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Abstract

The Peg3 (Paternally Expressed Gene 3) imprinted domain is predicted to be regulated
through a large number of evolutionarily conserved regions (ECRs) that are localized within
its middle 200-kb region. In the current study, we characterized these potential cis-regula-
tory regions using phylogenetic and epigenetic approaches. According to the results, the
majority of these ECRs are potential enhancers for the transcription of the Peg3 domain.
Also, these potential enhancers can be divided into two groups based on their histone modi-
fication and DNA methylation patterns: ubiquitous and tissue-specific enhancers. Phyloge-
netic and bioinformatic analyses further revealed that several cis-regulatory motifs are
frequently associated with the ECRs, such as the E box, PITX2, NF-kB and RFX1 motifs. A
series of subsequent ChIP experiments demonstrated that the trans factor MYOD indeed
binds to the E box of several ECRs, further suggesting that MYOD may play significant
roles in the transcriptional control of the Peg3 domain. Overall, the current study identifies,
for the first time, a set of cis-regulatory motifs and corresponding trans factors that may be
critical for the transcriptional regulation of the Peg3 domain.

Introduction

Peg3 (Paternally expressed gene 3) is an imprinted gene identified from human chromosome
19q13.4/mouse proximal chromosome 7 [1]. Mouse genetic studies have demonstrated that this
gene is involved in various aspects of mammalian reproduction, including milk provision and
maternal-caring behaviors [2-4]. Consistent with this, Peg3 is highly expressed in brain, testis and
ovary [1,5,6]. Peg3 has also been known as PwI as a DNA-binding transcription factor involved
in myogenesis [6]. Recent studies further characterized Peg3 as a transcriptional repressor control-
ling various downstream genes [7,8]. In human, PEG3 has been often identified as a potential
tumor suppressor based on the observation that its promoter is usually methylated in ovarian and
breast cancers [9-11]. According to recent surveys in humans and mice, PEG3 appears to be one
of the most epigenetically unstable imprinted genes during tumorigenesis [12,13]. In fact, in vitro
experiments demonstrated that the PEG3 protein has the potential to stop cell division in ovarian
cancer cell lines [14]. The expression levels of Peg3 are also dynamically fluctuated in response to
various intrinsic and environmental cues, including nutritional starvation and hypoxic conditions
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[15,16]. Nevertheless, it is currently unknown how the transcription of Peg3 is regulated to cope
with various needs and challenges at the cellular and organism levels.

Peg3 is the first imprinted gene identified from the 500-kb genomic interval that harbors 6
additional imprinted genes [17]. The 500-kb genomic intervals of human and mouse Peg3
domains are well conserved in terms of gene content, orientation and distance [17] (Fig 1).
This is particularly the case for the middle 200-kb interval, but this region lacks any obvious
ORFs (Open Reading Frames). Instead, this interval contains 18 small genomic regions, size-
ranging from 100 to 300 base pair (bp) in length, which maintain relatively high levels of
sequence identity, greater than 75%, between human and mouse [18,19]. According to recent
studies, these evolutionarily conserved regions (ECRs) may be potential enhancers based on
their close association with two histone modification marks, H3K4mel (monomethylation on
lysine 4 of histone 3) and H3K27ac (acetylation on lysine 27 of histone 3) [19]. Interestingly,
one particular ECR, ECR18, was shown to physically interact with several promoters of the
Peg3 domain [19], thus it has been hypothesized that ECR18 may play important roles as a
shared enhancer for the long-range transcriptional control for the Peg3 domain [17]. Given the
observed evolutionary conservation, it is likely that the other ECRs should also play important
roles for the transcription and imprinting of the Peg3 domain.

As part of ongoing efforts, these ECRs were characterized in the current study using a series
of phylogenetic and epigenetic approaches. According to the results, these ECRs have been well
conserved during mammalian evolution. These putative enhancers can be further divided into
two different types, ubiquitous and tissue-specific enhancers, based on their epigenetic profiles.
Interestingly, two ubiquitous enhancers, ECR5 and ECRI18, are shown to be epigenetically
unstable during tumorigenesis. The ECRs of the Peg3 domain are also associated with several
cis-regulatory motifs, including the E box, PITX2, NF-xB and RFX1 motifs. A series of ChIP
analyses further demonstrated that MYOD, one of the E box binding factors, indeed binds to
the ECRs of the Peg3 domain. More detailed information has been described below.

