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ABSTRACT

Human prostatic acid phosphatase (PAcP) is a prost-
ate epithelium-specific differentiation antigen. Cellular
PAcP functions as a neutral protein tyrosine phospha-
tase and is involved in regulating androgen-promoted
prostate cancer cell proliferation. Despite the fact that
the promoter of the PAcP gene has been cloned, the
transcriptional factors that regulate PAcP expression
remain unidentified. This article describes our ana-
lyses of the promoter of the PAcP gene. Deletion ana-
lyses of the promoter sequence up to �4893 (�4893/
+87) revealed that a 577 bp fragment (�1356/�779)
represents the unique positive cis-active element in
human prostate cancer cells but not in HeLa cervix
carcinoma cells. Interestingly, the 577 bp fragment
contains a non-consensus nuclear factor kB (NF-
kB)-binding site that is required for NF-kB up-regula-
tion inprostatecancercells,whileNF-kBfailed tohave
the same effect in HeLa cells. Conversely, inhibition of
theNF-kBpathwaystoppedp65NF-kBactivationofthe
p1356 promoter activity. Gel shift and mutation ana-
lyses determined that AGGTGT (�1254/�1249) is the
core sequence for NF-kB-binding and activation.
Biologically, tumor necrosis factor-a (TNF-a) acti-
vated endogenous PAcP expression in LNCaP
human prostate cancer cells. The data collectively
indicatethatNF-kBup-regulatesPAcPpromoteractiv-
ityvia itsbindingtotheAGGTGTmotif,anovelbinding
sequence located inside the cis-active enhancer ele-
ment in human prostate cancer cells.

INTRODUCTION

Prostate cancer has become major a health problem in the male
population of the Western world and is the second leading
cause of cancer-related death in the United States (1). This is in
part due to the lack of effective therapy for advanced prostate

cancer (2,3). Therefore, the application of gene therapy to this
cancer has attracted great attention. There is considerable
interest in achieving a high level of expression in a defined
cell population through specific promoters or regulatory ele-
ments. Several human genes that exhibit prostate-specific or
prostate-enriched expression have been identified, including
prostatic-specific antigen (PSA) (4), PSMA (5), Nkx3.1 (6),
DD3 (7) and PAcP (8–10). Nevertheless, in part due to the
androgen-dependent manner of their expression, except for
PAcP and DD3, their potential application to patients under-
going androgen ablation therapy requires further investigation.

Human PAcP has a long history of serving as a marker for
prostate cancer due to its prostate-specific manner of expression
(11,12). There are two forms of PAcP: the cellular and the
secretory forms. The intracellular level of PAcP is decreased,
correlating with prostate carcinogenesis (13), but its secreted
protein in circulation may serve as a marker for cancer diagnosis
(14). The cellular form of PAcP functions as a neutral protein
tyrosine phosphatase (15) and is involved in regulating cell
growth by dephosphorylating ErbB-2 in human prostate cancer
cells (16,17). Cellular PAcP is also involved in regulating
non-genomic, androgen-promoted prostate cell proliferation
(17,18). The regulation of PAcP expression and secretion has
been of long-standing interest. In the past five decades, PAcP
secretion has served as a marker for androgen action (19).
Nuclear run-on experiments have revealed that androgens
can regulate PAcP expression at the transcriptional level
(12). Despite intensive studies of androgen regulation of
PAcP expression at the post-transcriptional level (20), its tran-
scriptional regulation remains an enigma. It has been proposed
that androgen regulation of the PAcP gene is mediated
via putative steroid-response elements (SREs) located bet-
ween �1576 and +336 on the PAcP gene (21,22). The results
of initial studies, however, show that androgens cannot activate
the promoteractivityofconstructs covering theseelements (21).
It is possible that the responsibility for androgen regulation lies
with the distal SRE(s) in the PAcP promoter, as found in PSA
and probasin promoters (23,24). Furthermore, the cis-active ele-
ment located between�1356 and�779 of the PAcP promoter is
involved in regulating the high level of prostate-specific
promoter activity and exhibits androgen independence (25).
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Taking all this into accounts, the promoter of the PAcP gene
represents an interesting candidate for potential application in
promoter-based gene therapy for advanced prostate cancer and
serves as a model for understanding cell-specific expression.

