
Architecture and Implementation of OpenPET Firmware and 
Embedded Software

Faisal T. Abu-Nimeh [Senior Member, IEEE], Jennifer Ito, William W. Moses [Fellow 
Member], Qiyu Peng, and Woon-Seng Choong [Member, IEEE]
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA

Faisal T. Abu-Nimeh: ftabunimeh@lbl.gov

Abstract

OpenPET is an open source, modular, extendible, and high-performance platform suitable for 

multi-channel data acquisition and analysis. Due to the flexibility of the hardware, firmware, and 

software architectures, the platform is capable of interfacing with a wide variety of detector 

modules not only in medical imaging but also in homeland security applications. Analog signals 

from radiation detectors share similar characteristics – a pulse whose area is proportional to the 

deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic 

design method of the platform is adopted for the hardware, firmware, and software architectures 

and implementations. The analog front-end is hosted on a module called a Detector Board, where 

each board can filter, combine, timestamp, and process multiple channels independently. The 

processed data is formatted and sent through a backplane bus to a module called Support Board, 

where 1 Support Board can host up to eight Detector Board modules. The data in the Support 

Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) 

depending on the algorithm implemented or runtime mode selected. It is then sent out to a 

computer workstation for further processing. The number of channels (detector modules), to be 

processed, mandates the overall OpenPET System Configuration, which is designed to handle up 

to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 

16,384 channels using 32-channel Detector Boards in the Large System Configuration.

Keywords

Electronics; Instrumentation; Nuclear imaging; Open source hardware; Open source software

I. Introduction

The OpenPET [1]–[3] platform provides a flexible and modular data acquisition platform for 

a variety of applications. This flexibility allows users to interface with different types of 

detectors. Nowadays, radiation detectors utilize different scintillators (CsI:Tl, NaI:Tl, LSO, 

GSO, BGO, YAP, etc.) coupled to different photodetectors, such as photomultiplier tubes 

(PMTs), position-sensitive PMTs, multianode PMTs, PIN photodiodes, avalanche 

photodiodes (APDs), position-sensitive APDs, hybrid photodetectors, and silicon 

photomultipliers (SiPMs). Additionally, solid-state detectors such as silicon, high-purity 

germanium (HPGe), and cadmium zinc telluride (CZT) are also commonly used as radiation 

detectors. The output signals from these detectors share similar characteristics and can be 

HHS Public Access
Author manuscript
IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

Published in final edited form as:
IEEE Trans Nucl Sci. 2016 April ; 63(2): 620–629. doi:10.1109/TNS.2015.2499600.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combined in multiple ways depending on the application and purpose: Simple (individual 

coupling and four channel “block detectors”) to moderately complex (Anger cameras that 

read out dozens of PMTs and row/column readout) to complex (position-sensitive detectors 

on both ends of a scintillator crystal array). It is also possible to have setups that use an array 

of photosensors to infer the three-dimensional location of an interaction inside a given 

crystal. Even though there are different variations of radiation detectors, the analog signals 

from most detectors are very similar i.e. a pulse whose area is proportional to the deposited 

energy and whose leading edge is used to extract timing.

A. System Configurations and Capacities

OpenPET offers three system configurations: a Small System (a single Detector Unit), 

depicted in Fig. 1, which is capable of capturing and processing up to 8 Detector Boards, a 

Standard System, shown in Fig. 2 and Fig. 3, up to 64 Detector Boards, and Large System, 

displayed in Fig. 4, up to 512 Detector Boards.

In this paper, we will mainly focus on the Standard System, depicted in Fig. 5, which 

consists of a maximum of 8 Detector Units (DU), where a DU is a Support Board (SB) 

module mounted as a backplane on a standard 12-slot 6U VME chassis. A DU's SB can host 

up to 8 Detector Boards (DBs). A DB is designed to process multiple analog detector 

signals. For example, a Standard System can support a maximum of 1024 channels using a 

16-channel DB (16 analog channels per DB, 8 DBs per DU, and 8 DUs). Alternatively, it 

supports a maximum of 2048 detector signals when using a 32-channel DB.

B. Expected System Performance

The architecture is designed to be high-performance in order to serve the new generation of 

radiation detection data acquisition systems. Some of the important performance metrics are 

a large number of channels, i.e., up to 16,384, high maximum count rate (>106 singles 

events/second), good energy resolution (<2% fwhm for test pulses), and good timing 

resolution (<1ns fwhm for conventional PET, <100 ps fwhm for time-of-flight PET).

C. Data and Control Flow

Using a bottom-top approach on Fig. 5, analog signals coming from a detector is passed 

through the analog front end (AFE) on the DB. The signal is divided into two paths; one to 

compute the energy and the other to compute the timing. For example, considering the 

energy path on the OpenPET 16-channel Detector Board module [2], the analog signals are 

amplified and trimmed using an anti-aliasing filter with a 3dB cutoff frequency in the range 

of 6.5 MHz to 10 MHz. The filtered signal is fed to a 12-bit pipeline analog-to-digital 

converted (ADC) and can be sampled at a rate between 10 MSPS to 65 MSPS. For the 

timing path, the signal is amplified with a ×10 high-bandwidth amplifier and then passed to 

a fast comparator to trigger on the leading edge of the analog signal.

The digitized data and the generated pulse from the timing comparator are fed to the FPGA 

for further processing. The digitalized data is processed using user defined real-time 

algorithms. The timing pulse is fed to a time-to-digital converter (TDC) soft core [4] to 

determine the arrival timestamp of the analog signal.