Results

Evolutionarily Conserved Regions (ECRs) within the Mammalian Peg3
Domain

In the current study, we analyzed in detail the potential cis-regulatory regions, termed ECRs
(Evolutionarily Conserved Regions), which are localized within the middle 200-kb interval of
the Peg3 domain (Fig 1). We first searched the draft genome sequences of 45 individual mam-
mals using the BLAT program. This search used the sequences of a set of 18 ECRs derived from
the mouse genome as probes [19] (S1 File). The results from this initial survey are summarized
as follows. First, the ECRs of the Peg3 domain were detected only from placental mammals, but
not from the other vertebrates and mammals, such as marsupials and monotremes, indicating
that the Peg3 domain and its associated ECRs are unique to the eutherian lineage. Second, this
survey identified the orthologous sequences for each ECR from many of the sequenced mam-
mals: each ECR was confirmed to be present in the genome sequences of on average 20 out of
45 mammals (Fig 2). This result should be, however, regarded as a temporary tally, but not final
outcome, since the majority of genomes have not been completely sequenced. This is the most
apparent in the case of several rodents, including naked-mole rat, kangaroo rat, squirrel and
guinea pig, in which we have not found any ECR so far (indicated by the light gray section on
the top of Fig 2). Since the probe sequences are from the mouse, the majority of individual ECRs
were also detected more frequently from the rodents than from the distantly related mammals,
as shown in the dark gray section on top (rat and Chinese hamster) versus in the light gray sec-
tion on bottom (hedgehog, tenrec, armadillo and sloth). Third, some of ECRs tend to be
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Evolutionary conservation of mammalian PEG3 domain
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Fig 1. Genomic structure of mammalian PEG3 domains. The 500-kb genomic intervals of mouse and
human PEG3 domains are represented in the following manner. Arrows indicate the transcriptional directions
of imprinted genes; grey rectangles indicate the promoters with allele-specific methylation and vertical lines
indicate the ECRs within the middle 200-kb genomic region. The imprinting status of some of human genes is
currently unknown, thus marked with grey.

doi:10.1371/journal.pone.0154216.g001
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Fig 2. Evolutionarily Conserved Regions (ECRs) within the mammalian Peg3 domain. This chart
summarizes the outcomes of the BLAT search against 45 mammal genome sequences with a set of 18
mouse ECR sequences as probes. Each row represents one mammalian species whereas each column
represents one ECR. If a given ECR from mouse detects the orthologous sequence from a given species,
then this positive outcome is marked as dark grey with a numeric value derived from the BLAT search. The
negative outcome is represented as light grey. Each mammalian species is grouped together based on its
phylogeny. The most well conserved ECRs are also indicated with vertical arrows on top.

doi:10.1371/journal.pone.0154216.9002
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detected more frequently than the others, including ECR2, ECR5, ECR8, ECR11 and ECR14,
which are represented as dark gray columns with arrows. This could be reflecting different levels
of evolutionary conservation or functional constraints between individual ECRs. However, it is
equally possible that some of ECRs may not be easily detectable due to their relatively short
lengths, such as ECR4, ECR6 and ECR?7. Thus, the conservation of these short ECRs needs to be
further tested with more careful analyses in the future. Overall, this initial survey successfully
identified the orthologous sequences of the 18 ECRs in many of mammalian genomes, confirm-
ing their conservation during mammalian evolution. It is also apparent that some of ECRs dis-
play greater levels of evolutionary conservation than the other ECRs, suggesting the presence of
different degrees of functional constraints between individual ECRs.

Epigenetic Profiles of ECRs

The epigenetic modifications of the ECRs were also analyzed using the data sets derived from the
Epigenome consortium (Fig 3). This survey used two different types of epigenetic modifications:
histone modifications and DNA methylation. The survey results from histone modifications
indicated that the majority of the ECRs are associated with two particular histone modifications,
H3K4mel (monomethylation on lysine 4 of histone 3) and H3K27ac (acetylation on lysine 27 of
histone 3), as summarized on the top section of Fig 3. These modifications are known to be asso-
ciated with either poised (H3K4mel, light gray) or active enhancers (H3K4mel and H3K27ac,
dark gray) for the transcription of RNA polymerase II [20-22]. Thus, the majority of the ECRs
are thought to be involved in the transcriptional control of the Peg3 domain. According to
detailed inspection, individual ECRs display different histone modification profiles. Some of the
ECRs seem to show these histone modifications in the majority of the tested tissues, such as
ECR5, ECR7, ECR8, ECR9 and ECR18. In contrast, the other ECRs exhibit the modifications
only in one or two particular tissues, for instance ECR6 in neuronal cells and ECR14 in limb.
This suggests that each ECR may function as an enhancer with a different range of tissue specific-
ity. It is also interesting to note that the ECRs with a broader range of tissue specificity tend to be
localized close to each other, for instance ECR5, ECR7, ECR8 and ECR9. These 4 ECRs are all
localized within a 15-kb genomic distance. This suggests that this genomic region may play more
prominent roles than the other regions in the transcriptional control of the Peg3 domain. This
prediction is further supported by the DNA methylation patterns on the ECRs as shown on the
bottom of Fig 3. Four ECRs, including ECR5, ECR8, ECR9 and ECR18, display DNA hypo-
methylation in the majority of the tested tissues, confirming that these ECRs are likely active in a
broad range of tissues. In contrast, three ECRs showed DNA hypomethylation only in a small
number of tissues, for instance ECR2 in cerebellum and skin, ECR3 in olfactory bulb, and ECR13
in cerebellum and olfactory bulb. This suggests that these ECRs may act as tissue-specific enhanc-
ers. On the other hand, the remaining ECRs tend to show complete methylation in the tested tis-
sues, indicating their relatively inactive states in the tested tissues. It is, however, possible that
these ECRs may function as enhancers in very specific cell types and/or developmental stages
given their histone modification profiles. Taken together, these two series of surveys indicated
that the identified ECRs are likely transcriptional enhancers for the Peg3 domain, and further
that these potential enhancers can be divided into two groups: ubiquitous versus tissue-specific
enhancers. In particular, the roles played by the two ECRs, ECR5 and ECR18, are predicted to be
more ubiquitous than the others based on their histone and DNA methylation profiles.

