment. It is likely that the
structural transition occurred in the o/B-discordant segment prompted the aggregation cascade
of AP peptide. Thus, any factor that varies the propensity of secondary structure in the o/f-dis-
cordant segment of Ap would affect its structural conversion tendency, resulting in an alter-
ation of A aggregation propensity, such as mutation occurred in the o/p-discordant segment
of AP. This conclusion has been confirmed by our recent studies [14]. We have demonstrated
that Arctic mutation accelerates AP aggregation in SDS through diminishing the o-helicity of
residues 15-25.

We previously found that the secondary structure of AP has relatively unstable residues, L17
and F19, in the o/B-discordant segment. L17A/F19A substitutions may reduce the rates of
structural conversions and fibril formation of both wild-type [2] and Arctic-type AR, [3]. The
result of in silico prediction also suggested that L17A/F19A substitutions may alter the propen-
sity of the secondary structure of the o/p-discordant segment for both wild-type and Arctic-
type AByo. Fig 5 showed the secondary structures of the o/B-discordant segments obtained by
using the propensity-based prediction [27]. In the present study, our data show that L17A/
FI19A substitutions can augment the o-helicity of the o/B-discordant segment for both pep-
tides, confirming that an increase of the o-helical propensity of the o/B-discordant segment
can stabilize the conformation and reduce the structural conversion tendency, in turn leading
to a reduction of AP aggregation propensity.

A nucleation-dependent polymerization model has been pointed out to illustrate this com-
plicated process for AP aggregated into amyloid fibril [28]. According to this model, the aggre-
gation process of AP involves conformational changes and self-assembly. In addition to the
intrinsic structural propensity of A, the intramolecular and/or intermolecular interactions of
ApB also play an important role in the aggregation tendency of Af. In a real biological system,
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wild-type ABy AB4(L17A/F19A)
EEEEEEEEh HHHHHHHEh
QKLVFFAED QKAVAFAED
15 23 15 23
AB4(E22G) AB4(L17A/F19A/E22G)
EEEEEEEEe HHHHHHHEe
QKLVFFAGD QKAVAFAGD
15 23 15 23

Fig 5. The predicted secondary structures of the a/B-discordant segments of double Ala-substituted
ApB peptides and their native forms. The secondary structure (upper row) for each amino acid residue was
obtained by using the propensity-based prediction as described in Fig 2 caption of ref. 27. Adopting the
notation used in Fig 2 caption of ref. 27, we denote the B-strands predicted with high and low probability by
the symbols E and e, respectively. The symbols H and h were used for denoting the a-helical structures
predicted with high and low probability, respectively.

doi:10.1371/journal.pone.0154327.g005

the interactions between A and its local environments would affect its aggregation propensity.
Moreover, the conformation of AB may influence these interactions as well. Mutation in the o/
B-discordant segment of AP might alter not only the structural propensity but also these inter-
actions. The effects of mutations on these two factors are profound. Either one factor could
increase or reduce the structural conversion tendency of AB. The joint contribution of these
two factors to the conformational conversion tendency of Ap would result in a modulation of
Ap aggregation propensity. In the previous study [14], we found that Arctic mutation
decreased the a-helical propensity of the a/B-discordant segment, leading to in an increase of
the structural conversion tendency of AP. In this study, we obtain that L17/F19A substitutions
exhibits an opposite effect on the structural propensity and structural conversion tendency of
AB. These mutation studies provided the information about the role of the structural propen-
sity of the a/B-discordant segment in A aggregation propensity. However, the role of the
interactions in A aggregation propensity remains characterized. The o/B-discordant segment
of AP covered residues 16-23. Besides the Arctic mutation, several FAD-linked ABPP muta-
tions which promote o-helix-to-fB-strand conversion and fibril formation [29, 30] were also
located in this region. Whether other FAD-linked ABPP mutations have similar effects to Arc-
tic mutation on the structural propensity of the a/p-discordant segment remains unknown.
The effects of L17/F19A substitutions on the structural and aggregative propensities of other
FAD-linked AR mutants need to be investigated. Study of the effect of these mutations on the
structural and aggregative propensities of AR may help us gain more insight into the molecular
mechanism of A aggregation from a structural point of view.
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