Abu-Nimeh et al. Page 2

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The data is combined (and correlated if needed), multiplexed, and formatted by the Support 

Board Detector Unit Controller (SB-DUC), which defines the SB loaded with the detection 

firmware. The data from the DB is sent out to the SB IO FPGA for additional processing and 

correlation, if required. The processed data is then passed to the SB Main FPGA. The Main 

FPGA on the SB-DUC combines and multiplexes the data out. For a Small System, the data 

is passed to a Computer Workstation for offline processing, using USB or Ethernet. For a 

Standard System further multiplexing and processing occurs where the formatted data is 

passed to a Coincidence Interface Board (CI) that is plugged into the SB. This CI board 

simply passes the data, through a shielded, cable to a Multiplexer Board (MB) that is 

plugged into a Coincidence Unit (CU). A CU is essentially a DU with MBs plugged into the 

slots where DBs reside as shown in Fig. 2. The MB passes the formatted data from the CI 

board to the Support Board Coincidence Unit Controller (SB-CUC), which defines the SB 

loaded with the coincidence firmware. The SBCUC will do the final processing (e.g., finding 

the coincidence event, formatting the coincidence word, etc.) of the data coming from all the 

DUs and then send final data (via USB or Ethernet) to a workstation for storage or offline 

processing.

The command and control flow is similar to the data flow; however, the commands are 

initiated from top-to-bottom, similar to a tree topology. On startup, each node in the tree 

discovers its parent and children, and all addresses are configured accordingly. A user (or a 

script) initiates a command from the workstation. This command will be translated and 

encoded to the corresponding child, i.e., SB-CUC. Consecutively, each node will pass the 

command to its corresponding child(ren) by looking at the destination address. Finally, once 

the command reaches its desired destination(s) the corresponding node(s) execute(s) the 

command and send(s) a reply, if required.

II. Architecture and Implementation

A. Clock Distribution

In OpenPET there are two main clocks: CLK and Slice. The former represents the main 

clock source and it is sourced from an 80 MHz local oscillator or fed from an external SMA 

connector with a frequency range of 5 – 400 MHz. On the other hand, Slice, also known as 

frame clock, is a slower frequency clock and behaves similar to ADC frame clocks, i.e., it 

wraps X number of clock ticks to represent a “Word”. When the main CLK is 80 MHz the 

Slice is typically 1/8th or 1/16th of that frequency, which translates to 10 MHz or 5 MHz 

respectively. Additionally, it is important to mention that sometimes it might be desirable to 

create a “valid” signal instead of a periodic Slice (frame) clock; therefore, the Slice signal is 

thought of as a dual purpose clock/signal depending on the mode of operation in the 

firmware. For example, in Scope mode, discussed in section E.1), the firmware does not 

require a periodic Slice clock. As a result, a “valid” is used there.

The uppermost node is responsible for generating the CLK. OpenPET provides two 

methods: (a) a Local Oscillator (LO) running at 80 MHz or (b) an External clock (Ext) fed 

through a dedicated SMA connector. Fig. 6 shows a simplified clock topology of the entire 

system. All clocks are distributed using LVDS and are fed to clock capable pins on the 

FPGAs. Each FPGA in the system utilizes an internal Phase-Locked-Loop (PLL) in order to 

Abu-Nimeh et al. Page 3

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



keep all components of its system synchronized. The lowermost unit (Detector Unit) in a 

Large or Standard System Configuration receives CLK and Slice through the Coincidence 

Interface Board and passes them separately to two dedicated very low jitter and skew clock 

distribution ICs (TI CDCLVD110) as shown in Fig. 6. For CLK, the clock distribution IC 

generates ten replicas: one goes to the Main FPGA on the Support Board, one goes to the 

two IO FPGAs on the Support Board (the second IO FPGA is not shown in figure for 

simplicity), and eight go to the first 8 slots in the chassis targeting DBs or MBs. Note that 

the clocks in Fig. 6 are connected on Detector Boards, but the concept is the same for 

Multiplexer Boards.

The internal PLLs do not only synchronize the timing across multiple system components 

but also serve as a standard design block shared across multiple boards and FPGAs. This 

standardization helps simplify the overall firmware architecture by reusing the same blocks 

of code across different nodes. For example, the reset logic in the entire platform depends on 

the PLL locking to CLK. Therefore, the reset code is reused across all nodes.

The PLL core in the uppermost parent generates 4 clocks: (i) Main system clock (typically 

running at 80 MHz) is used to feed the clock distribution IC in order to clock all components 

in the system. It also clocks all FPGA modules i.e., Altera’s Qsys module which contains the 

NIOS soft core microprocessor, QuickUSB logic, and the generic Software-Firmware 

Interface module. (ii) Data path clock (typically running at half the frequency of the main 

system clock) is used to transfer the clock domain of the incoming children data/clock to the 

system clock domain. (iii) Frame or slice clock is a slow clock which feeds another clock 

distribution IC in order to align all components in the system. The rising edge of this clock 

is used to create a synchronized startup pulse in the entire system. However, the main use of 

this clock is to wrap or frame the data in all children in fixed time intervals, i.e., simplify 

pipelining the data as well as define event boundaries for coincidence computations. (iv) 

QuickUSB clock (typically running at 30 MHz but can be between 5 – 48 MHz) is used to 

clock data out of OpenPET chassis to a workstation. It is also used to clock in user 

commands from the workstation to the OpenPET system.