DNA Methylation Patterns of ECRs

The DNA methylation patterns associated with the ECRs were further characterized using
several sets of genomic DNA derived from normal and cancer samples of mouse and human
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Fig 3. Epigenetic profiles of ECRs. The histone modifications (top) and DNA methylation patterns (bottom)
are summarized using the publically available data set of the Epigenome consortium. Columns represent
individual ECRs, whereas rows represent individual mouse tissues that have been used for histone and DNA
modifications. Different levels of grey indicate various combinations of histone marks: dark (H3K4me1 plus
H3K27ac), medium (H3K4me1 only), and light (H3K27ac only). Blue rectangles on bottom indicate
hypomethylated ECRs. The ECRs showing the most histone modifications and DNA hypomethylations
among tissues are indicated with arrows on top.

doi:10.1371/journal.pone.0154216.9003

(Figs 4 and 5). For this series of analyses, individual genomic DNA were first treated with the
bisulfite conversion protocol, and later the converted DNA were analyzed with the restriction
enzyme-based protocol COBRA (Combined Bisulfite Restriction Analysis). First, a representa-
tive set of 6 ECRs was analyzed using 4 normal tissue DNA from the mouse to test the range of
tissue specificity in DNA methylation of the ECRs (left panel in Fig 4). This set of analyses also
included two regions as controls, the promoter region of Peg3 (mPeg3-Pro) and an ECR from
the H19/Igf2 imprinted domain (mH19-ECR1) [13]. The promoter region of Peg3 (mPeg3--
Pro) showed about 50% methylation levels in all 4 tissues, consistent with the fact that this
region is methyated in an allele-specific manner [11,17]. We have also performed a set of con-
trol experiments testing the feasibility of the current approach using a series of bisulfite-con-
verted DNAs displaying 0 to 100% methylation levels (S2 Fig). As expected, the results
demonstrated no major bias during PCR amplification and restriction enzyme digestion. The 6
ECRs can be divided into two groups based on their DNA methylation patterns among the
tested tissues. Four ECRs, ECR2, ECR4, ECR6, ECRS, displayed variable DNA methylation lev-
els among the individual tissues. Yet, all of these ECRs tend to show lower levels of DNA meth-
ylation in cerebellum and hypothalamus than in liver and thymus. This agrees with the
hypomethylation patterns observed from the data set of the Epigenome consortium (Fig 3). On
the other hand, the two remaining ECRs, ECR5 and ECR18, displayed almost complete
unmethylation among all the tissues tested. This is again consistent with the ubiquitous hypo-
methylation patterns of the two ECRs observed by the Epigenome consortium (Fig 3).
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Fig 4. DNA methylation profiles of mouse ECRs. The bisulfite-converted DNA of mouse normal tissues
(left) and thymic tumor tissues (right) were amplified, and subsequently analyzed with COBRA (Combine
Bisulfite Restriction Analysis). The normal DNA was from cerebellum (Cer), hypothalamus (Hyp), liver (Liv)
and thymus (Thy). The thymic DNA set on right was from normal (N), early-stage (#4 and #3) and advanced-
stage tumors (#2). Each PCR product from a given ECR was digested with a restriction enzyme, resulting in a
mixture of digested and undigested products. Depending upon each enzyme, the status of digestion indicates
either unmethylation (U) or methylation (M) of the particular CpG site, which is part of the recognition site of
the enzyme. Digestion by two enzymes, Fokl and Hphl, indicate Unmethylation since these enzymes
recognize TG. In contrast, the other remaining enzymes recognize CG, thus indicating Methylation. The
ECRs with boxes are the ones showing dramatic changes in their DNA methylation levels in the thymic tumor
samples. DNA methylation levels of these ECRs were estimated through calculating the density of DNA
bands with the Imaged program. Compared to the levels of the normal samples, the observed changes in the
thymic tumor samples are indicated with either hypomethylation (green) or hypermethylation (red).

