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Compressed-gas-driven shock tubes have become
popular as a laboratory-scale replacement for field
blast tests. The well-known initial structure of
the Riemann problem eventually evolves into a
shock structure thought to resemble a Friedlander
wave, although this remains to be demonstrated
theoretically. In this paper, we develop a semi-
analytical model to predict the key characteristics
of pseudo blast waves forming in a shock tube:
location where the wave first forms, peak over-
pressure, decay time and impulse. The approach is
based on combining the solutions of the two different
types of wave interactions that arise in the shock tube
after the family of rarefaction waves in the Riemann
solution interacts with the closed end of the tube.
The results of the analytical model are verified against
numerical simulations obtained with a finite volume
method. The model furnishes a rational approach to
relate shock tube parameters to desired blast wave
characteristics, and thus constitutes a useful tool for
the design of shock tubes for blast testing.

1. Introduction
In addition to their many uses in the science and
engineering of compressible flows, shock tubes have
recently become popular as devices to generate shock
waves whose structure resembles a real blast wave such
as produced by the detonation of explosive charges
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(e.g. [1–10]). Lab-scale tests using shock tubes are convenient surrogates for field blast tests as
they provide better precision and variable control, increased safety and reduced cost [8].

The basic functioning of a shock tube in its traditional configuration is well understood (e.g.
[11]): pressurized gas in a driver section is suddenly released by the rupture of a membrane,
leading to a well-known shock structure comprising a shock wave, a contact discontinuity and
a family of rarefaction waves [12]. What is observed experimentally is that, for sufficiently long
shock tubes, this wave structure eventually evolves into a shape resembling an air blast wave.
What has received less attention is the process by which this happens and the relation between
shock tube parameters and the characteristics of the resulting ‘blast wave’. A remaining open
question [13] is whether the pseudo blast wave that forms in the shock tube actually corresponds
to the commonly accepted quasi-exponential Friedlander wave form [14,15]:

p=�p
(

1− t
τ

)
exp

(−αt
τ

)
+ p0. (1.1)

This expression gives the pressure evolution p(t) as a function of time after arrival of the wave at
a given location; �p is the peak overpressure, τ the decay time, α the wave form parameter and
p0 the ambient pressure.

In fact, it has been well established that, despite their popularity as blast test surrogates, shock
tubes sometimes fail to generate true blast waves [6]. Instead, if the shock tube parameters are
not designed ‘correctly’, the shock waves obtained have a tendency to adopt trapezoidal shapes
where the peak pressure plateaus before it decays as blast waves do [1].

Knowing the initial location where the blast wave forms is important for properly placing the
target in animal studies of blast-induced Traumatic Brain Injury (TBI) [5]. However, estimates of
the location of the onset of the blast wave are mostly empirical. In Refs [4,8], Bass and co-workers
recognize the uncertainty on the location where the Friedlander wave forms and adopt the ‘rule
of thumb’ for shock design that the driven length to diameter ratio should be greater than 10 to
ensure that the wave is planar. In Ref. [6], Courtney et al. also describe an approach in the design of
shock tubes for blast testing (in their case for combustion-driven shock tubes) based on empirical
rules rather than prescriptive mathematical expressions. Specifically, they mention previous work
suggesting ‘. . .that choosing the length of the driven section to be about 60 diameters resulted
in a desirable blast loading profile’ in combustion-driven shock tubes (rifles), and also mention
that ‘the length of most of the driven sections tested were about ten times the length of the
driver sections, which is consistent with early published shock tube designs’ [6, p. 0451112]. The
inconsistency and uncertainty in the empirical determination of proper shock tube parameters
therefore makes it clear that there is a need for developing a rational approach for designing
shock tubes for laboratory-scale blast testing. It is important to note that our contribution in this
paper does not address the case of combustion-driven shock tubes.

Previous efforts to analyse the formation of Friedlander waves in shock tubes have been based
on computational fluid dynamics (CFD) analysis. CFD simulations have shown that the Riemann
shock wave structure eventually leads to the formation of a wave pressure profile which looks like
a Friedlander blast wave. The accuracy of CFD numerical tools has been validated by comparing
the time evolution of the pressure at specific location in the tube with experimental pressure
sensor data [4]. CFD has also been instrumental in describing the flow conditions as the wave
approaches and goes past the open end of the tube [7,16].

A recent review by Needham et al. [17] extensively identifies all of the limitations in shock-tube
blast testing for TBI and provides some general guidance on how computational approaches can
be used to better design experimental tests.

In this paper, we develop an analytical model that provides a functional relationship between
shock tube parameters (driver section length, pressure and driver gas) and the sought blast wave
characteristics in closed mathematical form. As in many other areas of engineering and science,
an analytical description, if available, is highly desirable in the design and configuration of the
testing device, as it eliminates the need for costly parametric studies using numerical solution
methods. Moreover, analytical models enable the immediate solution of the design (inverse)
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problem, i.e. how to configure the problem inputs to obtain a desired set of outcomes. In the
specific case of laboratory-scale blast testing, this translates to: what is the required set of shock
tube configuration parameters (initial pressure, driver section length and gas type) to produce
a surrogate blast wave with given characteristics (free-field overpressure and decay time, or
alternatively explosive energy and offset), and what is the minimum required tube length?

The analytical model is derived by analysing two types of nonlinear wave interactions that
arise as the family of rarefaction waves in the initial Riemann problem reflects from the closed
end of the tube to eventually catch up with the shock wave. The first problem is concerned
with the reflection of the family of centred rarefaction waves (rarefaction fan) off the closed
end of the driver section. The solution of the flow in this so-called buffer region [18] is known
to be non-simple and has been derived using Riemann invariants, leading to a second-order
hyperbolic partial differential equation (PDE) of the Euler–Poisson type [12]. For arbitrary gas-
specific heat ratios, the solution to this PDE can be expressed as a hypergeometric function which
gives the position of the interacting waves as a function of time in implicit form. We propose
an alternative derivation resulting in an Euler–Darboux PDE whose solution in the important
cases of air and helium can be written in terms of much simpler rational functions. This, in turn,
is convenient for the next steps in the analysis. The simplified solution is used to find the exit
time and position where the reflected head wave intersects the incident tail wave, at which point
the head and subsequent reflected waves enter a simple region (straight characteristic lines) with
known propagation speed.

The second problem involves the interaction of these reflected waves when they reach the
contact discontinuity moving in the direction of the shock. The flow in this second buffer
region can be analysed using Courant’s solution for a simple wave interacting with a contact
discontinuity [19]. A discrete consideration of equally spaced incident waves combined with
a linearized analysis of their propagation velocity furnishes a discrete estimate of the curved
geometry of the modified contact interface, as well as the time, position and propagation speed of
the simple waves transmitted across it. Finally, this information is used to determine the location
and time when the head wave encounters the shock front, which is considered the onset of the
blast wave structure. This furnishes a closed form expression relating shock tube parameters
(driver’s section length and compressed gas state) to the location of the onset of the blast wave
in the tube and its peak intensity. The subsequent evolution of the flow at that location (pressure
decay) is estimated by considering the arrival time and pressure of a discrete set of trailing waves,
which results in a straightforward semi-analytical procedure to determine the wave decay time
and impulse. The model shows that shock dynamics imposes a requirement on driver section
length for the blast wave to form. This length is independent of the shock tube diameter, as
long as the 1D assumptions hold (e.g. the diameter of the tube has to be much larger than the
thickness of the boundary layer, which is generally the case in practice). It bears emphasis that
other requirements may apply, e.g. the need for a minimum length to achieve a planar blast wave
[6,8] owing to three-dimensional local effects at the ruptured membrane which are affected by the
tube diameter and are not considered in the one-dimensional model proposed here.