Moreover, in all other nodes (e.g., DBs) in the system the PLL core generates 2 clocks: (i) 

Main system clock (typically running at 80 MHz) is a clock signal derived from the clock 

distribution IC found in the node’s parent. Its main purpose is to clock all FPGA modules, 

i.e., Altera’s Qsys module which contains the NIOS soft core microprocessor. It is also used 

to clock the generic Software-Firmware Interface module. (ii) Data path clock is used to 

clock all external components (e.g. ADCs and DACs) as well as transfer the acquired data 

from ADCs clock domain to the child’s output stage clock domain.

B. FPGAs and Other Peripherals

To simplify the hardware and firmware development, all FPGAs in the OpenPET platform 

share the same part number Altera Cyclone III EP3C40F780C7. This facilitates easier 

Printed-Circuit-Board (PCB) design and fabrication as well as lowers the overall cost of the 

platform by reusing the same parts. Additionally, it helps firmware engineers to reuse blocks 

of code across different OpenPET components.

Abu-Nimeh et al. Page 4

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to seamlessly program and update the firmware in a given OpenPET node, the Main 

FPGA in the Support Board is connected to a 64Mb Flash memory device for Active Serial 

Configuration called “EPCS64.” OpenPET stores all firmwares (total of three) as well as the 

embedded software (for NIOS) in a single EPCS device on the Support Board.

On power up, the Main FPGA loads its compressed firmware as well as its embedded 

software from the EPCS. After that the compressed firmware and embedded software 

images of the two IO FPGAs on the Support Board are loaded. Once the IO FPGAs are 

programmed and running, the embedded software in the Main FPGA, by default, programs 

all children (e.g., DBs) using the Passive Serial Configuration Interface, shown as “FPGA 

Config” in Fig. 7, with an uncompressed firmware/embedded software image that is also 

stored in the EPCS. This default behavior helps to bring up a working system in the shortest 

amount of time with the least amount of effort. Note that if we use a compressed image for 

children nodes (e.g. DBs), the bitstream size will be unknown (i.e. variable), which requires 

the end-user to modify and rebuild the firmware and embedded software of the SB whenever 

a change occurs on the Detector Board firmware or software. Therefore, we sacrifice the 

extra space used by an uncompressed image for the sake of flexibility and user friendliness.

Finally, other peripherals like LEDs, SRAM, temperature sensors, and Logic Analyzer 

debugging headers are available in all components of the system for debugging purposes, 

user friendliness, and flexibility. For example, SRAM memory provides a useful storage for 

different uses like DAC thresholds, calibration coefficients, lookup tables, etc.

C. Overview of I/O Communications

1) Host Workstation PC to OpenPET interface—Currently, there are two methods to 

communicate with an OpenPET system: (a) using BitWise QuickUSB module [5] or (b) 

using Gigabit Ethernet 1000BASE-T (copper) or 1000BASE-X (fiber). Both options allow 

for full-duplex communication between a workstation and OpenPET.

QuickUSB uses USB v2.0 which supports up to 480Mbps transfer rates. QuickUSB 

provides two clocking schemes: internal and external. OpenPET uses the latter which means 

that QuickUSB does not internally generate a clock, but it accepts an external clock 

generated from the Main FPGA on the Support Board. This scheme mandates that all 

commands and data from OpenPET to QuickUSB (or vice versa) are synchronized to the 

main clock source described in subsection A above. In return, it simplifies firmware 

development and timing constraints as well as provides better data integrity by using a PLL 

output clock to sample the data.

Gigabit Ethernet requires an additional module in the OpenPET platform called Host PC 

Interface Board. This board is plugged into the tenth slot in the chassis, as shown in Fig. 1, 

and uses a dedicated PHY chip for the gigabit transceiver. The maximum theoretical transfer 

rate of Gigabit Ethernet is 1250Mbps; however, this rate depends on the way the Ethernet 

subsystem is implemented in firmware. For example, for a simple software implementation 

(e.g. using a NIOS microprocessor, Direct Memory Access (DMA), and a soft User 

Datagram Protocol (UDP) stack), this metric is reduced by approximately 20% – 40%. On 

the other hand, using a custom firmware with NIOS, hardware offloading, and modular 

Abu-Nimeh et al. Page 5

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scatter-Gather Direct Memory Access (SGDMA), the transfer rate can achieve 90% to 99% 

of its maximum capacity [6].

2) Inter OpenPET interfaces—OpenPET modules and components have two separate 

links for data path and control path. This is depicted in Fig. 7.

The data path uses sixteen LVDS pairs (shown as Data sub-block in Fig. 7) to transfer large 

amounts of data, e.g. ADC samples from one child to its parent. The data is clocked out 

using “Clock Out” pins in the same sub-block in the figure. This clock is generated using an 

internal PLL whose input clock is “Clock In” (shown as Clocks sub-block in Fig. 7.) An 

additional LVDS bus (eight pairs) is also available for applications that require more than 

sixteen IO data lines.

The control path, on the other hand, uses four single-ended lines, which are currently used to 

implement a standard Serial Peripheral Interface (SPI). The Control sub-block in Fig. 7 

shows the four signals: “Clock” which is a slow frequency serial clock, “MOSI” is a master 

output slave input port, “MISO” is a master input slave output port, and “CS” is chip select. 

It is worth mentioning that these 4 signals can be used to implement other serial protocols 

instead of SPI. However, a custom firmware and embedded software interface must be 

implemented in all nodes replacing the current SPI implementation described in the sections 

below.

