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Abstract

Biological clocks are self-sustained oscillators that adjust their phase to the daily environmental 

cycles in a process known as entrainment. Molecular dissection and mathematical modeling of 

biological oscillators have progressed quite far, but quantitative insights on the entrainment of 

clocks are relatively sparse. We simultaneously tracked the phases of hundreds of synthetic genetic 

oscillators relative to a common external stimulus to map the entrainment regions predicted by a 

detailed model of the clock. Synthetic oscillators were frequency-locked in wide intervals of the 

external period and showed higher-order resonance. Computational simulations indicated that 

natural oscillators may contain a positive-feedback loop to robustly adapt to environmental cycles.

One focus of synthetic biology is the genome-scale synthesis of DNA for the creation of 

novel cell types (1). This approach could lead to cells with highly reduced genomic 

complexity, as genes that govern the ability to adapt to multiple environments are eliminated 

to construct specialized organisms for bio-technology and basic research. Another branch of 

synthetic biology involves the engineering of gene circuits, in which mathematical tools are 

developed to systematically design and construct circuits from a standardized list of 

biological parts (2–11). The engineering approach allows the construction of circuits that 

mimic natural networks to understand the design principles that underlie a given network 

motif (12, 13). In this context, molecular clocks are a natural application of synthetic 
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biology, and recent efforts have led to a deeper understanding of the robustness and 

reliability of time-keeping at the intracellular level (3, 7, 8, 10).

Almost all organisms use molecular clocks to keep their physiology and behavior in 

synchrony with their surroundings (14). Such coordination is mediated by entrainment, 

whereby a population of intracellular clocks oscillate in unison guided by a common 

external signal (14, 15). Quantitative descriptions of entrainment that arise from the tight 

coupling of computational modeling and experimentation are challenging to develop 

because of the complexity of the underlying gene-regulatory networks, in which dozens of 

genes are involved in the core clocks and hundreds more act as their modifiers (16). 

Moreover, a quantitative description of inherently stochastic circadian clocks requires 

abundant long-term single-cell data, which are technically challenging to obtain (17–19). We 

combined synthetic biology, microfluidic technology (20), and computational modeling to 

investigate the fundamental process of entrainment at the genetic level.

We used a synthetic oscillator that has coupled positive- and negative-feedback loops that 

are characteristic of many circadian gene-regulatory networks (Fig. 1A) (7). The green 

fluorescent protein (GFP) was used as a readout of the transcriptional activation state of the 

promoter that drives the expression of the oscillator genes. We stimulated the expression of 

the oscillator genes (araC and lacI) by periodically modulating the concentration of the 

transcriptional inducer arab-inose, which acts on the positive-feedback loop. Such 

stimulation is referred to as the forcing of the oscillator. To generate long-term single-cell 

data for comparison with computational modeling, we constructed microfluidic devices in 

which bacterial colonies can grow exponentially for at least 150 generations (fig. S1) (21). 

For each experimental run, we tracked the phase of the oscillations with respect to the 

arabinose signal in ~1600 cells (Fig. 1B and movies S1 and S6) (21). The period of 

oscillations T was measured as the peak-to-peak interval in the GFP fluorescence time 

series. The phase difference between an oscillator and the arabinose signal was calculated as 

Δϕ = 2πΔT/Tf, where Tf is the period of the forcing signal and ΔT is the measured time 

interval between a crest of arabinose and the immediate following peak of GFP fluorescence 

(Fig. 1C). Entrainment of the intracellular oscillations to the chemical signal was readily 

identified from color density maps of the fluorescence trajectories (Fig. 1D); by taking crests 

of GFP fluorescence as a marker of the phase, one can see that whereas in the autonomous 

set single cells are not always in phase with respect to each other, maxima in the forced 

colony occur almost simultaneously during most of the run.

The entrainment of any self-sustained oscillator can be characterized by comparing its 

natural period (Tn) and phase (ϕ) to those of the external signal. When Tf is sufficiently 

close to the natural period of the oscillator, the oscillator can be entrained. In the 

entrainment regime, the period of the oscillator T is equal to Tf, and the phase difference Δϕ 

between the oscillator and the forcing signal is fixed. In the plane defined by the period and 

amplitude of the external signal (Tf, A), a triangular region near Tf/Tn = 1 indicates where 

the oscillator is entrained [Fig. 1E and supporting online material (SOM) text]. Entrainment 

may also occur near other rational values of Tf/Tn. Collectively, these regions are known as 

Arnold tongues. The order of locking in each region is indicated by the ratio n:m, which 

denotes that m oscillations of the clock correspond to n oscillations of the arabinose signal. 
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We computed the tongues for entrainment of order 1:1 and 2:1 with a deterministic model of 

the synthetic oscillator (7), in which we periodically modulated the arabinose concentration.