The structure of the paper is as follows: We discuss the analysis of the different wave
interactions and develop analytical estimates of the characteristics of the pressure profile at
the onset of the Friedlander wave in §2. We compare our analytical model against a numerical
approach that we introduce in §3a. We present numerical and analytical results in §3. In §4, we
summarize the main conclusion of the paper.

2. Analytical estimation of the characteristics of a Friedlander wave forming in
a shock tube

The basic functioning of a shock tube driven by compressed gas is well understood and
has been extensively studied (e.g. [11]). A shock tube consists of a driver section containing
gas—commonly helium or air—at high pressure, and a driven section, initially separated by
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Figure 1. Schematic of the evolution of the shock wave structure in the shock tube (left figures) and evolution of the pressure
profile (right figures). (a) Initial configuration of the shock tube, (b) Riemann structure of the flow following diaphragm rupture,
(c) the head wave arrives at the wall, (d) the head wave exits the buffer region after reaching the tail wave, (e) the head wave
arrives at the contact interface and (f ) the head wave arrives at the shock wave. (Online version in colour.)

a membrane (figure 1a). Upon rupture of the membrane, a shock wave propagates towards
the driven section followed by a contact discontinuity, whereas a family of rarefaction waves
propagates in the opposite direction within the driver section (figure 1b). While unperturbed by
the end sections of the shock tube, the flow corresponds well to the known Riemann solution
[20]. Here, we are interested in the various wave interactions taking place upon the reflection
of the head rarefaction wave at the left end of the driver section (see figure 1a for a schematic
of the configuration). In the subsequent evolution of the flow, the reflected head wave reaching
the right-propagating shock marks the onset of the Friedlander wave form in the shock tube.
Figure 1 shows snapshots of the shock tube at different times emphasizing the location of key
flow characteristics (shock, contact discontinuity, head and tail waves) as well as the evolution of
the spatial pressure distribution. To help the analysis, we make heavy use of figure 2 which shows
the evolution of the characteristic lines in the x–t plane.

The basic idea of the analysis is to track the evolution (velocity history) of the head and trailing
rarefaction waves in the various stages of their interaction with the flow: (i) propagation towards
the left closed end of the tube (figure 1b), (ii) interaction with trailing rarefaction waves after
reflection at the closed end (figure 1c), (iii) propagation towards the moving contact discontinuity
(figure 1d), (iv) interaction with the contact discontinuity (figure 1e) and (v) propagation towards
the shock (figure 1f ).

Next, we focus on the determination of the location in the shock tube where this occurs.
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Figure 2. The interaction of waves in a shock tube in the x–t space of characteristics. The shock wave is represented by the
red characteristic, whereas the blue and the green ones are the head and the tail rarefaction waves, respectively. The contact
interface is the thick black characteristic curve. The point P shows the position of the diaphragm and the point O shows the
closed end of the shock tube. The points a, a1 and a2 indicate the locations where the head rarefaction wave and subsequent
rarefaction waves reflect of the closed end of the tube. The points b, b1, b2 and b3 mark the moment where the rarefaction
waves exit the first buffer region. The points cij describe the intersections between right-going rarefaction waves interacts with
rarefactionwaves reflected the contact interface in the second buffer region. The point d designates where the head rarefaction
wave meets the shock wave, which corresponds to the onset of the Friedlander wave inside the shock tube. The points d1, d2
and d3 tag the time at which the trailing rarefaction waves reach the onset location of coordinate: xd . (Online version in colour.)

(a) Determination of the location of the onset of the Friedlander wave form
The determination of the location of the onset of the Friedlander wave form only requires tracking
the evolution of the head wave. Immediately after the membrane ruptures (figure 1b), the constant
speed of the head wave is a4 =

√
γ4p4/ρ4, where a4, γ4, p4 and ρ4 are, respectively, the sound

speed, the specific heat ratio, the pressure and the density in the (undisturbed region of the)
driver section. It is worth emphasizing that the parameters on the right-hand side of this equation
constitute basic input settings of the shock tube. The time ta at which the head rarefaction wave
reaches the closed end of the shock tube, figure 1c and point a in figure 2, is simply given by:

ta = L1

a4
. (2.1)

After time ta, the flow in the shock tube departs from the classical Riemann problem and the
head rarefaction wave enters a non-simple region: the first buffer region.

(i) Analysis of the first buffer region

The first buffer region comprises the zone where the centred fan of rarefaction waves interacts
with the closed end of the tube (figures 1c, 2 and 3a). Riemann [12] originally proposed a
mathematical formulation of this problem in the form of an Euler–Poisson PDE governing the
time t(r, s) at which two characteristics with coordinates (r, s) meet inside the buffer region. He
obtained a general solution for a gas with arbitrary specific heat ratio γ . However, the solution is
difficult to use in the analysis of the further evolution of the flow in the shock tube, as it is given in
implicit form in terms of a hypergeometric function. Landau & Lifschitz [21] derived an explicit
expression of the exit time of the head rarefaction wave from the buffer region for monoatomic
(γ = 5

3 ) and diatomic (γ = 1.4) gases, based on a reformulation of the PDE using the Legendre
transformation. Here, we propose a third alternative derivation which is limited to the cases of
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Figure 3. (a) The reflection of rarefaction waves from a wall and interaction in the first buffer region. (b) Using the method
of images to address the initial conditions at the wall, highlighting the boundaries of the first buffer region. (Online version in
colour.)

practical interest (air and helium), but has the great advantage of providing a full solution for
t(r, s) in explicit form in terms of a simple rational function.

Figure 3a shows a plot in the (x, t) plane of the characteristics of the head wave, the tail wave
and two sample intermediate rarefaction waves as they propagate towards the closed end of the
driver section, reflect off the wall and interact with each other in the first buffer region. Prior
to entering the first buffer region, rarefaction waves move at constant speed along a straight
characteristic. Any arbitrary point A inside the buffer region lies at the intersection of two
rarefaction waves, a right-going wave along a C+ characteristic and a left-going wave along a
C− characteristic. The wave speed for these two waves is given respectively by:

U+ = dx
dt

∣∣∣∣
C+
= u+ a

and U− = dx
dt

∣∣∣∣
C−
= u− a,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where u= u(x, t) is the local gas speed and a= a(x, t) is the local sound speed. On any given
characteristic, C+ or C−, the evolution of these quantities is governed by the Riemann invariants
[18] as follows:

r := u+ 2a
γ − 1

= const. along C+

and s := u− 2a
γ − 1

= const. along C−.

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

Furthermore, the local gas speed u and the local sound speed a can be conveniently expressed in
terms of the Riemann invariants r and s as follows:

u= 1
2

(r+ s) and a= γ − 1
4

(r− s). (2.4)

On a C+ characteristic, the position x at a time t of a right-going wave only depends on the value
of the Riemann invariant s of intersecting C− characteristics. Conversely, on a C− characteristic,
the position x at a time t of a left-going wave depends only on the Riemann invariants r of the
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intersecting C+ characteristics. These features of the Riemann invariants motivate the change of
variables from space–time (x, t)-coordinates to characteristic space (r, s)-coordinates.