D. Command and Control flow

All commands are initiated by the user on a workstation. A script or a Graphical User 

Interface (GUI) program is used to transfer the commands from the workstation to the 

OpenPET chassis via a QuickUSB module or an Ethernet port on the PC Interface Board. 

Ethernet packets are passed directly to the NIOS for further processing, however, when 

using QuickUSB an intermediate firmware module relays the commands from the 

workstation via FPGA fabric to the NIOS microprocessor using a First-In-First-Out (FIFO) 

memory module.

After a command is received by the parent node, it is processed by its NIOS microprocessor 

and a reply (response) is constructed and sent back to the original sender.

All command and reply packets are designed to have the same length. The current command 

length in the OpenPET platform is 80-bits (i.e., 10 bytes) as shown in Fig. 8. However, this 

length is generic by design; in other words, a user can easily change the default length of the 

OpenPET command by changing a single variable called “CMD_PKTS” in the firmware and 

software. This feature gives the user greater flexibility in their implementation, and it 

provides a paved roadmap for future extensions of the OpenPET platform. Note that due to a 

restriction imposed by the QuickUSB module and SPI bus widths, the commands/replies 

have to be a multiple of 16-bits e.g. 80, 96, 112, 128 bit, etc.

The command identifier (CMD ID in Fig. 8) is a 16-bit value where the most significant bit 

(MSB) (named in this context as c/r flag) is used as a multi-purpose flag: (a) when the 

uppermost parent sends down a command with this flag set to 0 (default behavior), the 

Abu-Nimeh et al. Page 6

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



destined child is expected to execute the command (identified by the remaining 15-bits) and 

send a reply within a pre-defined timeout period (typically 200 ms). If the reply is received 

the parent will be satisfied; however, if no reply is received, the parent will attempt to send 

the same command X number of times before coming to a conclusion, i.e., busy child, dead 

child, out of memory, etc. The number of retries X is a constant defined in the client’s 

software and NIOS embedded software in all nodes. (b) When the child responds back to a 

command after a successful execution, it sets the c/r flag to ‘1’ (default behavior). (c) When 

the uppermost parent sends down a command with this flag set to ‘1,’ this command is 

considered asynchronous, or, non-blocking. A non-blocking command becomes useful when 

a child or a grandchild requires a lot of time (more than the permitted timeout period and 

retries) to complete a task. For example, a child is waiting for a user to press a button, or a 

DAC is sending a train of pulses to a detector board for a long period of time. The first child 

that receives a non-blocking command replies immediately to the parent acknowledging that 

it has received the command. Then it either executes the command or passes it down to its 

destination.

The address field (SRC Addr or DST Addr in Fig. 8) are 16-bit fields where each bit or 

ranges of bits are defined as shown in Fig. 9. The Broadcast flag bit is used only when 

sending a command and it causes the first receiving child to broadcast the command to all 

grandchildren. MBC, CDUC, CUC, and DUC flags are 1-bit flags used when sending a 

command to a specific chassis controller. The HostPC flag indicates that the source or the 

destination is the workstation.

E. Data Flow

In order to support different DBs with a different number of channels, there is a need to 

create a generic source synchronous ADC interface. OpenPET utilizes Altera’s Cyclone III 

FPGA which does not come with a dedicated SERDES (serializer/deserializer) circuit; 

therefore, the generic interface has to be implemented in FPGA fabric without relying on 

any dedicated or integrated high-speed interfaces. This introduces a challenge because the 

number of resources (PLLs, Lookup tables, etc) are limited and shared with other modules 

in the DB. As a result, a parameterized compact design is implemented to allow OpenPET to 

interface a wide range of pipeline ADC with maximum sampling frequencies of 

approximately 250 MHz +/− 50 MHz. The design utilizes a standard Altera core called 

“DDIO” which supports double data rate I/O in order to clock the incoming ADC data at 

both rising and falling edges without using any additional PLL cores.

1) Scope Mode (Raw Data)—Oscilloscope or Scope mode is a system data mode where 

ADC samples are transferred as-is from the DBs all the way to the workstation. The user 

must correctly configure the settings of this mode to get meaningful data. To use this mode, 

the user has to send the command ID “SET_SYS_DATA_MODE” with a payload of 0×1, 

followed by the command ID “SET_SYS_DATA_MODE_SETTINGS” with the proper 

payload as shown in Fig. 8. Finally the user can run it by sending the command ID 

“SET_SYS_DATA_MODE_ACTION” with a payload of 0×1. Once the correct 

configuration is in place data transfers are activated by a trigger, e.g. an incoming analog 

signal whose pulse height is larger than a predefined DAC threshold. When the acquisition 

Abu-Nimeh et al. Page 7

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



starts, 32-bit packets from different channels, detector boards, or detector units are simply 

transferred sequentially using a round-robin scheduling algorithm. All complex sorting 

operations are deferred to a later stage, i.e., the workstation, in order to keep the firmware 

architecture simple, small, and predictable.

As described above, Scope mode settings allow the user to set run-time configurations. 

These settings are shown in Fig. 10 and briefly described hereafter. The 32-bit payload 

contains four main parameters: (i) a 4-bit Data Format sets the output format of the Scope 

mode. (ii) A 9-bit Number of Samples specifies the number of samples to stream. (iii) A 4-

bit Number of Samples Before trigger specifies how many samples the firmware has to 

buffer before a trigger occurs. (iv) A 4-bit Trigger Window specifies the number of samples 

to monitor on all channels after a trigger occurs on one channel. If any other channel triggers 

during this time, its header will also have the ‘triggered’ bit flag set to ‘1’.