To experimentally map the entrainment regions, we first determined the natural period of the 

oscillator by tracking the expression of GFP of cells at constant inducer concentrations 

(movie S2). Because the oscillators are not synchronized with respect to each other, their 

phases are uniformly distributed between 0 and 2π (Fig. 2A). Similar to its naturally 

occurring counterparts (17, 18, 22), the synthetic oscillator shows considerable fluctuations 

(Fig. 3A). Given the natural period of ~32 min, we varied the period of the arabinose 

concentration from 6 to 60 min for two values of the amplitude. Coherent oscillations 

emerged over a range of periods that bounded the natural period (movie S3). Phase-locking 

was characterized by a narrow peak in the phase distribution (23), which became difficult to 

discern as the period of the signal diverged from the natural period but reappeared as the 

forcing period approached half of the natural period (Fig. 2B and movie S4). An increase in 

the forcing amplitude by a factor of 2 led to sharper distributions of the relative phase (Fig. 

2C and movies S1 and S5). To quantify the degree of phase-locking, we used an entropy-

based index (ρ) to characterize the width of the distributions (23); wider distributions imply 

less phase-locking and lead to smaller values of ρ (SOM text). Accordingly, maxima of the 

entrainment index appeared at both the natural period and half of the natural period (Fig. 

2D).

The flattening of phase distributions and the decay of the phase-locking index around Tf/Tn 

= 1/2,1 indicates the breaking of entrainment. To investigate this transition in more detail, 

we examined the dynamics of the oscillation phase relative to the forcing signal in single 

cells. We chose three values of the forcing period that cross the left boundary of the 

computed main Arnold tongue (Fig. 1E). We used peak positions to determine the phases of 

the arab-inose signal ϕara(t) and single-cell oscillations ϕc(t), and we calculated their 

difference Δϕ(t) = ϕara(t) – ϕc(t) (Fig. 2E). Near the center of the entrainment region (Tf = 

33 min), Δϕ for most oscillators was nearly constant (Fig. 2E, blue shaded region and 

curves). Toward the left boundary of the tongue (Tf = 30 min), there is a slow mean phase 

drift with a broad distribution (Fig. 2E, red shaded area and curves); some cells exhibit phase 

drift (with an evidence of occasional phase slips), whereas other cells are still phase-locked. 

Finally, between the two Arnold tongues (Tf = 24 min), the rate of phase drift was even 

faster and almost uniform because the phases of most oscillators did not lock to the 

arabinose signal (Fig. 2E, green shaded area and curves). The continuous phase drift 

indicates quasi-periodic behavior outside entrainment regions, which is observed in the 

computation of Arnold tongues (Fig. 1E and SOM text).

We also used period distributions to characterize the response of the oscillator (Fig. 3). 

Forcing periods close to both the natural period and half of the natural period reduce the 

spread of the period distribution in a manner similar to that observed with light pulses 

resetting peripheral clocks (22). For a lower amplitude of the arabinose signal, oscillators 

were entrained over an interval of periods that was consistent with the width of the 1:1 

phase-locking regime determined with the use of the entropy-based measure (Figs. 2D and 

3D). For a larger forcing amplitude, the 1:1 plateau extended over a larger interval of 

periods, and a 2:1 plateau indicated the presence of the higher-order resonance. Some of 
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these distributions displayed two modes, which presumably indicated simultaneous 

occurrence of 1:1 and 2:1 frequency-locking.

Direct comparison between our experimental results and the computed Arnold tongues 

indicated that the locations of the experimental entrainment plateaux correspond closely to 

the regions where frequency-locking is predicted (Fig. 4A). The width of the plateau 

increased with the amplitude of the forcing signal, as follows from classical theory (24). 

However, the experimental entrainment regions were consistently wider than the computed 

Arnold tongues. The major discrepancy between the naive model and experiment is that the 

model assumes that all oscillators are identical and have the same natural period, whereas 

the bacterial colony exhibits a broad distribution of periods (Fig. 3A).