We aim to determine the time t(r, s) at which an incoming left-going rarefaction wave meets a
right-going rarefaction wave reflected from the rigid wall. From (2.2) and using the invariance of
r and s along C+ and C−, respectively, we obtain:

∂x
∂s
= (u+ a)

∂t
∂s

(2.5)

and
∂x
∂r
= (u− a)

∂t
∂r

. (2.6)

The x variable can be eliminated by invoking the equality of mixed particles to arrive at:

2a
∂2t
∂r∂s

+ ∂(u+ a)
∂r

∂t
∂s
− ∂(u− a)

∂s
∂t
∂r
= 0. (2.7)

Rewriting the gas (u) and sound (a) speeds in terms of the Riemann invariants using (2.4), this
expression can be further simplified into a PDE for the time variable t only:

∂2t
∂r∂s

− λ

r− s

(
∂t
∂r
− ∂t

∂s

)
= 0, where λ= 1

2

(
γ + 1
γ − 1

)
. (2.8)

This is a second-order hyperbolic PDE of the Euler–Darboux type. In the particular cases of air
and helium, λ is an integer: λ= 3 for air (γ4 = 1.4) and λ= 2 for helium (γ4 = 5

3 ). A general solution
of the Euler–Darboux PDE for integer valued λ can be written in terms of arbitrary functions of a
single variable: f and g, in the following form [22]:

t(r, s)= ∂2λ−2

∂rλ−1∂sλ−1

(
f (r)− g(s)

r− s

)
. (2.9)

The functions f and g are determined from the initial conditions of the problem, which
correspond to the time at which any rarefaction wave enters the first buffer region. Left-going
rarefaction waves, emitted from the centre P and travelling on C− characteristics, enter the buffer
region when they intersect the (reflected) right-going head wave (in red in figure 3a). On this
characteristic of Riemann invariant r0, the derivative of the position x and the time t with respect
to the invariant s are related through (2.5). Using (2.4), this expression reads:

dx
ds
=
(

1+ γ

4
r0 + 3− γ

4
s
)

dt
ds

. (2.10)

Further, any point along the characteristic of the right-going head wave is also the endpoint of the
straight characteristic of some left-going rarefaction wave of the form: x= (u− a)t+ xP, where xP

is the location of the centre of the rarefaction fan. Differentiating this expression with respect to
s and combining with (2.4) yields another relation between the derivatives of the position x and
time t with respect to the invariant s:

dx
ds
=
(

3− γ

4
r0 + 1+ γ

4
s
)

dt
ds
+
(

1+ γ

4

)
t. (2.11)

The variable x is eliminated by taking the difference between (2.10) and (2.11) and simplifying,
resulting in the following ordinary differential equation (ODE):

dt
ds
− λ

r0 − s
t= 0. (2.12)

Right-going reflected rarefaction waves travelling on C+ characteristics enter the first buffer
region at the time they reflect off the wall. However, due to the hyperbolic nature of the problem,
these times depend on the solution of the PDE inside the buffer region itself. This issue is easily
circumvented by recourse to the method of images (e.g. [23]), by which the problem can be
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replaced with the interaction of two centred fans as shown in figure 3b. In this case, the C−
characteristic s0 can be determined by an ODE analogous to (2.12):

dt
dr
− λ

r− s0
t= 0. (2.13)

Solving both ODEs, we arrive at an explicit expression of the entry time of the left-going
rarefaction waves, t(r0, s), and the right-going rarefaction waves, t(r, s0), on the red and blue
curves that bounds the buffer region in figure 3b, respectively:

t(r0, s)= ta

(
r0 − s0

r0 − s

)λ

(2.14)

and

t(r, s0)= ta

(
r0 − s0

r− s0

)λ

. (2.15)

The initial conditions (2.14) and (2.15) can now be used to determine the functions f (r) and g(s)
in (2.9). In the case of air (λ= 3), the solution (2.9) can be written as:

t(r, s)= 2
f ′′(r)− g′′(s)

(r− s)3 − 12
f ′(r)+ g′(s)

(r− s)4 + 24
f (r)− g(s)

(r− s)5 , (2.16)

where primes denote derivatives of f and g with respect to their single argument. Evaluating
(2.16) at the two initial conditions t(r, s0), (2.14), and t(r0, s), (2.15), yields two independent ODEs
for f and g, respectively:

(r− s0)2f ′′(r)− 6(r− s0)f ′(r)+ 12f (r)=
(

g′′(s0)+ ta

2
(r0 − s0)3

)
(r− s0)2

+ 6g′(s0)(r− s0)+ 12g(s0) (2.17)

and

(r0 − s)2g′′(s)+ 6(r0 − s)g′(s)+ 12g(s)=
(

f ′′(r0)− ta

2
(r0 − s0)3

)
(r0 − s)2

− 6f ′(r0)(r0 − s)+ 12f (r0). (2.18)

Here, we are interested in any solutions f (r) and g(s) that satisfy the condition t(r0, s0)= ta,
i.e. the first buffer region starts at the time that the head rarefaction wave arrives at the fixed
wall (2.1). We may choose any initial conditions for the ODEs (2.17) and (2.18) as long as this
condition is satisfied. We choose f (r0)= 1, f ′(r0)= 1, f ′′(r0)= (ta/2)(r0 − s0)3, g(s0)= 1, g′(s0)=−1
and g′′(s0)= 0. This yields an explicit form for the two ODEs:

(r− s0)2f ′′(r)− 6(r− s0)f ′(r)+ 12f (r)= ta

2
(r0 − s0)3(r− s0)2 − 6(r− s0)+ 12 (2.19)

and

(r0 − s)2g′′(s)+ 6(r0 − s)g′(s)+ 12g(s)=−6(r0 − s)+ 12. (2.20)

Assuming the solutions to (2.19) and (2.20) are, respectively, of the form (r− s0)m and (r0 − s)m,
the solutions of the corresponding homogeneous problems are given by {(r− s0)3, (r− s0)4}
and {(r0 − s)3, (r0 − s)4}. The particular solutions can be obtained by inspection as: a1(r− s0)2 +
a2(r− s0)+ a3 and b1(r0 − s)+ b2, respectively. The general solution can then be obtained by the
method of undetermined coefficients inserting these expressions in the ODEs and solving for the
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coefficients, leading to:

f (r)= 2
(r− s0)3

(r0 − s0)2 −
(r− s0)4

(r0 − s0)3 − (r− s0)+ 1+ ta

4
(r0 − s0)(r− s0)2(r− r0)2 (2.21)

and

g(s)= 2
(r0 − s)3

(r0 − s0)2 −
(r0 − s)4

(r0 − s0)3 − (r0 − s)+ 1. (2.22)

Using a similar approach, the solution of (2.9) for the case of helium (λ= 2) can be obtained in
the form:

t(r, s)= f ′ + g′

(r− s)2 − 2
f − g

(r− s)3 , where

{
f (r)= ta(r0 − s0)(r− s0)(r− r0)+ 1

g(s)= 1.
(2.23)

The head rarefaction wave of Riemann invariant r0 exits the buffer region when it meets the
tail rarefaction wave of Riemann invariant st at time tb = t(r0, st) (figure 3b). Conversely, tb can
be viewed as the time the tail rarefaction wave enters the first buffer region. Its value is then
easily computed from the initial condition of the Euler–Darboux PDE for the left-going rarefaction
waves (2.14) in terms of the Riemann invariants st, r0 and s0. In the Riemann solution, the head
wave moves to the left into the undisturbed region of the driver section, denoted region 4 in
figure 1a. In this region, the local gas velocity is zero and the local sound speed is a4. The tail
wave moves left from the region behind the contact interface, denoted region 3 in figure 1a. In
this region, the local gas velocity is up and the local sound speed is a3. The Riemann invariants r0,
s0 and st are obtained using (2.3):

r0 = 2a4

γ4 − 1
, s0 =− 2a4

γ4 − 1
and st = up − 2a3

γ4 − 1
. (2.24)