The data transferred from all detector boards is fairly transmitted through the use of the 

round-robin scheduling algorithm at the SB stage. Hence, a 32-bit channel header and a 32-

bit detector board header, depicted in Fig. 10, are inserted in the data path stream. It is also 

crucial to assign a 4-bit packet ID to differentiate channel headers, detector headers, and 

ADC data samples packets; thus, the four most significant bits of the 32-bit data packets are 

dedicated to that purpose. For example, bits (31:28) for a channel header must have a value 

of 0×3, a detector board header must have a value of 0×4, and the value for an ADC data 

sample must be 0#x000D7;1.

2) Other modes (e.g. singles, coincidence)—Singles mode is a system data mode 

where ADC samples are processed on the Detector Board to create a Singles Event Word 

(SEW), which is a digital representation of a single gamma ray interaction. These SEWs are 

passed to the SB-DUC whose main function is to multiplex the SEWs from multiple 

Detector Boards. The multiplexed SEWs are then passed to the SB-CUC. The SB-CUC 

searches through the SEWs for pairs that are in time coincidence and form a Coincidence 

Event Words (CEWs). These CEWs are then passed to the workstation. Optionally, the SB-

CUC can act as a multiplexer and just pass unaltered SEWs to the workstation.

The system divides time into small, fixed length time slices depending on the CLK and Slice 

ratio (e.g.100–200 ns or 8–16 clocks when CLK is 80 MHz and Slice is 10 or 5 MHz.) All 

individual operations must occur within a single Slice period, which implies that only single 

event words that occur in the same Slice period can be combined to form a coincident event. 

Since it can take a significantly longer time than a single Slice period to process one event, 

the system is designed to pipeline operations so that the processing is divided into smaller 

steps that each can be completed in a single Slice period. The SEWs are output using the 16-

bit wide data bus as shown in Fig. 7. By grouping these 16 lines into 4 sets of 4 lines each, 

the SEWs can be 64-bit or 128-bit long with 8 clocks (100 ns) or 16 clocks (200 ns) of the 

system CLK respectively. During one Slice period, boards that output SEWs (e.g., the DBs 

and CI boards) can pass up to 4 SEWs. Thus, the maximum singles rate that can be 

transferred to the SB-DUC is 32 SEWs (four for each of the eight DBs) per Slice period. 

The SB-DUC can multiplex a maximum of 4 SEWs to the SB-CUC. Similarly, SB-CUC can 

receive a maximum of 4 SEWs from each of the 8 DUs in the Standard System to form the 

Abu-Nimeh et al. Page 8

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CEWs in the SBCUC. In practice, the maximum event rate is limited by the transfer rate 

between the SB-CUC and the workstation, which is considerably slower, i.e., a maximum 

throughput of 480 Mbps for QuickUSB and 1 Gbps for gigabit Ethernet.

III. Embedded Software

Embedded software uses plain C, and runs on Altera’s embedded soft core NIOS 

microprocessor. The subsections below describe the major building blocks of the embedded 

software.

A. NIOS

All FPGAs in the OpenPET system contain a NIOS processor. On the Main FPGA in the 

SB, the NIOS processor has extra features enabled like caching, larger memory space, CPU 

debugging, etc. On the other hand, the NIOS processors running in the IO FPGAs in the SB 

and DB utilize a minimal NIOS core to keep the implementation size minimal.

Having NIOS in all FPGAs simplifies the design and development of the firmware as well as 

the embedded software. For example, in the firmware development, the Software-Firmware 

Interface module is reused in the Main and IO FPGAs in the SB and in the DB FPGA. 

Additionally, in the embedded software the SPI interface is reused in all FPGAs as well. In 

addition to the two benefits mentioned above, this method simplifies the testing and 

enhances the stability of the developed reusable block.

Finally, having NIOS in all FPGAs requires bundling the embedded software along with the 

firmware in order to create a single bitstream image. However, this requires the use of the 

scarce on-chip FPGA memory when DDR memory is not available, i.e., IO FPGAs and DB 

FPGAs. As a result, this restricts the embedded software size to be very small (e.g. less than 

10 KB) so that the embedded software will fit in an onchip memory without taking many 

resources from the rest of the FPGA fabric.

B. SPI Interface for Commands and Control

In order to keep a standard design throughout the platform, OpenPET uses Altera’s standard 

32-bit SPI core to generate the firmware interface and Altera’s standard SPI hardware 

abstraction layer (HAL) and application program interface (API) library for the embedded 

software.

Since the length of an OpenPET command is variable as described in Section II.D the SPI 

interface has to be flexible to allow us to accommodate any expansion or future 

improvements. As a result, a modular SPI software interface is implemented to convert 

QuickUSB and Ethernet commands to 32-bit SPI transactions.

For any given command, it is important to transfer the command ID as well as the payload to 

the destined child; therefore, the parent of the destined child will be responsible for 

managing the source and destination addresses of the OpenPET command. For example, in 

the default 80-bit command implementation of OpenPET, two 32-bit SPI transactions will 

occur: The first transaction will contain the 16-bit command as well as 16-bit source 

Abu-Nimeh et al. Page 9

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



address. The second transaction will contain the 32-bit payload. Note, that the parent 

dropped the source address from the command because it is not needed by the child but it 

will include it back when it replies.