The observed variability of the oscillatory dynamics can be attributed to both intrinsic and 

extrinsic origins (25). We incorporated both sources of variability into our model because it 

is difficult to ascertain which one dominates. We used a Gillespie algorithm (26) to simulate 

the stochastic model of the oscillator network with intrinsic noise only (the kinetic 

parameters of all oscillators were set to be identical). Although the simulated distributions 

appeared similar to experimental data (figs. S2 to S5), the stochastic model did not account 

for the higher-order (2:1) resonance entrainment, the period bimodality, or the wider 

entrainment regions (Fig. 4, B and C, black circles, and figs. S2 to S5). We therefore 

modeled extrinsic variability by varying the kinetic parameters of the deterministic model 

across a population of 550 cells. In particular, we assumed that the rates of transcription, 

translation, enzymatic degradation by proteases, and plasmid copy numbers were normally 

distributed around their nominal values. Using a coefficient of variation (CV) of 0.15, close 

to CV = 0.18 of the experimental probability distribution of the free-running period, we 

obtained good agreement between the modes of simulated and experimental period 

distributions (Fig. 4D, black circles, and figs. S7 and S9). Accordingly, the distributions of 

the relative phase and the peaks in the curves for the intensity of phase-locking were 

comparable (Fig. 4E and figs. S6 and S8). Deterministic simulations with randomized 

parameters accounted for the width of both the 1:1 and 2:1 entrainment regions. Simulations 

also reproduced peaks in some bimodal period distributions (figs. S7 and S9).

These results can be readily understood in the context of the phase dynamics. For fixed 

concentrations of arabinose and isopropyl-β-D-thiogalactopyranoside (IPTG), the natural 

period of the oscillator Tn is a function of the parameters of the model—for instance, the 

rates of transcription, translation, enzymatic degradation, and of the ratio of activator to 

repressor plasmids. Therefore, variability in these parameters will lead to the observed 

variability in the periodicity of free-running oscillations (Fig. 3A). Each individual oscillator 

will respond differently to the forcing arabinose signal, and depending on its natural 

frequency, it may or may not entrain. If the natural-frequency distribution occupies an 

interval of a given width, the entrainment interval will broaden by the same amount (SOM 

text). Moreover, the broad distribution of natural frequencies of oscillators explains the 

occurrence of bimodal period distributions. If the forcing frequency is shifted with respect to 

the peak of the free-running frequency distribution, both the entrainment peak at Tf and the 

“free” peak at Tn may coexist.
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Because circadian oscillators can be entrained by stimuli that act on different components 

(27), we explored the entrainment of the oscillator through the periodic modulation of the 

concentration of IPTG (Fig. 1A). We did this through deterministic simulations of the 

model, in which arabinose was kept constant and the concentration of IPTG oscillated 

sinusoidally (SOM text). We found a similar behavior to forcing with arabinose, with a main 

entrainment region that widened with the amplitude of change in IPTG concentration. 

Because the concentration of arabinose defines the strength of the positive feedback through 

the AraC-DNA binding rate, we used different values to explore how entrainment depends 

on the strength of positive feedback. Lower concentrations of arabinose yielded narrower 

Arnold tongues (Fig. 4F). In other words, a weaker positive loop makes the oscillator less 

entrainable.

We have shown how the coupling of synthetic biology, microfluidic technology, and 

computational modeling can be used to explore the complex process of entraining molecular 

clocks. Our results indicated that the positive-feedback loop widens the entrainment region 

for single cells, providing insight into the possible role of positive feedback in the robust 

adaptation of variable clocks to complex environments (28). The observation of higher-order 

entrainment and the wider entrainment regions allowed us to discriminate intrinsic sources 

in favor of extrinsic noise as the main contribution to stochastic variability in computational 

modeling of the clock. Other manifestations of strong cell-cell variability in gene networks 

have been quantified (29). Although cell-cell variability may be deleterious to biological 

function, variable entrainment properties across a population may provide increased 

flexibility to the various signals that reset clocks. This may be relevant in the context of 

multicellular circadian systems where uncoupled peripheral oscillators display variability 

and are exposed to multiple signals (17, 18, 22, 30). Other properties at the cell and tissue 

level have been found to contribute to the flexibility of circadian clocks; recent work found 

an effect of the strength of coupling between cell clocks on the range of entrainment in 

mammalian circadian clocks (19).
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Fig. 1. 
We use single-cell data from time-lapse fluorescence experiments to investigate the 

entrainment of a synthetic oscillator. (A) Architectures of eukaryotic circadian clocks and 

bacterial synthetic oscillators contain positive- and negative-feedback loops that are sensitive 

to external stimuli. (B) Fluorescence images from a time-lapse experiment show coherent 

GFP oscillations (green) in a colony of single-cell oscillators subject to a 30-min cycle of 

arabinose (red) (movie S1). (C) Fluorescence time series of a single-cell oscillator (green). 