Replacing (2.24) in (2.14). we are led to:

t(r0, st)= ta

(
r0 − s0

r0 − st

)λ

= ta

(
4a4/(γ4 − 1)

2a4/(γ4 − 1)− up + 2a3/(γ4 − 1)

)λ

= ta

(
2a4

a4 − ((γ4 − 1)/2)up + a3

)λ

. (2.25)

A relationship between a3 and a4 can be obtained by noticing that the Riemann invariant r
(equation (2.3)) is constant in the expansion wave. This constant must match the value at
the quiescent region, where u= 0, a= a4, and evaluates to 2a4/(γ4 − 1). The result is a3 = a4 −
((γ4 − 1)/2)up. Using this relation in equation (2.25), we obtain:

t(r0, st)= ta

(
1

1− ((γ4 − 1)/2)(up/a4)

)λ

, (2.26)

first by noting the relation between the local gas speed u and local sound speed in an expansion
wave a/a4 = 1− ((γ4 − 1)/2)(u/a4). The denominator can be simplified using the isentropic
equation that relates the constant pressure behind the contact interface (p3) to the initial pressure
in the driver section(p4):

p3

p4
=
(

1− γ4 − 1
2

(
up

a4

))2γ4/(γ4−1)
.

With the above equation and noting that the pressure is preserved across the contact interface,
p3 = p2, (2.26) reduces to:

tb = ta

(
p4

p2

)λ(γ4−1)/2γ4

with

{
λ= 3 for air

λ= 2 for helium.
(2.27)

It can be observed that the head rarefaction wave exits the first buffer region sooner in the case
of helium than in air. It can also be noted that we did not use the full solution to the Euler–
Darboux equation in the first buffer region to arrive at the sought exit time tb for the head wave
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(equation (2.27)). However, the full solution is required in our subsequent analysis of trailing
waves for the determination of the characteristics of the blast wave (e.g. decay time).

(ii) Subsequent wave interactions until the onset of the Friedlander wave

The head wave exits the first buffer region at point (xb, tb), where xb is the location where
the head wave meets the tail wave entering the first buffer region (figure 3a). Thus, xb is
the distance travelled by the tail wave at constant speed up − a3 from 0 to tb: xb = (up − a3)tb.
Subsequently, the head wave enters a uniform region characterized by the flow behind the contact
interface, region 3 in figure 1b, and travels at constant speed up + a3 along the characteristic:
x= (up + a3)(t− tb)+ xb. The head rarefaction wave meets the contact interface moving at
constant speed up along the line: x= upt. The intersection point is found to be:

(xc, tc)= (2tbup, 2tb). (2.28)

It is interesting to note that this simple expression holds independently of the conditions in the
driver section including the type of driver gas (air or helium).

The part of the head rarefaction wave transmitted through the contact interface enters a
uniform region fully characterized by the flow behind the shock wave, region 2 in figure 1b and
travels at constant speed up + a2 along the characteristic: x= (up + a2)(t− tc)+ xc. It meets the
shock wave travelling at constant speed W on a straight line of equation: x=Wt. The intersection
point (xd, td) gives the position and time at which the head rarefaction wave reaches the shock
front, defining the onset of the Friedlander wave forming in the shock tube (figure 1f ):

(xd, td)= 2tba2

up + a2 −W
(W, 1). (2.29)

Replacing the value of tb from equation (2.27), this simplifies to:

td =
2L1a2

a4(up + a2 −W)

(
p4

p2

)(γ4+1)/4γ4

. (2.30)

In the previous expressions, W, up and a2 are, respectively, the shock speed, the speed of the
contact discontinuity and the sound speed behind the shock, which are all determined from the
Riemann problem as:

W= a1

√
γ1 + 1

2γ1

(
p2

p1
− 1

)
+ 1, up = a1

γ1

(
p2

p1
− 1

)√
2γ1/(γ1 + 1)

p2/p1 + (γ1 − 1)/(γ1 + 1)

and a2 = a1

√
p2

p1

(γ1 + 1)/(γ1 − 1)+ p2/p1

1+ ((γ1 + 1)/(γ1 − 1))(p2/p1)
. (2.31)

Here, a1 =
√

γ1p1/ρ1, where a1, γ1, p1 and ρ1 are, respectively, the sound speed, the specific heat
ratio, the pressure and the density in the (undisturbed region of the) driven section.

It should also be kept in mind that equation (2.30) only applies to helium and air. Finally, the
sought minimal total length required for a Friedlander wave to form in a shock tube is given by:

L= L1 +Wtd. (2.32)

It is important to emphasize that the set of output values (L, p2) cannot be expressed explicitly
in terms of driver section parameters (L1, p1, T1, γ1, p4, T4, γ4) as, in their most simplified forms,
equations (2.30) and (2.31), still depend on the value of the shock pressure p2 which can only be
computed implicitly in terms of problem parameters by the expression [18]:

p4

p1
= p2

p1

{
1− (γ4 − 1)(a1/a4)((p2/p1)− 1)√

2γ1(2γ1 + (γ1 + 1)((p2/p1)− 1))

}−2γ4/(γ4−1)

. (2.33)

The complete steps in the computation of the quantities of interest are summarized in algorithm 1.
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Algorithm 1. Computation of the onset location and initial pressure of a Friedlander wave in a
shock tube.

1 Input parameters: L1, γ1, p1, T1, γ4, p4, T4
2 Determine sound speeds in driven and driver sections: a1 =

√
γ1RT1 and a4 =

√
γ4RT4

3 Solve implicit equation for Friedlander wave initial pressure (shock pressure) p2:

p4

p1
= p2

p1

{
1− (γ4 − 1)(a1/a4)((p2/p1)− 1)√

2γ1(2γ1 + (γ1 + 1)((p2/p1)− 1))

}−2γ4/(γ4−1)

4 Determine particle velocity and sound speed behind shock:

up = a1

γ1

(
p2

p1
− 1

)√
2γ1/(γ1 + 1)

p2/p1 + (γ1 − 1)/(γ1 + 1)
, a2 = a1

√
p2

p1

(γ1 + 1)/(γ1 − 1)+ p2/p1

1+ ((γ1 + 1)/(γ1 − 1))(p2/p1)

5 Determine shock speed: W= a1

√
γ1 + 1

2γ1

(
p2

p1
− 1

)
+ 1

6 Determine time of onset of Friedlander wave and location:

td =
2L1a2

a4(up + a2 −W)

(
p4

p2

)(γ4+1)/4γ4

, L= L1 +Wtd

In the next subsection, we provide semi-analytical estimates of the additional characteristics
of the Friedlander wave at the moment it forms in the shock tube.