doi:10.1371/journal.pone.0154216.9004

The DNA methylation analyses were also performed on a set of DNA derived from differ-
ent-stage thymic tumor samples, which had been prepared through a breeding experiment
involving MMTV-Cre and KrasG12D models (right panel in Fig 4) [13]. According to the
results, the DNA methylation levels of the two ECRs, ECR2 and ECR18, were affected in the
tumor samples. The DNA methylation levels of ECR2 were greater in the final-stage thymic
tumor (#2) than those of the milder (#4 and #3) and normal (N) samples. Interestingly, the lev-
els of one of the milder samples (#4) were lower than that of the normal sample. The methyla-
tion levels of ECR18 were also increased progressively from no methylation in the normal
sample to much greater levels of methylation in the final-stage thymic tumor sample (#2). This
progressive change of DNA methylation levels had become particularly obvious since ECR18 is
always protected from DNA methylation among all the tissues tested. An independent control
from the other imprinted domain, mH19-ECR1, also showed methylation changes in the final-
stage tumor sample (#2). In this case, this potential enhancer had become hypomethylated,
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Fig 5. DNA methylation profiles of human ECRs. The bisulfite-converted DNA of human normal tissues
(left) and matched pair sets (right) were amplified, and subsequently analyzed with COBRA (Combine
Bisulfite Restriction Analysis). The normal DNA was from brain, testis, lung and liver. The matched pair sets
of normal (N) and adjacent cancer (C) were from breast and lung. Each PCR product from a given ECR was
digested with a restriction enzyme, resulting in a mixture of digested and undigested products. Depending
upon each enzyme, the status of digestion indicates either unmethylation (U) or methylation (M) of the
particular CpG site, which is part of the recognition site of the enzyme. Digestion by two enzymes, Fokl and
Hphl, indicate Unmethylation since these enzymes recognize TG. In contrast, the other remaining enzymes
recognize CG, thus indicating Methylation. The ECRs with boxes are the ones showing dramatic changes in
their DNA methylation levels in the matched pair sets. DNA methylation levels of these ECRs were estimated
through calculating the density of DNA bands with the Imaged program. Compared to the levels of the normal
samples, the observed changes in the cancer samples are indicated with either hypomethylation (green) or
hypermethylation (red).

doi:10.1371/journal.pone.0154216.9005

which is different from the hypermethylation observed from ECR2 and ECR18 of the Peg3
domain. This indicated that the changes observed from the ECRs of the Peg3 domain may be
an outcome of specific events, but not of global DNA hypo or hypermethylation during
tumorigenesis.

A similar series of analyses were also performed using two sets of human DNA (Fig 5). As
expected, the promoter regions of two imprinted genes, hPEG3-Pro for PEG3 and hUSP29-Pro
for USP29, showed around 50% methylation levels, again consistent with the allele-specific
methylation pattern of these two genes [11,17]. The methylation levels at testis were, however,
lower than 50% due to the large portion of germ cells included in this tissue. The methylation
patterns of human ECRs were similar to those observed from the mouse ECRs. First, two
ECRs, ECR5 and ECR18, seem to show static and ubiquitous methylation patterns among the
several tissues tested, which are similar to those patterns observed from the mouse counter-
parts. Second, the two ECRs, ECR5 and ECR18, also turn out to be affected in cancer samples.
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@’PLOS ‘ ONE

Peg3's Enhancers

As shown in the right panel of Fig 5, ECR5 displayed DNA hypermethylation in the breast and
lung cancer samples, whereas ECR18 showed hypomethylation in the breast cancer sample.
The changes observed from human ECR18 are also similar to those from the mouse thymic
tumor samples (Fig 4). Despite these similarities, however, the DNA methylation patterns of
ECR18 appear to differ between human and mouse. Human ECR18 is mostly methylated,
whereas mouse ECR18 tends to be unmethylated among all the tissues tested. The reason for
this difference is currently unknown, but needs to be investigated in the near future. The meth-
ylation changes observed from human and mouse ECRs, indicated with boxes in Figs 4 and 5,
were confirmed through repeating three independent trials of COBRA analyses, thus their sta-
tistical significance have been included as supporting information (S2 Table). Overall, this
series of DNA methylation analyses revealed two overall patterns for the ECRs: static and ubig-
uitous methylation patterns for ECR5 and ECR18 and tissue-specific methylation patterns for
the remaining ECRs. Interestingly, the DNA methylation levels of the two ECRs, ECR5 and
ECRI18, tend to be also sensitive to changes in cancer samples.

Potential Transcription Factor Binding Sites within ECRs

A series of bioinformatics analyses were performed to identify potential transcription factor
binding sites within ECRs. First, as part of the phylogenetic footprining process [23,24], we
aligned each of 18 sets of ECR sequences that have been derived from individual mammals
using the bl2seq program (http://blast.ncbinlm.nih.gov/Blast.cgi?PAGE_TYPE=
BlastSearch&BLAST SPEC=Dblast2seq&LINK_LOC=align2seq) (S3 File). This sequence align-
ment was designed to identify small regions within each ECR that have been selected during
mammalian evolution. For instance, the sequence alignment of the 20 sequences of ECR18
indeed confirmed the presence of several small regions with no sequence variations (bottom
section of Fig 6). These small regions are most likely binding sites for unknown transcription
factors. These unknown transcription factors were subsequently predicted using the dcode pro-
gram (http://www.dcode.org/). According to the prediction, two sets of transcription factors
can bind to ECR18. The first set of transcription factors include AP4, MYOD, E47 and Myo-
genin, which all share the E box motif as their core DNA-binding sites. This E box motif
(CAGCTG) is well conserved among all the mammalian sequences of ECR18, as shown in the
top section of Fig 6. Another transcription factor termed PITX2 can bind to a motif
(GGGATTA) found within ECR18. This motif is also well conserved among ECR18 of all the
mammals. This series of analyses were performed on all the remaining ECRs, and the results
were summarized in the following manner (Fig 7). The frequency of each motif identified
within a given ECR was represented with the number of mammalian species harboring the
motif. For instance, one motif, termed the E box, was detected 34 times within the 20 mamma-
lian sequences of ECR18, averaging 1.7 times per species.