The concentration of arabinose (red) changes sinusoidally according to [ara](t) = 0.3 + 

Asin(2πt/Tf) [percent weight/volume (% w/v)], with A = 0.15% and Tf = 30 min. The 

intensity plot above the graph corresponds to the cell trace. a.u., arbitrary units. (D) 

Fluorescence intensity plots of free-running and forced oscillators. Each row in the two 

panels represents a single-cell trace. The top row of the forced set represents the modulated 

concentration of arabinose (A = 0.15%). (E) Entrainment regions indicate which forcing 

periods (Tf) and amplitudes (A) result in locking of the oscillator according to a 

deterministic model (SOM text). Entrainment of order 2:1 means that two oscillation peaks 

are observed for one peak of arabinose. Tn is the natural period of the oscillator. Images and 

cell traces shown in (B), (C) and [(D), forced oscillations] correspond to point 4. Points 1 to 

3 signal some parameter values explored experimentally.
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Fig. 2. 
Probability distributions of the relative phase of oscillators with respect to the external signal 

allow the detection of entrainment. (A) Probability distribution of the relative phase of free-

running oscillators in several colonies with respect to a virtual sinusoidal signal of period Tf 

= 30 min. Constant concentrations of inducers were used ( , ). 

(B) Probability distributions of the relative phase for multiple forcing periods with amplitude 

A = 0.075% (w/v). In the presence of the external stimulus, distributions acquired a 

preferred phase that depends on the forcing period Tf. (C) Same as (B) for stronger forcing 

with A = 0.15%. Increased amplitude sharpens the peaks of the relative phase distributions 

with respect to those for A = 0.075% as in Tf = 15, 30, and 45 min. (D) Intensity of 

entrainment as a function of the forcing period for the two values of the forcing amplitude. 

In each curve, two peaks centered near Tf ~ Tn = 31.8 min and Tf ~ Tn/2 = 15.9 min reveal 

the intervals of Tf where the phase is locked to the arabinose input. For free-running 

oscillators, ρ is nearly zero (orange open circle). (E) Relative phase as a function of time for 

three experiments shown in (B). Colored regions correspond to ±SD around the mean phase 

drift. Dashed lines indicate representative single-cell traces.
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Fig. 3. 
Probability distributions of the period of oscillations allow us to find the forcing periods that 

lead to frequency-locking. (A) Probability distribution for the period of free-running 

oscillators in constant concentrations of inducers ( , ). In 

forcing experiments, the concentration of arabinose oscillates sinusoidally around 

. We defined the natural period as the mean period of free oscillations, Tn = 31.8 

min with standard deviation δT = 5.7 min. (B) Probability distributions of the period for 

multiple values of the Tf with A = 0.075%. For Tf near Tn = 31.8 min or Tn/2 = 15.9 min, 

the dispersion of the period is the least. Red bars indicate the mode of the distributions. (C) 

Probability distributions of the period for multiple values of the forcing period with A = 

0.15%. Period distributions for this higher amplitude can contain two modes (light blue and 

brown bars). (D) The ratio T/Tf as a function of Tf for the two forcing amplitudes, where T 
is the mode(s) of the period distributions. The intervals of the forcing period where T/Tf ~ 

1,2 provided evidence for entrainment of order 1:1 and 2:1, respectively.
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Fig. 4. 
Computational modeling shows that extrinsic sources are the dominant contribution to 

variability. Blue and red data points indicate experimental data for A = 0.075% and A = 

0.15%, respectively. Error bars represent ±SD. (A) Experimental values of T/Tf alongside 

computed entrainment regions (purple lines), which are shifted with respect to each other to 

account for the gap between the T/Tf = 1 and T/Tf = 2. Entrainment was observed for Tf 

outside the computed entrainment areas. (B and D) Same as (A), along with the prediction 

for the ratio T/Tf (open circles) from a stochastic model (B) and from a deterministic model 

with distributed parameters in a set of 550 oscillators (D). Unlike the oscillator subject to 

intrinsic noise (B), the oscillator with distributed kinetic parameters became phase-locked 

outside computed entrainment regions (D). The ratio T/Tf diverges from 1 or 2 outside 

Arnold tongues (B). (C and E) Experimental values of the intensity of entrainment ρ 

alongside the prediction (black circles) from a stochastic model (C) and a deterministic 

model with distributed parameters in a set of 550 oscillators (E). Intrinsic variability 

destroys the resonance around Tf/Tn = 0.5 (C), whereas the model with distributed 

parameters captures it (E). (F) Main entrainment region for forcing with a sinusoidal IPTG 

signal of amplitude AIPTG for three concentrations of arabinose from a deterministic model 

(SOM text). When the oscillator is forced through its negative-feedback loop (Fig. 1A), the 
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range of entraining frequencies increases with the constant arabinose concentration (strength 

of positive-feedback loop).
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