(b) Pressure history at the onset location
The arrival of rarefaction waves trailing the head wave are responsible for the pressure decay
subsequent to the formation of the Friedlander wave. Determining the pressure behind the shock
wave in terms of the initial parameters in the driven section (speed of sound: a1, pressure: p1
and density: ρ1) is in general difficult because entropy is discontinuous across the shock front.
However for weak to medium shock, characterized by a shock strength z= (p2 − p1)/p1 below 5,
the jump in entropy, asymptotically equivalent to a third power monomial in z, may be neglected
[24]. The jump in the Riemann invariant s is also O(z3). In practice, this assumption amounts to
neglecting the reflection of any rarefaction wave off the shock front. Further, the pressure across
a shock wave agrees up to second order in the shock strength with the pressure across a simple
wave given by:

p
p1
=
(

1− γ1 − 1
2

(
u
a1

))2γ1/(γ1−1)
. (2.34)

Equivalently, the pressure at the onset location can be expanded in terms of the local gas
velocity u—continuously modified by the incoming rarefaction waves—up to second order [19],
leading to:

p= p1 + ρ1a1u+ γ1 + 1
4

ρ1u2. (2.35)

(i) Evolution of the local gas speed at the onset location

The computation of the local gas velocity u at L involves tracking the path of the incoming
rarefaction waves. From the time it exits the first buffer region to the time it arrives at the
Friedlander onset location, any rarefaction wave travels through the contact discontinuity
(figure 2). Because the gas on both sides of this interface are in different thermodynamical states,
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Figure 4. Schematic of the second buffer region where the non-centred of rarefaction waves exiting the first buffer region
interact with the contact discontinuity. Only five incoming rarefaction waves travelling along right-going characteristics of
Riemann invariant ri are considered. The blue rarefaction wave is the head wave, whereas the green one is the tail wave.
Rarefaction waves reflected off the contact interface travel along left-going characteristics of Riemann invariant sLi . Because
the sound speed is different on each side of the contact discontinuity, these Riemann invariants are discontinuous across the
interface. On the right side, they all have the same value sR due to the initial uniformity of the region between the contact
discontinuity and the shock front. (Online version in colour.)

part of the incoming rarefaction wave is transmitted through, and part of it is reflected off, the
contact interface. The reflected part then interacts with the trailing incoming rarefaction waves
in a second simple wave interaction region: the second buffer region (figure 4). Unlike the first
buffer region, this region consists of non-centred rarefaction waves interacting with a moving
boundary, which precludes a simple mathematical treatment. Therefore, we consider only a finite
number, N + 1, of equally spaced left-going rarefaction waves in the initial fan. The velocities of
two successive rarefaction waves differ by a fixed increment �U= (a4 − (a3 − up))/N; the velocity
of the ith rarefaction wave is then: U−i = i�U − a4. At any location along the ith rarefaction wave,
the local gas speed and the local sound speed can be expressed in term of U−i [18], thus leading
to an expression of the Riemann invariant si:

u= 2
γ4 + 1

(a4 +U−i )= 2i�U
γ4 + 1

a= a4

(
1− γ4 − 1

2
U−i
a4

)
= a4 − γ4 − 1

γ4 + 1
i�U

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
⇒ si =

4i�U
γ4 + 1

− 2a4

γ4 − 1
.

At the closed end of the shock tube, the local gas speed vanishes. From (2.4), it follows that the
Riemann invariant along the ith rarefaction wave ri =−si reflected off the left end of the tube is:

ri =
2a4

γ4 − 1
− 4i�U

γ4 + 1
. (2.36)

Due to the discontinuity in sound speed, the Riemann invariants along left-going
characteristics are not constant across the contact interface. Ahead of this interface, all these
characteristics originate from the uniform region between the contact interface and the shock
front (region 2 in figure 1b) and share a common Riemann invariant sR (see also figure 4). On the
right side of any point ci0 on the contact interface shown in figure 4, sR can also be evaluated
from the sound speed ahead of the interface aR

ci0
and the local gas speed uci0 preserved across the
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interface:

sR = uci0 −
2

γ1 − 1
aR

ci0
= up − 2

γ1 − 1
a2. (2.37)

We relate the sound speed aL
ci0

on the left side of ci0 to aR
ci0

through the sound speed on both sides
of point c00 where the head rarefaction wave meets the contact interface. To that end, we express
the sound speed in terms of temperature: a=√γ RT and use the isentropic relation between
temperature and pressure which is preserved across the contact discontinuity:

aR
ci0

aR
c00

=
√√√√ TR

ci0

TR
c00

=
√(

pci0

pc00

)(γ1−1)/γ1

and
aL

ci0

aL
c00

=
√√√√ TL

ci0

TL
c00

=
√(

pci0

pc00

)(γ4−1)/γ4

.

From the Riemann problem, aL
c00

and aR
c00

are the sound speed behind the contact interface, a3 and
the sound speed behind the shock front, a2, respectively. The sound speeds on both sides of the
contact interface at ci0 are related by:

aR
ci0
= a2

(
aL

ci0

a3

)γ4(γ1−1)/γ1(γ4−1)

. (2.38)

Using (2.38) in (2.37) and simplifying, the following equation that relates the local gas speed to
the local sound speed to the left of the contact interface [19] is obtained:

uci0 − up =
⎡
⎣( aL

ci0

a3

)γ4(γ1−1)/γ1(γ4−1)

− 1

⎤
⎦ 2a2

γ1 − 1
. (2.39)

If the gas in both driver and driven section is the same, γ1 = γ4, (2.39) gives us an explicit
constraint on the relationship of the local gas speed and sound speed at all the points on the
contact interface.

Expressing the Riemann invariant ri (2.36) of the incoming right-going characteristic
intersecting the contact discontinuity in ci0 provides an additional relation between aL

ci0
and uci0 :

ri = uci0 +
2

γ4 − 1
aL

ci0
. (2.40)

Solving the system (2.39) and (2.40), we determine the local gas speed uci0 which, in turn, is the
local gas speed when the ith rarefaction wave arrives at the Friedlander onset location, since this
rarefaction wave transmitted through the contact discontinuity travels at constant speed until it
meets the shock wave. Therefore, the pressure at the onset location L (figure 2) due to the arrival
of the ith rarefaction wave can be estimated using (2.35) as:

pdi = p1 + ρ1a1uci0 +
γ1 + 1

4
ρ1u2

ci0
. (2.41)

(ii) Successive arrival time of the rarefaction wave at the onset location

In order to complete the description of the pressure history, the arrival times of the successive
rarefaction waves at the blast onset location are needed, which, in turn, requires computing the
time and position of all the wave intersections from the moment the ith rarefaction wave exits the
first buffer region.

As shown in figure 3a, rarefaction waves reflecting off the closed end of the shock tube exit
the first buffer region when they intersect the tail wave. The explicit analytical solution (2.16)
determines the exact time at which this happens. The exit speed of the ith rarefaction wave
is given by U+bi

= u+ a, where u and a are determined from the Riemann invariants ri and st

using (2.4). To compute the position at which each rarefaction wave exits the first buffer region, we
assume that any rarefaction wave travels on a straight path and at the average velocity between
any two successive wave intersections. For instance in figure 2, paths: b→ b1, b1→ b2 and b2→ b3
are straight lines, respectively. The ith rarefaction wave exits the first buffer region at time tbi
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Figure 5. Schematic of a right-going rarefaction wave intersecting: (a) right-going rarefaction wave meeting a left-going
rarefaction wave or (b) right-going rarefaction wave meeting the contact interface in the (x, t) plane.

with wave speed U+bi
at position xbi . xbi can be estimated from the values corresponding to the

immediately preceding rarefaction wave: exit position xbi−1 , exit time tbi−1 and speed of the tail
rarefaction wave U−bi−1

at xbi−1 as follows:

xbi = xbi−1 + 1
2 (U−bi−1

+U−bi
)(tbi − tbi−1 ). (2.42)

We recall that the exit time and position of the head rarefaction wave are, respectively, given by
tb (2.27) and xb0 = (up − a3)tb, thus completing the recurrence relation (2.42).