While inspecting the results from the ECRs, we noticed that four particular motifs are fre-
quently detected among several ECRs. These include E box (CAGCTG), PITX2 (GGGATTA/
TAATCCC), NF-kB (GGAATTTT /AAAATTCC), and RFX1 (CCATGG). Each of these motifs has
been identified as a conserved motif from more than three ECRs (Fig 7). This frequent sharing
of these motifs among ECRs was very unexpected, and also provided an interesting pattern: a
given motif tends to be shared by the ECRs that are localized close to each other. The E
box motif was frequently detected among the following ECRs, ECR2 and ECR3, ECR 5 through
9, and ECR17 and ECR18. It is interesting to note that the functions of the ECR 5 through 9
have already been predicted to be more ubiquitous and prominent than the others based on
their histone modification profiles (Fig 3). Yet, they may all share a common motif, the E
box motif. Thus, this further suggests that unknown trans factors binding to this E box motif
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Fig 6. Phylogenetic footprinting of ECRs. For each ECR, the sequences from individual mammals were
first aligned using the bl2seq program to identify small regions that have no sequence variations (bottom). A
subset of sequences from representative mammals was also aligned using the dcode program to predict
potential cis-regulatory motifs (top). As an example, these two alignments were derived from the set of
ECR18, showing small conserved regions indicated with arrows (E box and PITX2) and also with boxes.

doi:10.1371/journal.pone.0154216.9006

might play major roles in the transcriptional control for the Peg3 domain. In the case of NF-kB
and RFX1 motifs, they are found within ECR3, ECR10, ECR11, ECR12, ECR14 and ECR16

(Fig 7). In this case, interestingly, these two motifs tend to be localized together within some of
the ECRs, for instance, ECR3, ECR12, ECR14 and ECR16. A similar pattern was also observed

Enrichment of cis-regulatory motifs within ECRs

Motifs ECR1 ECR2 ECR3 ECR4 ECRS ECR6 ECR7 ECR8 ECR9 ECR10 ECR11 ECR12 ECR13 ECR14 ECR15 ECR16 ECR17 ECR18|
E box (CAGCTG) 1 &5 2 12 3 12 71 8] o 6 6 4] 1 ] 8 48 34
PITX2 (GGGATTA/TAATCCC) 3 3 1 1 24 0 0 32 9 3 o 1 o 1 4 1 0 17
NFkB ( GGAATTTT/AAAATTCC) O 0 14 ] 0 0 0 27 ] 0 He o 33 0 15 2 0

RFX1 (CCATGG) o 0 18 2 2 (] (] 1 1 18 12 35 1 21 ] 19 3 5

Total No of Species 32 39 21 8 28 S 9 34 20 32 30 24 16 39 14 18 20 20

Fig 7. Enrichment of cis-regulatory motifs within ECRs. Several cis-regulatory motifs (represented in
rows) are frequently detected within individual ECRs (represented in columns). The frequency of this
detection was first summarized as numeric values in each cell, and later compared against the total number
of available mammalian sequences for a given ECR. If the relative ratio of the number of the detection to the
total number of available sequences for a given ECR is greater than 0.5, then that cell is marked as grey.

doi:10.1371/journal.pone.0154216.9007
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from the other two motifs, the E box and PITX2 motifs, which were detected together within
ECR5, ECR8 and ECR18. Overall, this sharing of cis-regulatory motifs among the ECRs of the
Peg3 domain further suggests that the individual ECRs within the Peg3 domain may be func-
tionally related to each other.

Identification of MYOD as a Trans Factor for the ECRs

According to the prediction described above, several cis-regulatory motifs are quite frequently
shared among the ECRs of the Peg3 domain, such as E box and NF-kB motifs. In that regard, it
is relevant to note that the E box motif is a DNA-binding site for multiple trans factors, includ-
ing AP4, E47 and MYOD. In fact, the genome-wide targets of MYOD have already been identi-
fied through a series of ChIP-seq experiment using C2C12 myoblast cell line [25]. Careful
inspection of this data set indeed indicated potential binding of MYOD to several ECRs,
including ECR2, ECR7 and ECR18 (Fig 8). Thus, we performed a series of ChIP experiments
to test potential binding of MYOD to the ECRs of the Peg3 domain (Fig 8). For this series of
analyses, we used two sets of chromatin that had been prepared from MEF and neonatal brains.
These chromatins were immunoprecipitated with the same monoclonal antibody against
MYOD that was used for the previous ChIP-seq experiment [25]. This series of ChIP analyses
were designed to survey a set of 19 potential targets: 18 ECRs and one independent target from
the H19/Igf2 domain. This independent target has been chosen as a control since this target is
one of the most prominent peaks in the ChIP-seq data set, and also it has three E box motifs