SPI does not allow slaves (i.e., children) to initiate a transaction by design. Consequently, 

the master (i.e., parent) has to perform a read SPI transaction by writing 0’s to a destined 

slave. The flow of SPI commands is shown in Fig. 11 where blocks labeled “spi write” and 

“spi read” represent C functions in the embedded software. These functions are depicted in 

Fig. 13 and Fig. 12 respectively.

SPI slaves differentiate between a write SPI transaction and a read transaction by looking at 

the SPI data. If it is all zeros, it is considered a SPI read. To implement this in an efficient 

way, OpenPET utilizes NIOS interrupts, such that any SPI transaction on a slave will cause 

the NIOS microprocessor on that slave to wake up and execute an Interrupt Service Routine 

(ISR). If an SPI transaction does not finish within a specified timeout period, it will be 

dropped and ignored. Also, if a slave is flooded with SPI reads or writes before it finishes, 

the slave will always provide the last valid reply saved on its output port; thus, alerting the 

master that it is busy.

C. Generic embedded software and firmware interface

Once an SPI command reaches a node, if this command is to be executed within the node’s 

firmware, then it has to be directed to a specific firmware module for proper execution. 

Accordingly, Altera’s Parallel IO (PIO) soft cores are used to create a generic interface 

between the NIOS software and the FPGA fabric. Each command received will be sent to 

the firmware on a 16-bit wide bus along with a 1-bit valid signal. The firmware registers 

incoming commands on the rising edge of the valid signal and returns a reply to NIOS on 

another 16- bit bus in order to allow duplex operations. An additional 1-bit valid signal is 

used to notify the NIOS that a reply is ready. This valid bit is used as an interrupt to trigger 

an ISR function which handles Software-Firmware Interface commands. Once a valid reply 

is acquired in software, it will be saved in the SPI output port buffer. Therefore, the next 

time the SPI master (i.e. parent) performs a read operation, the reply will be readily 

available.

IV. Workstation Computer Software

The OpenPET platform provides multiple software packages. A detailed description of these 

packages is beyond the scope of this manuscript; thus, we provide a short summary of what 

is available. First, two command line executables are available to issue command and 

acquire data. An OpenPET system can be configured and run with just these two 

executables. Second, a data acquisition and analysis software for running an OpenPET 

system called OpenPET Control and Analysis Tools (CAT) has been implemented using the 

ROOT framework [7]. OpenPET CAT can be executed using a graphical user interface 

(GUI) or command line scripts. Third, a Python script, has been implemented to serve as an 

automated test script for new firmware and software builds, and to validate the configuration 

of the OpenPET system.

Abu-Nimeh et al. Page 10

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V. Open Source Management

An open source software, firmware, and hardware project requires a lot of resources to 

manage and track its development and growth. The amount of time and effort required to 

provide the following components and services is not negligible or trivial, and they are 

considered as the foundation that the OpenPET platform floats on and sails with:

A. Website

The OpenPET website is hosted internally at Lawrence Berkeley National Laboratory 

servers. The website is served off of a Virtual Machine to allow easier migration, recovery, 

and maintenance. The content management system used is Wordpress, which allows us to 

quickly update, publish, and maintain the website for the OpenPET community.

Communication among users and developers is crucial for any open source project; 

therefore, we provide multiple forums (hosted on our website) for discussions and support. 

Additionally, a mailing list is used to distribute emails across users and developers quickly.

B. Repository

OpenPET uses BitBucket [8], a distributed revision control system site for Git and Mercurial 

in the cloud. Each component of the OpenPET platform is revision controlled and tracked. 

For software development like C++ and Python, using revision control is standard and 

simple. However, for hardware components like PCB design files and firmware 

development, using revision control is not trivial. As a result, multiple repositories are 

created for each hardware component. For example, the Support Board has its own 

repositories with multiple subdirectories, where each subdirectories contains (i) hardware 

design files like Cadence Orcad or Allegro. (ii) Firmware design files like Altera’s Quratus 

II project, HDL components, and Qsys project. (iii) Software files like Eclipse project, C 

embedded software running on NIOS, Board Support Package (BSP) generation scripts, etc. 

(iv) Scripts which are cross-platform (Windows batch scripts and GNU/Linux shell scripts) 

files that facilitate many complex, iterative, and time consuming functions: (a) generation of 

an integrated bitstream image for the Support Board, that is, compile and build 3 different 

Quartus projects for 3 FPGAs, 3 Qsys projects, 3 Eclipse project, merge the firmware 

(SRAM Object File -- SOF) with its corresponding embedded software (Executable and 

Linkable Format -- ELF) and combine all 3 imaged into a single “flashable” image to be 

stored on EPCS; (b) generation of an integrated image to the Detector Board. The process is 

similar to Support Board but doesn’t require 3 FPGAs; (c) simplified flashing and 

programming, where a user executes simple scripts to program the entire system; and (d) 

automated build and test flows where the software and firmware repositories of the entire 

system can be periodically tested on actual hardware.

The hardware design files and the source code for the firmware, software, and scripts can be 

found in our public repository [8].

Abu-Nimeh et al. Page 11

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VI. Results

OpenPET platform results are presented as overall system performance as well as functional 

verifiability.

A. System Performance

A full configuration of the entire system followed by raw data acquisition using the Scope 

mode serves as an excellent measure of performance. The system is configured with the data 

bus is running at 80 MHz, i.e., default OpenPET system frequency, the data mode is set to 

Scope mode, all channel trigger masks are enabled, and a low DAC threshold for triggers is 

set. These settings will saturate the data path all the way to the uppermost node where the 

QuickUSB module is connected. A dual clock FIFO manages the output data stream 

between the OpenPET chassis, the QuickUSB module, and the workstation. The incoming 

data rate of that FIFO is 1280 Mbps (i.e. 80 MHz * 16-bits), and the outgoing rate is 480 

Mbps.