From the moment it enters the second buffer region, a right-going rarefaction wave trailing
the head wave meets at least one of the discrete left-going rarefaction waves reflecting off the
contact discontinuity. Let us consider a right-going rarefaction wave, which at point (x1, t1) is
travelling at speed U+1 and a left-going rarefaction wave, which at point (x2, t2) is travelling at
speed U−2 (figure 5a). These two waves meet at point (x3, t3) provided that x1 ≤ x3 ≤ x2, t1 ≤ t3
and t2 ≤ t3. At this location, the right-going rarefaction is travelling at speed U+3 and the left-
going rarefaction wave travelling at speed U−3 . We make the assumption that, between (x1, t1)
and (x3, t3), the right-going rarefaction wave travels at average speed U+13 = (U+1 +U+3 )/2 along
the line: x=U+13(t− t1)+ x1 and that, between (x2, t2) and (x3, t3), the left-going rarefaction wave
travels at average speed U−23 = (U−2 +U−3 )/2 along the line: x=U−23(t− t2)+ x2. It is worth noting
that U+L

3 is the speed of the right-going rarefaction wave on the left-hand side of the contact
interface computed as the sum of the local gas speed u3 and the sound speed on the left of the
interface aL

3 . The intersection point is found to be:

(x3, t3)=
(

(t2 − t1)U−23U+13 + x1U−23 − x2U+13

U−23 −U+13
,

t2U−23 − t1U+13 + x1 − x2

U−23 −U+13

)
. (2.43)

Eventually, any right-going rarefaction wave meets the contact interface and modify its speed.
Let us consider a right-going rarefaction wave, which at point (x1, t1) travels at speed U+1 and the
contact discontinuity, which at point (x2, t2) is travelling at speed u2 (figure 5b). The rarefaction
wave and the contact interface meet at point (x3, t3) under the conditions: x1 ≤ x2 ≤ x3, t1 ≤ t3
and t2 ≤ t3. A decrease of speed u3 ≤ u2 of the contact interface results from this interaction.
Here also we assume that, between (x1, t1) and (x3, t3), the right-going rarefaction wave travels at
average speed U+13 = (U+1 +U+L

3 )/2 along the straight line: x=U+13(t− t1)+ x1 and that, between
(x2, t2) and (x3, t3), the contact interface travels at average speed u23 = (u2 + u3)/2 along the line:
x= u23(t− t2)+ x2. The intersection point is found to be:

(x3, t3)=
(

(t2 − t1)u23U+13 + x1u23 − x2U+13

u23 −U+13
,

t2u23 − t1U+13 + x1 − x2

u23 −U+13

)
. (2.44)
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The gas and wave speed at any intersection point in the second buffer region may be
computed from the Riemann invariants that are known for each intersection using equations (2.4)
and (2.2).

The ith right-going rarefaction wave exits the second buffer region at (xc0i , tc0i ) and travels at
constant speed U+R

c0i = uc0i + aR
c0i

in the simple wave region separating the contact discontinuity
and the shock wave. It reaches the location of the onset of the Friedlander wave formation at
time tdi :

tdi =
(L− xci0 )

U+R
ci0

. (2.45)

The determination of the position and time needs to happen in incremental order because it
requires the time and position of the previous intersection for both the right-going rarefaction
wave and either the left-going rarefaction wave or the contact interface, respectively. The
simplified discrete approach we propose for estimating each intersection point (xcij , tcij ) inside
the second buffer region consists in computing the intersection of each discrete right-going
rarefaction wave stemming from the first buffer region, first, with the contact interface and, then
after reflection off the contact discontinuity, with its trailing rarefaction waves. The intersection
between the left-going reflected rarefaction wave with the immediatelly trailing discretized
rarefaction wave in the fan is computed first. We proceed sequentially to next immediately
trailing discretized right-going rarefaction wave until the tail wave. The steps described above
are repeated for all the discretized rarefaction waves starting from the head wave and progresing
sequentially to the next immediatelly trailing discretized right-going rarefaction waves until the
tail wave. This procedure is summarized in algorithm 2.

The procedure described above furnishes the position of the onset of the Friedlander wave and
the history of the pressure decay at that position. In the next section, we present an approach to
obtain the practical characteristics of the blast wave from the pressure history at the onset location.

(iii) Estimation of the blast wave characteristics

At the onset location, three characteristics of the blast wave are desired: the peak overpressure, the
decay time and the impulse. The peak overpressure, �p, is the difference between the maximum
pressure p2 and the atmospheric pressure p0. The time interval during which the blast pressure
is greater than the atmospheric pressure is the decay time, denoted as τ . The impulse, I, is the
positive area under the pressure time curve. The impulse is calculated by integrating the pressure–
time curve up to the decay time. We estimate the decay time and impulse from the N + 1 data
points (tdi , pdi ) of arrival times and pressures resulting from the arrival of the N + 1 rarefaction
waves , computed from equations (2.45) and (2.41) (see also figure 2). We noted that by the
time the tail wave arrives at the onset location, the pressure has dropped below the atmospheric
pressure, p0. It is then possible to identify the last time tdk for which the pressure pdk is still above
atmospheric and estimate the time at which the blast pressure equals the atmospheric pressure
tatm by simple linear interpolation. The decay time is then obtained by subtracting tatm from td,
leading to:

τ = p0 − pdk

pdk+1 − pdk

(tdk+1 − tdk )+ tdk − td. (2.46)

The impulse I is estimated by numerical integration of the data points from td to tatm. In
our particular case, we used the trapezoidal rule and compared with the Friedlander impulse
obtained by integrating (1.1) up to the decay time, resulting in:

I= p0τ

(
1
α
− 1

α2 (1− e−α)
)

. (2.47)

The wave form parameter α can be obtained numerically as the root of a nonlinear equation
derived from the (2.47).
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Algorithm 2. Second buffer region (N + 1 rarefaction waves).
1 Determine the speed increment between two successive rarefaction waves in the Riemann

problem: �U= a4 − (a3 − up)
N

2 Determine the exit point of the head rarefaction wave out of the first buffer region: (xb0 , tb0 )=
((up − a3)tb, tb)

3 Determine the point where the head wave meets the contact interface: (xc00 , tc00 )= (uptc, tc)
4 for← 1, N do

5 Determine the Riemann invariant of the i-th right-going rarefaction wave: ri =
2a4

γ4 − 1
−

4i�U
γ4 + 1

6 Deduce the left and right exit wave velocities from the first buffer region: U±bi
= ri + st

2
±

γ4 − 1
4

(ri − st)

7 Evaluate exit point from first buffer region of i-th rarefaction wave from Euler-Darboux
solution:

(tbi , xbi )=
(

t(ri, st), xbi−1 +
1
2

(U−bi−1
+U−bi

)(tbi − tbi−1 )
)

8 Determine the Riemann invariant of the reflected head wave off the contact interface: sL
0 =

up − 2
γ4 − 1

a3

9 Determine the local gas and sound speeds when the i-th rarefaction wave enters the second
buffer region:

uc0i =
ri + sL

0
2

, ac0i =
γ4 − 1

4
(ri − sL

0)

10 Deduce the left and right local wave speed: U−0i =
uc0i − ac0i +U−c0 i−1

2
and U+0i =

uc0i + ac0i +U+bi

2
11 Determine the entry point in the second buffer region of the i-th right-going rarefaction

wave:

(xc0i , tc0i )=
(

(tbi − tc0 i−1 )U−0iU
+
0i + xbi U

−
0i − xc0 i−1 U+0i

U−0i −U+0i

,
tbi U

−
0i − tc0 i−1 U+0i + xc0 i−1 − xbi

U−0i −U+0i

)

12 for i← 1, N do
13 Solve for the local gas, uci0 , and left sound speed, aL

ci0
, when the i-th rarefaction wave meets

the contact interface:

⎧⎪⎪⎨
⎪⎪⎩

uci0 + 2
γ1−1 aL

ci0
= ri

uci0 − up =
[(

aL
ci0
a3

) γ4(γ1−1)
γ1(γ4−1) − 1

]
2a2

γ1−1

14 Determine the Riemann invariant of the reflected i-th rarefaction off the contact interface:

sL
i = uci0 −

2aL
ci0

γ4 − 1
15 Determine the speed of the contact interface and the wave speed of the i-th rarefaction

wave when they meet:

ui0 =
uci0 + uc0 i−1

2
, U+i0 =

uci0 + aL
ci0
+U+ci−1 1

2i
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16 Determine the exit point from the second buffer region of the i-th rarefaction wave:

(xci0 , tci0 )=
(

(tci−1 1 − tci−1 0 )ui0U+i0 + xci−1 1 ui0 − xci−1 0 U+i0
ui0 −U+i0

,
tci−1 1 ui0 − tci−1 0 U+i0 + xci−1 0 − xci−1 1

ui0 −U+i0

)

17 for j← i+ 1, N do

18 Determine the local gas and sound speeds when the reflected i-th and j-th rarefaction
waves meet:

ucij =
1
2

(rj + sL
i ), acij =

γ4 − 1
4

(rj − sL
i )

19 Deduce the left and right wave speed: U−ij =
ucij − acij +U−ci j−1

2
and U+ij =

ucij + acij +U+ci−1 j+1

2
20 Determine the meeting point between the reflected i-th and j-th rarefaction waves:

(xcij , tcij )=
(

(tci−1 j+1 − tci j−1 )U−ij U+ij + xci−1 j+1 U−ij − xci j−1 U+ij
U−ij −U+ij

,
tci−1 j+1 U−ij − tci j−1 U+ij + xci j−1 − xci−1 j+1

U−ij −U+ij

)

21 Determine the exit speed out of the second buffer region of the i-th rarefaction wave: UR+
ci0
=

uci0 + a2

(
aL

ci0

a3

) γ4(γ1−1)
γ1(γ4−1)

22 Determine arrival time: tdi =
(L− xci0 )

U+R
ci0

and pressure: pdi = p1 + ρ1a1uci0 +
γ1 + 1

4
ρ1u2

ci0
at L

of i-th rarefaction wave.

3. Results
In this section, we exercise the model in a number of configurations for a wide range of shock
tube input parameters. For each configuration, the model furnishes the peak pressure and the
exact onset time and location of the Friedlander wave (algorithm 1). In addition, we compute the
pressure history at the onset location for each case with the semi-analytical approach outlined in
algorithm 2. In the predictions shown, we employ a total of four discrete rarefaction waves (N= 3
in algorithm 2). These are the head wave, the tail wave and two intermediate rarefaction waves.
The time evolution of the pressure profile at the onset location is then described by the four points:
(pd, td), (pd1 , td1 ), (pd2 , td2 ) and (pd3 , td3 ) as illustrated in figure 2. From this discrete description of the
pressure history, we use the method described in §2b(iii) to determine the temporal characteristics
of the blast: decay time, impulse and wave form parameter.

We evaluate the quality of these predictions by comparing our model results with detailed
CFD simulations for all configurations considered in the case of a compressed-air shock tube.
Further, for these particular configurations, we assess to what extent the Friedlander wave
form provides a good description of the type of blast waves that form in a shock tube. The
versatility of the semi-analytical model is demonstrated in the analysis of helium-driven shock
tube configurations. Specifically, we use the model to explore the trade-offs in the shock tube
design space including the influence of the driver gas. In an attempt to validate the model, we
compare the results of the semi-analytical blast estimates with experimental data of an existing
shock tube.
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Figure 6. Numerical versus analytical pressure profiles for: (a) p2/p1 ≈ 1.5, (b) p2/p1 ≈ 2.0, (c) p2/p1 ≈ 3.0 and
(d) p2/p1 ≈ 4.0.

(a) Verification of analytical estimates using numerical simulation in a compressed air
shock tube

The analytical estimates of the various parameters of interest in the formation of a Friedlander
wave in a shock tube derived above can be verified using numerical CFD analysis. To this end, we
use the Virtual Test Facility [25] to conduct simulations of the evolution of the flow in a shock tube
under different conditions and compare the analytical estimates of the quantities of interest with
the values furnished by the numerical computations. Specifically, we consider 16 different shock
tube configurations with four different driver initial pressures and four different driver lengths.
The initial driver pressure values used in simulations are selected such that the blast wave peak
incident pressures reach approximately 1.5, 2.0, 3.0 and 4.0 atmospheres. For each of these four
cases, the following driver lengths are considered: 0.25, 0.5, 0.75 and 1.0 m. For convenience, the
problem is modelled using a two-dimensional grid with unit height. The grid length is chosen
so that it fully contains the blast wave at the end of the simulation, thus avoiding confounding
effects at the mouth of the shock tube. Simulations are run until the pressure at the onset location
decays below atmospheric values (onset of the negative phase of the blast). The total time of the
simulation should be greater than the sum of the blast formation time td and the decay time τ ,
which can be obtained from equations (2.29) and (2.46), respectively. The initial conditions in the
tube consist of the value of the pressure in the driver section, atmospheric pressure values in the
rest of the domain, the initial temperature set to 300 K, the gas density computed from the ideal
gas equation of state. The verification is done only for the case of an air-driven shock.

Figure 6 presents a comparison of the analytical and numerical values of the pressure history
obtained at the location L where the analytical model predicts the onset of the blast wave for all
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Table 1. Comparison of blast wave onset locations and incident pressures between compressed air and compressed helium
shock tube. We used the ambient pressure p1 = 101.325 kPa.

shock pressure
incident pressure ratio (p2 − p1)/p1 blast location L

driver

pressure (kPa) air (kPa) helium (kPa) air helium length (m) air (m) helium (m)

234.0 152.0 186.0 0.50 0.84 0.25 4.89 1.33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.50 9.79 2.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.75 14.68 4.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.00 19.57 5.34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

440.0 202.7 276.5 1.00 1.73 0.25 4.14 1.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.50 8.28 2.38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.75 12.43 3.57
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.00 16.57 4.76
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1153.1 304.0 503.1 2.00 3.97 0.25 4.47 1.32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.50 8.95 2.64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.75 13.42 3.96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.00 17.90 5.28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2452.8 405.3 770.1 3.00 6.60 0.25 5.33 1.58
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.50 10.66 3.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.75 15.99 4.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.00 21.32 6.33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 configurations in table 1. In all cases, we observe that the numerical and analytical predictions
for the peak overpressure are within 2% of each other. In all cases considered, the three analytical
predicted values, (pdi , tdi ), describing the time decay of pressure past the initial peak value fall
almost on the top of the numerical curve. For low peak incident pressures: 1.5× 105 Pa and
2.0× 105 Pa, the pressure evolution with respect to time is accurately described by a piecewise
linear interpolation between the four analytical points. For higher peak incident pressures:
3.0× 105 Pa and 4.0× 105 Pa, corresponding to a stronger shock regime, the pressure profile has
higher curvature and consequently four analytical points are insufficient to fully capture the
shape of the actual (numerical) pressure profile. However, the individual analytical points do
capture the numerical values very accurately.