Identification of MyoD as a trans factor for ECRs

Sk THeF Tom
o | &asaom! 6000l &T0m| 600 sl [1K0]
V:uSq;mg mhég’ga&mh
Toweess 2ni e g3 . I
P olffh st Wl Tngreiean
Pagiis 3 =
| 02012 MyoD Myoze 24 TFBS ChlP-sg Peaks Rep 1 from ENCODECabech
|
|
{
i
|
|
02012 Myod Myozte 248 TFBS CalP-sa3 Sgnal Rep 1 een ENCODECalenh
C2NyeD 24 1
0 st coaslls sdli -[ L o A Jl
ECR2 ECR7 ECR18

ECRs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-
Input --'---~—‘. .,__-”--
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Ab x
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Fig 8. Identification of MYOD as a trans factor for ECRs. (top) A series of ChlP-seq experiments were
previously performed using anti-MYOD antibody with the chromatin from C2C12 myoblast cell lines. The
upper panel represents part of these ChlP-seq results belonging to the Peg3 domain. Among several
predicted peaks, three peaks were shown to overlap with the ECRs, ECR2, ECR7, and ECR18. (bottom) This
panel shows the results derived from an independent series of ChlP experiment using the chromatin
prepared from MEF cells. Each row represents a set of PCR targeting 18 ECRs using the Input, no antibody
(Neg) and the immunoprecipitated DNA with anti MYOD antibody as templates. The ECRs with the
enrichment only in Ab (MYOD) are considered to be true positives, as marked with *.

doi:10.1371/journal.pone.0154216.g008
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within its 300-bp genomic region (data not shown). As expected, we were able to detect the
enrichment of the anti-MYOD antibody-immunoprecipitated DNA at this control locus only
from the MEF cells, but not from the neonatal brain, confirming the feasibility and specificity
of our ChIP experiments (54 File). Thus, we repeated a series of PCR-based surveys using 18
primer sets. According to the results, none of ECRs were positive with the chromatin from the
neonatal brain (data not shown). On the other hand, several ECRs were indeed bound by
MYOD in the MEF cells. The list of positive targets includes ECR2, ECR6, ECR7 and ECR9.
This binding of MYOD to these ECRs appears to be consistent with the initial prediction since
these are the ECRs with the E box motif. The other ECRs also showed some levels of the enrich-
ment, but their enrichment levels were not that different from those detected from the negative
control. This set includes ECR3, ECR4, ECR11 and ECR18. Overall, this series of ChIP experi-
ments confirmed that the E box motif found within several ECRs is an in vivo target site of
MYOD within the Peg3 domain, thus further suggests that MYOD may play roles as a trans
factor in the transcriptional control of the Peg3 domain.

Discussion

In the current study, we characterized the evolutionarily conserved regions (ECRs) of the Peg3
domain as cis-regulatory regions using phylogenetic and epigenetic approaches. The results
indicated that the majority of these ECRs are potential enhancers for the transcription of the
Peg3 domain. Also, these potential enhancers can be divided into two groups based on their
histone modification and DNA methylation patterns: ubiquitous and tissue-specific enhancers.
Phylogenetic and bioinformatic analyses further revealed that several cis-regulatory motifs are
frequently associated with the ECRs, such as the E box, PITX2, NF-kB and RFX1 motifs. A
series of subsequent ChIP experiments demonstrated that the trans factor MYOD indeed binds
to the E box motif of several ECRs, thus further suggesting that MYOD may play roles in the
transcription control of the Peg3 domain. Overall, the current study identifies a set of cis-regu-
latory motifs and corresponding trans factors that may be important for the transcriptional
regulation of the Peg3 domain.

The current study provides the following insights regarding potential roles played by the
ECRs of the Peg3 domain. First, the orthologous sequences of the 18 ECRs have been success-
fully identified from the majority of the mammals (Fig 2). Furthermore, detailed inspection of
the genomic organization of the Peg3 domain indicated that the order, orientation and spacing
of individual ECRs are also well conserved (data not shown). Thus, this structural conservation
strongly suggests that these ECRs are very critical for the function of the Peg3 domain. Second,
histone modification profiles indicated that the majority of ECRs are most likely enhancers for
Pol II transcription (Fig 3). The histone modification profiles also suggest that these ECRs may
function as two different types of enhancers: ubiquitous and tissue-specific enhancers. This
prediction is further supported by DNA methylation patterns associated with ECRs (Figs 4 and
5). The majority of ECRs tend to be hypomethylated in a tissue-specific manner, yet two of
these ECRs show hypomethylation among all the tissues tested. Thus, these two ECRs, ECR5
and ECR18, may be different from the remaining ECRs. These two ubiquitous ECRs may serve
as general entry sites, recruiting HAT (Histone Acetyl Transferases) and other basic machiner-
ies of Pol II transcription for the promoters and nearby ECRs. In that regard, it is important to
note that the genomic interval encompassing ECR18 physically interacts with several promot-
ers of the Peg3 domain in brain [19]. Interestingly, ECR18 is also the one that displays the most
frequent change in DNA methylation levels in both human and mouse cancers (Figs 4 and 5).
This further supports an idea that ECR18 may play the most critical roles for the Peg3 domain.
On the other hand, ECR5 may also play critical roles, but in different contexts, given its close
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proximity to the other ECRs with neuronal and developmental specificity. For instance, several
ECRs, including ECR2, ECR4, ECR6 and ECR?7, are shown to be very specific in neuronal cells
during early development. In that regard, it is relevant to note that a deletion encompassing
these ECRs in cows is closely associated with stillbirths [26]. Also, these ECRs are very close to
the two recently identified alternative promoters of Peg3, which exhibit early-stage specificity.
For instance, ECR2 and ECR4 are located right next to these two alternative promoters, Ul
and U2, respectively [27]. Overall, it is likely that the majority of the ECRs described above
play important roles in the transcription of the Peg3 domain.