After running the Scope mode for few minutes, we have measured the throughput at the 

workstation to be around 320 Mbps. This is less than 480 Mbps because USB 2.0 never 

reaches its maximum theoretical speed due to software and CPU/memory limitations on the 

workstation.

B. Functionality

The same test setup used to acquire System Performance results is also used to verify the 

functionality of the platform. However, the main difference is that the ADC is configured to 

output fixed-pattern data samples which are eventually transferred to the uppermost node, 

the QuickUSB module, and then to the workstation computer storage. The recorded data is 

validated for integrity by verifying that the data on disk equals the predefined fixed-pattern 

data generated by the ADC.

We validated data integrity and platform functionality by collecting and storing 2GB of 

fixed-pattern ADC on disk, and verifying that the stored data and headers were equal to the 

expected values.

C. Experiment

A prototype PET block detector, which consists of a 12×12 array of 4×4 22mm3 LSO 

crystals read out with four Hamamatsu R-9800 Photo Multiplier Tubes (PMT), was setup as 

photographed in Fig. 14. Each PMT output was sent to an input channel of the OpenPET 16-

channel Detector Board [2]. The total amount of energy observed by each of the four PMTs 

(A, B, C, and D) was determined by integrating the analog signals. These four energies were 

then summed to estimate the total energy (E=A+B+C+D) of the event. The appropriate 

Anger logic (X=(A+B)/E and Y=(B+D)/E) was computed to give an estimate of the position 

of interaction for the event. Fig. 15 shows the acquired digitized data stored on disk using 

OpenCAT GUI and Fig. 16 shows the flood map for events with energy greater than 350 

keV. The average energy resolutions from all the 144 crystals were found to be around 12% 

fwhm.

Abu-Nimeh et al. Page 12

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further experiments are performed in [2] which exceed the expected performance metrics 

stated in Section I.B. We reported a 0.3% energy resolution (compared with <2%) of an 

HPGe detector when excited with 662 keV gamma rays and 90 ps fwhm timing resolution 

(compared with <100 ps) by splitting a test pulse to two channels and measuring the 

difference.

VII. Conclusion

The OpenPET platform provides a solid open source hardware, firmware, and software 

packages for multi-channel data acquisition and analysis. The flexibility and modularity of 

the hardware, firmware, and software makes it very appealing to a wide range of 

applications, i.e., nuclear imaging, detection, and non-proliferation applications. We have 

described the architecture and implementation of the firmware as well as the embedded 

software and provided experimental results to show the suppleness and performance of the 

platform.

Acknowledgments

This work was supported in part by the Director, Office of Science, Office of Biological and Environmental 
Research, Medical Science Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and 
in part by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering under 
Grants R01EB016104

References

1. Moses WW, Buckley S, Vu C, Peng Q, Pavlov N, Choong W-S, Wu J, Jackson C. OpenPET: A 
Flexible Electronics System for Radiotracer Imaging. IEEE Transactions on Nuclear Science. 2010 
Oct.57(5):2532–2537.

2. Choong W-S, Abu-Nimeh F, Moses WW, Peng Q, Vu CQ, Wu J-Y. A front-end readout Detector 
Board for the OpenPET electronics system. Journal of Instrumentation. 2015 Aug.10(08):T08002–
T08002.

3. [Accessed: 08-Jul-2015] OpenPET official website. [Online]. Available: https://openpet.lbl.gov/

4. Wu, J.; Shi, Z. The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay; 
IEEE Nuclear Science Symposium Conference Record, 2008. NSS ’08; 2008. p. 3440-3446.

5. QuickUSB Module. [Online]. Available: http://www.bitwisesys.com/qusb2-p/qusb2.htm. 

6. Nios II UDP Offload Example - Altera Wiki. [Online]. Available: http://www.alterawiki.com/wiki/
Nios_II_UDP_Offload_Example. 

7. ROOT | A Data Analysis Framework. [Online]. Available: https://root.cern.ch/drupal/. 

8. OpenPET — Bitbucket. OpenPET Repository. [Online]. Available: https://bitbucket.org/openpet/. 

Abu-Nimeh et al. Page 13

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://openpet.lbl.gov/
http://www.bitwisesys.com/qusb2-p/qusb2.htm
http://www.alterawiki.com/wiki/Nios_II_UDP_Offload_Example
http://www.alterawiki.com/wiki/Nios_II_UDP_Offload_Example
https://root.cern.ch/drupal/
https://bitbucket.org/openpet/


Fig. 1. 
Small System Configuration (a single Detector Unit). The first 8 slots in the chassis are 

populated with Detector Boards, which are connected directly to the detector’s analog 

signals. The ninth slot is a Coincidence Interface Boards which allows the system to be 

expanded to a Standard Configuration or a Large Configuration.

Abu-Nimeh et al. Page 14

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Coincidence Unit. The only difference between a Coincidence Unit and a Detector Unit 

(shown in Fig. 1) is that the first eight slots in the chassis are populated with Multiplexer 

Boards instead of Detector Boards and the 8th slot is not populated with the Coincidence 

Interface Board.