(b) Comparison of the numerical blast wave pressure history with the Friedlander
mathematical form

In this subsection, we want to quantify how closely the numerical pressure profiles are described
by the Friedlander mathematical form. To this end, we fit the Friedlander wave form parameters
to the positive phase of the pressure profiles predicted with the simulations as follows. The
peak overpressure and the decay time in (1.1) are extracted directly from the numerical pressure
profiles at the onset location. The wave form parameter α is obtained from the simulations by
least-square regression of the numerical pressure history. This furnishes the optimal value of the
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wave form parameter α. The Friedlander wave form parameters for all of the 16 cases are listed
in table 2. We do not plot the analytical wave forms as they almost exactly match the numerical
profiles. In order to further quantify the match, we compare the impulse from the closed form
integral of the analytical wave forms (2.47) with the numerical integral of the simulated cases
using the trapezoidal rule. Table 3 shows the numerical values obtained as well as the error.
As shown in table 3, the error between the numerically integrated impulse and the impulse
obtained by a fit of the blast parameters of the Friedlander impulse ranges from 0.1 to 1.8%. The
error increases with the shock strength and does not seem to vary significantly with the tested
driver length. For all the tested cases, the error in impulse between the numerical model and the
Friedlander mathematical form is less than 2%. This demonstrates that the numerical shock tube
model produces Friedlander waves.

(c) Quantitative comparison of the semi-analytical and numerical blast wave parameters
In §3a, we showed the semi-analytic solution gives an excellent estimate of the pressure history for
all the points considered (N= 4 in our case, figure 2). Here, we estimate the blast wave parameters
following the procedure in §3. We compute (2.46) to find the decay time τ and make use of (2.47)
to find the wave form parameter α. The computed blast parameters for the 16 cases are reported
in table 2. It can be seen that the error in the quantities of interest increases with the strength of
the shock due to the few points considered. For stronger shock intensities, the accuracy could be
improved by adding more rarefaction waves to the semi-analytic model, of course as long as the
isentropic shock assumption is valid.

(d) Influence of the driver gas on the peak pressure and location of the onset of a blast
In this section, we take advantage of the versatility of the semi-analytic model and use it to
investigate how the peak pressure and the blast onset location are affected by choosing helium
as driver gas. Table 1 compares the results for air and helium-driven shock tubes for the 16
different shock tube configurations. We observe that helium-driven shock tubes have higher peak
pressures which become relatively higher as the driver pressure increases. In the limit of low
driver pressure, the peak overpressures match. In the highest driver pressure considered, the
peak pressure is almost twice of the corresponding value for air-driven shock tube. For all the
cases considered, the blast location for helium is about three times shorter than air.

(e) Comparison with experimental data
In order to validate the proposed semi-analytic model, we would require pressure-versus-time
data at different locations along the length of the driven section. Ideally, an array of closely spaced
sensors would be located around the region where the model predicts the onset of the blast profile.
This would allow to experimentally capture the transition from the plateau to the fully formed
blast wave and posterior decay, and, therefore, an accurate experimental determination of the
onset of the blast. This would then be quantitatively compared to the model predictions under
different initial conditions and help validate the model. Unfortunately, we have been unable to
find any previous work published in the literature where this particular type of experiment has
been conducted. The value of the peak incident overpressure is easier to compare (and easier to
compute). For this, it suffices to extract the shock pressure while the first rarefaction wave has not
caught up with the shock front. The pressure value corresponds to the Riemann solution.

With these considerations in mind, we applied our model to the experimental conditions in
Refs [3,26]. It is important to emphasize that this should not be construed as an attempt to validate
the model, but merely to make at least some connection with published blast shock tube data.

The shock tube employed in Refs [3,26] measures 7.12 m and is driven by helium. The driver
section has a length of 0.76 m and an initial pressure of 241 kPa. Three pressure sensors are
placed along the driven section at distances of 2.80 m (the ‘R-wall’ sensor), 5.57 m (the ‘Trigger’
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Table 3. Comparison between the numerical impulse and the impulse of fitted Friedlander form. The initial pressure is the
pressure in the driver section before themembrane bursts and the shock pressure ratio is the ratio between the pick overpressure
and the ambient pressure.

initial pressure (kPa) 234.0 440.0

shock pressure ratio (p2 − p1)/p1 0.5 1.0

driver length (m) 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.0

impulse
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

numerical (Pa s) 84.2 170.5 256.9 346.4 201.6 409.0 613.4 823.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fitted (Pa s) 84.0 170.4 256.5 345.8 201.0 408.0 612.0 822.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

error (%) 0.1 0.1 0.1 0.2 0.3 0.3 0.2 0.2
initial pressure (kPa) 1153.1 2452.8

shock pressure ratio (p2 − p1)/p1 2.0 3.0

driver length (m) 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

impulse
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

numerical (Pa s) 562.8 1140.6 1711.0 2281.2 1174.8 2348.6 3509.1 4700.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fitted (Pa s) 558.3 1131.4 1697.5 2263.4 1153.8 2306.0 3446.5 4614.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

error (%) 0.8 0.8 0.8 0.8 1.8 1.8 1.8 1.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Summary of experimental conditions from Ref. [26] used for comparison with the model.

driver blast overpressure location

pressure experimental predicted specimen predicted

shock tube length (m) (kPa) (kPa) (kPa) (m) onset (m)

ref. [26] 0.76 241 83± 11 84 5.98 4.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sensor) and 5.98 m (the ‘Pencil’ sensor) from the closed end of the tube. The time evolution of
the pressure at these different locations is reported in [26]. At the ‘R-wall’ location, the pressure
profile exhibits the short plateau indicating that the head rarefaction wave has not yet caught up
with the shock wave, whereas the pressure profile at the two other locations exhibit fully formed
blast wave pressure profiles. We estimate the experimental incident pressure by looking at the
value of the plateau pressure at the ‘R-wall’ sensor. The reported experimental profile shows a
mean plateau pressure of approximately 83 kPa with high-frequency oscillations of about 11 kPa.
The analytical model predicts an incident overpressure of 84 kPa. The model also predicts that
the blast wave should form 4.02 m away from the closed end of the tube. Lacking information on
the experimental location of the onset of the blast, one can at most check for consistency between
the model and the test. Specifically, we observe that the two pressure sensors which show fully
formed blast pressure profiles are located downstream (respectively, 5.57 and 5.98 m from the
closed end of the tube) of the onset location predicted by the model for this case (4.02 m). For
convenience, these results are summarized in table 4.

4. Conclusion
In this paper, we presented a semi-analytical approach to predict the characteristics of pseudo
blast waves that form in a shock tube from test configuration parameters. The expressions for the
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blast intensity and onset location are given in closed form as a result of finding the intersection
point between the shock and the head rarefaction wave. To further compute the pressure history
at that location, we use a semi-analytical approach in which discrete pressure–time values are
obtained by tracking the evolution of subsequent rarefaction waves. We show that the blast decay
time and impulse can be estimated with a few discrete pressure–time points.

The semi-analytical model was verified against numerical CFD calculations in 16 different
configurations (driver length and pressure). It was also shown that both the semi-analytical model
and the CFD results can be fitted to a Friedlander wave form, thus confirming the long-standing
belief that shock tubes do indeed produce Friedlander-like blast waves.

Among some important practical conclusions of interest to shock tube operations derived from
the theoretical analysis, we find that: (i) the maximum incident pressure p2 is not affected by the
driver length L1, as expected; (ii) the location of the onset of the blast L increases with the driver
length L1; (iii) for a fixed driver pressure p4, the decay time τ and specific impulse I increase
proportionally to the driver length, whereas for a fixed driver length, the decay time and impulse
increase with increasing driver pressure; (iv) the wave form parameter is found to be independent
of the driver length and to increase with driver pressure; and finally, (v) the formation of the blast
wave occurs closer to the diaphragm in the case of helium-driven shock tubes.

It is to be noted that our analytical model that employs the theory of one-dimensional
unsteady gas flow(that disregards the effects of viscosity and thermal conductivity [27]) is an
idealized representation of the shock tube flow. For instance, the shattering of the diaphragm is a
complicated process with the implication that the shock wave does not form instantly [18].
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