According to the results, several cis-regulatory motifs are closely associated with the ECRs
of Peg3 domain, including the E box, PITX2, NF-kB and RFX1 motifs (Figs 6-8). The trans fac-
tors binding to these motifs are quite diverse in terms of their known physiological functions.
Yet, some of these functions appear to be closely associated with the known functions of the
Peg3 locus. First, the E box motif is a DNA binding site for various basic helix-loop-helix pro-
teins, including MYOD, BMAL1/CLOCK and MYC [28-30]. Among these proteins, MYOD
has been a prime candidate given Peg3’s close tie to myogenesis [6,31,32]. A series of ChIP
experiments indeed demonstrated that MYOD actually binds to several ECRs, including ECR2,
ECR?7 and ECR9 (Fig 8). Second, several ECRs also contain the binding motif for PITX2, which
is a well-known factor involved in the development of heart, eye and pituitary gland [33,34]. It
is relevant to note that many imprinted genes, including Peg3, are highly expressed in the hypo-
thalamus and pituitary gland [35]. Thus, it might be interesting to pursue whether PITX2 is
also involved in the expression of the other imprinted genes. Third, the binding motif for NF-
kB is found within several ECRs. The protein complex NF-«B is involved in the signal trans-
duction pathways that respond to various intrinsic and environmental stresses [36,37]. It is
well known that Peg3 is an immediate downstream gene of p53, and also that the expression
levels of Peg3 tend to be up-regulated in response to various stresses, such as hypoxic condi-
tions [38,39]. The ECRs with the NF-kB motif might be the ones that control the transcrip-
tional rate of Peg3 in this functional context, which is also interesting to pursue in the near
future. Taken together, several motifs associated with the ECRs provide very exciting directions
for the future study of the Peg3 domain.

The current study also provides one intriguing observation that adjacent ECRs tend to share
similar cis-regulatory motifs (Fig 7). The E box motif is frequently detected within the ECRs
that are located close to the bidirectional promoter of Peg3/Usp29, whereas the NF-kB motif
tends to be found within the ECRs distal to the promoter (Fig 9). This sharing and distribution
pattern might be reflecting the evolutionary history of how a large number of ECRs have been
formed for the Peg3 domain during evolution. The upstream region of the ancestral Peg3 locus
might have only a few ECRs at the beginning, such as ECR5 and ECR18, and later, these ECRs
have been duplicated to generate adjacent ECRs. These duplicated ECRs might have diverged
from the original ECRs by obtaining new cis-regulatory motifs to adapt to new functions, such
as providing slightly different spatial expression patterns for different cell populations or mod-
ulating transcription rates in response to new environmental challenges. If this is the case, the
most commonly shared cis-regulatory motifs, such as the E box and NF-«xB motifs, should be
the ancestral motifs. On the other hand, it is also possible that this unusual sharing of cis-regu-
latory motifs among adjacent ECRs might have been driven by some mechanistic needs for the
ECRs to function as long-range enhancers. If a group of ECRs need to work together for one
promoter through a cis-regulatory motif, it might be easier, topologically, to have several
enhancers close together than to have the enhancers scattered throughout a large genomic dis-
tance. It would be interesting to test these possibilities in the near future. Overall, the distribu-
tion pattern of several motifs clearly suggests that the ECRs located close to the bidirectional
promoter might be responsible for the tissue and stage-specific expression patterns of the Peg3
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Distribution of cis-regulatory motifs among ECRs
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Fig 9. Distribution of cis-regulatory motifs among ECRs. The ECRs of the Peg3 domain may play two
different roles in controlling the transcription of Peg3 and other adjacent genes. The ECRs with the E box and
PITX2 motifs may be responsible for the tissue and stage-specific expression of the Peg3 domain. On the
other hand, the ECRs with NF-kB and RFX1 motifs may be responsible for modulating the transcription rate
of the Peg3 domain in response to intrinsic and environmental cues at the cellular and organism levels.

doi:10.1371/journal.pone.0154216.g009

domain. On the other hand, the ECRs located in the distal region might be involved in control-
ling the transcription rate of the Peg3 domain in response to environmental challenges (Fig 9).