Abu-Nimeh et al. Page 15

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Standard System Configuration. A single Detector Unit (DU) (shown in Fig. 1.) is connected 

(through a Coincidence Interface board) to a single passive, no active components, 

Multiplexer Board (MB-1) in a Coincidence Unit (shown in Fig. 2). Therefore, up to 8 

Detector Units can be connected in this configuration.

Abu-Nimeh et al. Page 16

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Large System Configuration. eight Detector Units (shown in Fig. 1.) are connected (through 

Coincidence Interface boards) to a single active, FPGA based, Multiplexer Board (MB-8) in 

a Coincidence Unit (shown in Fig. 2). Therefore, up to 64 Detector Units can be connected 

in this configuration.

Abu-Nimeh et al. Page 17

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Simplified Standard System architecture. An analog detector signal is passed through the 

analog front end (AFE) for filtering, timestamping, and digitization. Then it is processed 

using real-time algorithms on the DB’s FPGA and handed over to an IO FPGA for 

multiplexing. Finally it is given to the main FPGA for correlation and combination. A DU 

packs the formatted data and passes it to its parent chassis.

Abu-Nimeh et al. Page 18

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Clock topology of OpenPET. The clock source in the entire platform depends on the system 

configuration. For a Large and Standard System Configurations the main clock source is a 

local oscillator (LO) or an external clock source (Ext) on the Support Board in the upper 

most node. This clock propagates down through the Coincidence Interface Board (CB CLK) 

to a dedicated clock distributed IC (Integrated Circuit) chip. Then it is fed to the PLLs in the 

Main FPGA and IO FPGAs on the Support Board as well as the PLL in the Detector Board 

or Multiplexer Board FPGA. Clocks which have a direction from top to bottom are 

Abu-Nimeh et al. Page 19

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generated by the uppermost node and used in all children. Clocks which have a direction 

from bottom to top are PLL clocks synchronized with the parent node and their purpose is to 

clock the data from the lowermost node to the uppermost parent. The dotted unlabeled clock 

is a low speed serial clock for commands and control.

Abu-Nimeh et al. Page 20

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Backplane I/O communication bus. A single child is shown in the figure for simplicity. The 

Support Board can host up to eight children. From right to left: the main clocks incoming 

from parent (LVDS), SPI interface (Single-Ended), Altera Passive Serial FPGA 

configuration (Single-Ended), outgoing data and clocks (LVDS), and bi-directional signals 

(LVDS).

Abu-Nimeh et al. Page 21

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Command or Reply packet in OpenPET where the command length is defined to be 80-bits. 

CMD ID: 1-bit c/r flag + 15-bit command identifier. SRC Addr: is a 16-bit address field 

stating the packet has originated from. DST Addr: 16-bit address field stating the packet’s 

target. Payload: 32-bit value that contains arbitrary data related to the command or the reply.

Abu-Nimeh et al. Page 22

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
16-bit Address field: From MSB, Boardcast flag, HostPC flag, not used, Multiplexer Board 

Controller flag, Coincidence and Detector Unit Controller flag, Coincidence Unit Controller 

flag, Detector Unit Controller flag, 3-bit Multiplexer Board address, 3-bit Detector Unit 

address, and 3-bit Detector Board address.

Abu-Nimeh et al. Page 23

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Data path headers and samples for Scope Mode. Detector Board header starting at LSB: 

(5:0) Number of channel header packets, (9:6) not used, (12:10) Detector Board Address, 

(15:13) DUC Address, (18:16) MB Address, (23:19) Data Format, (27:24) not used, (31:28) 

Packet ID (must equal to 0×4). Channel Header starting from LSB: (19:0) TDC data (if 

used), (20) hardware trigger hit (energy), (21) firmware trigger hit, (27:22) channel address, 

(31:28) Packet ID (must equal to 0×3). ADC data sample starting from LSB: (27:0) e.g. raw 

ADC data from (11:0), (31:28) Packet ID (must equal to 0×1).

Abu-Nimeh et al. Page 24

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
SPI software processing flow. Once a command is received, via QuickUSB or Ethernet, it 

goes through this flow in order to generate a proper reply to the source.

Abu-Nimeh et al. Page 25

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
OpenPET SPI read() C function. The returned value of this function is passed through to the 

source. CMD_* are predefine constants in the embedded software. The constants names 

used in this figure are descriptive.

Abu-Nimeh et al. Page 26

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
OpenPET SPI write() C function. A non-zero return value is considered an error.

Abu-Nimeh et al. Page 27

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Experimental setup for a PET block Detector and OpenPET platform.

Abu-Nimeh et al. Page 28

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15. 
OpenCAT GUI software showing the acquired digitized signals from the conventional PET 

block detector module.

Abu-Nimeh et al. Page 29

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 16. 
Flood map for the data collected from the experiment.

Abu-Nimeh et al. Page 30

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	A. System Configurations and Capacities
	B. Expected System Performance
	C. Data and Control Flow

	II. Architecture and Implementation
	A. Clock Distribution
	B. FPGAs and Other Peripherals
	C. Overview of I/O Communications
	1) Host Workstation PC to OpenPET interface
	2) Inter OpenPET interfaces

	D. Command and Control flow
	E. Data Flow
	1) Scope Mode (Raw Data)
	2) Other modes (e.g. singles, coincidence)


	III. Embedded Software
	A. NIOS
	B. SPI Interface for Commands and Control
	C. Generic embedded software and firmware interface

	IV. Workstation Computer Software
	V. Open Source Management
	A. Website
	B. Repository

	VI. Results
	A. System Performance
	B. Functionality
	C. Experiment

	VII. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14
	Fig. 15
	Fig. 16