Materials and Methods
Ethics Statement

All the mouse experiments were performed in accordance with National Institutes of Health
guidelines for care and use of animals and also approved by the Louisiana State University
Institutional Animal Care and Use Committee (IACUC), protocol #13-061.

Bioinformatics Analyses of ECRs

A set of 18 ECRs were initially identified through comparing the 500-kb genomic sequences of
human and mouse Peg3 domains with the following criteria: any region longer than 50 bp in
length and also showing greater than 75% sequence identity between human and mouse [19].
This initial set of mouse ECRs was used as probes to identify the corresponding orthologous
sequences from the other mammals. This screening was performed using the BLAT program
(http://genome.ucsc.edu/cgi-bin/hgBlat). The outcome of each ECR’s screening has been sum-
marized as a table with its raw score from the BLAT search (Fig 2). For each ECR, the identified
sequences were formatted as fasta files, and subsequently used for sequence alignment with the
bl2seq program (http://blast.ncbinlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST _
SPEC=blast2seq&LINK_LOC=align2seq). A subset of ECR sequences was further used for pre-
dicting transcription factors using the dcode program (http://www.dcode.org/). The individual
sequence and corresponding alignment files are available (S1 and S3 Files).
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The histone and DNA modification profiles associated with the ECRs were obtained from
the publically available data sets of the UCSC genome browser (http://genome.ucsc.edu/cgi-
bin/hgGateway). The genomic interval of each ECR was individually intersected with histone
modification peaks and also with DNA hypomethylated regions. This series of scoring has
been initially summarized as a table, and subsequently presented as Fig 3.

DNA Methylation Analyses of Human and Mouse ECRs

The current study used the following sets of genomic DNA for DNA methylation analyses. The
mouse DNA of normal tissues was derived from one-month-old female with C57BL/6] genetic
background. The DNA of thymic tumor samples was derived from several sets of offspring that
had been obtained through the crossing between MMTV-Cre (Stock No. 003553, B6129-Tgn
(MMTV-Cre)4Mam-LineD) and KrasG12D strains (Stock No. 08179 B6.129-Krastm4Tyj /Nci
(LSL-KrasG12D)) [13]. The three strains used for this study were all obtained from the Jackson
Laboratory. All the mice were housed at the DLAM (Division of Lab Animal Medicine) of LSU
on a regular 12-12 dark-light cycle under a constant temperature 70°F and 50% humidity. All
animals were given ad libitum access to water and Rodent Diet 5001. The nursing females were
with Mouse Diet 5015. The mice with thymic tumors were monitored daily by measuring body
weight, and any mice showing signs of distress or when reaching 15% weight loss were eutha-
nized by CO2 asphixation in accordance with the rules and regulations set forth by the
IACUC. Since the mice in the current study developed thymic tumors, it was not possible to
monitor the size of the tumors until their necropsy. Nevertheless, the size of the harvested
tumors was on average 10 mm in diameter. The human DNA of normal tissues was obtained
from a commercial firm (BioChain): brain (lot# A712209), testis (lot# B104090), lung (lot#
A908154) and liver (lot# A908154). The two matched pair sets of cancer DNA were also
obtained from the same commercial firm (BioChain): breast (lot#B412015) and lung (lot#
A811204).

Each DNA was treated with the bisulfite conversion protocol [40], and the converted DNA
was subsequently used as a template for PCR amplification. The amplified product for each
sample was analyzed with the restriction enzyme-based method COBRA (Combined Bisulfite
Restriction Analysis) [41]. DNA methylation levels of a subset of loci were also measured using
the Image] software as described before [12,13]. The information regarding restriction enzymes
and primer sets has been included as S1 Table.

Chromatin ImmunoPrecipitation (ChIP) Analyses

The chromatin was prepared from neonatal brains and MEF (Mouse Embryonic Fibroblast)
cells according to the protocol previously described [42]. The current study used the following
antibody: anti-MYOD monoclonal antibody (SantaCruz, Cat. No. sc-32758X). Potential bind-
ing of MYOD to ECRs was surveyed through performing a series of PCR targeting 18 ECRs.
The information regarding the sequences and positions of the oligonucleotides is available as
S1 Table.

Supporting Information

S1 File. This file contains all the ECR sequences that have been identified from 45 individ-
ual mammals.
(RTF)
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S2 File. This file contains the results derived from a set of control experiments testing the
feasibility of COBRA-based DNA methylation analyses.
(PPTX)

S3 File. This file contains the sequence alignment outputs that have been derived from the
18 sets of ECR sequences using the bl2seq program.
(PDF)

$4 File. This file contains a set of individual ChIP experiments testing the binding of
MYOD to one control locus, which is located upstream of the H19 locus.
(PPTX)

S1 Table. This table includes the information regarding the positions and sequences of the
oligonucleotides used for COBRA and ChIP experiments.
(XLSX)

S2 Table. This table summarizes the DNA methylation level changes observed through
COBRA analyses, which are indicated with boxes in Figs 4 and 5.
(XLSX)
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