Nuclear factor kB (NF-kB)/Rel includes a family of related
transcription factors that bind to a set of related DNA
sequences, i.e. the kB-binding site, for regulating gene expres-
sion (26–28). NF-kB forms homo- or heterodimeric com-
plexes of various subunits, and the classical NF-kB is a
heterodimer composed of a 50 kDa (p50) subunit and a 65
kDa (p65) subunit (29). Different NF-kB dimers can bind to
the known kB sites bearing the consensus sequence
GGGRNNYYCC or GGRRNNYCCC (30). The diverse regu-
lation of NF-kB-dependent promoters is due at least in part to
the ability of different dimers to bind to the same or distinct kB
sites in a cell-type- and/or stimulus-dependent manner. For
example, p65/RelA, c-Rel and RelB are positive regulators
due to the presence of the potent transcriptional-activation
domain. Although those dimers composed solely of Rel pro-
teins lacking transcriptional-activation domains, e.g. p50 and
p52, may in general mediate transcriptional repression (29),
p50/p50 or p52/p52 homodimers can be transcriptional acti-
vators along with the Bcl-3 coactivator (31,32). Interestingly,
Bcl-3 is also an inhibitor for these latter homodimers (31,32).
In cells, in the absence of stimuli, NF-kB is sequestered in the
cytoplasm by association with the inhibitory proteins IkBa
and IkBb (30). Activation of NF-kB occurs through the site-
specific phosphorylation of IkB, e.g. serine-32 and -36 of
IkBa, by IkB kinases (IKKs) and subsequent degradation
of IkB. This activation allows the translocation of the released
NF-kB into the nucleus to regulate target gene transcription
(27,33). NF-kB can be activated by diverse signals, leading
to regulation of various cellular activities (34,35). For exam-
ple, NF-kB may be involved in the progression of breast
cancer cells from the hormone-dependent to the hormone-
independent stage (36). NF-kB is also activated in some
hormone-refractory prostate cancer cells (37,38). Interest-
ingly, the androgen receptor and NF-kB are mutually
antagonistic in transcription assays (39), raising the possibi-
lity that the development of androgen independence in pros-
tate cancer cells may be due in part to the aberrant regulation
of NF-kB-targeted genes. Clearly, further studies are required
to clarify the functional role of NF-kB in prostate cancer
progression.

Despite the potential importance of PAcP in prostate cancer
biology (10,14,40), little information is available about tran-
scriptional factors that are involved in regulating the expres-
sion of this gene (21,41,42). In this article, we describe the
characterization of a 5 kb PAcP promoter fragment. Our data
reveal that �1356/�779 is the unique positive cis-active
regulatory element. Within this element, we found a novel
hexanucleotide NF-kB-binding site that is required for
NF-kB-mediated further activation of the PAcP promoter in
human prostate cancer cells.

MATERIALS AND METHODS

Materials

The cell culture medium, fetal bovine serum (FBS), gentamicin,
glutamine, Opti-MEM medium and LipofectAMINE

PLUS reagent were obtained from Invitrogen, Inc. The Master
Amp PCR Optimization kit was purchased from Epicentre
Technologies Corp. The Zero Blunt PCR cloning kit and pCR-
BluntII vector were obtained from Invitrogen Corp. The
pCAT-Basic, pCAT-Promoter, pCAT3-Promoter and pSV-
b-galactosidase vectors, hNF-kB(p50) protein, AP1 protein
and transcription factor consensus oligonucleotides for AP1,
AP2, OCT1, CREB, NF-kB, TFIID, SP1 and the CAT assay
kits were bought from Promega Corp. The anti-hNF-kB(p50)
and anti-hNF-kB(p65) antibodies (Abs) and the c-Rel (NF-
kB p65) protein were from Santa Cruz Biotechnology, Inc.
Human tumor necrosis factor-a (TNF-a), IL-1 and the NF-
kB inhibitory peptide were purchased from Calbiochem. The
NF-kB inhibitory peptide is a cell-permeable synthetic peptide
that carries an NF-kB nuclear localization signal and thus can
competitively inhibit the subcellular trafficking of the NF-kB
protein from the cytoplasm to the nucleus. The pRSV-NF-
kB1 and pRSV-RelA plasmids containing inserts encoding
NF-kB p50 and p65 proteins, respectively, were obtained
from Dr K. T. Jeang at NIH and the NIH AIDS Research
Reagent Program. The pFIkBaAA plasmid encoding
a dominant-negative form of IkBa was a gift from
Dr A. Razzino at the University of Nebraska Medical Center.

Cell culture

LNCaP, PC-3 and DU145 human prostate cancer cells were
purchased from ATCC and were maintained in RPMI-1640
medium supplemented with 5% FBS, 1% glutamine and 0.5%
gentamicin. HeLa human cervix epitheloid carcinoma cells
were grown in DMEM medium supplemented with 10%
FBS, 1% glutamine and 0.5% gentamicin (25).

Computer-based sequence analysis

The promoter sequence was analyzed using MatInspector data
bank searches (43) to access possible nuclear factor-binding
elements using the TRANSFAC 3.5 matrices with a core
similarity of 1.00 and a matrix similarity of over 0.90
(http://www.gene-regulation.com).

Construction of reporter plasmids

To analyze the active promoter region of the human PAcP
gene, a series of reporter plasmid constructs were made using
the backbone of the pCAT-Basic vector. The plasmids p2899,
p1668, p1356, p1305, p1258 and p779 were obtained as
described previously (12,25). The promoter DNA in plasmid
p4893 (�4893/+87) was obtained by PCR using two oligo-
nucleotide primers, 50-GAG CTC AAG GAA AAA GTA TGT
TAT CTC CAG-30 and 50-ACT TCG GTC TAG CCA GAA
AAA-30. The amplification was performed for 30 cycles under
the following conditions: 1 min at 94�C, 1 min 54�C, 3 min 30 s
at 72�C. The DNA fragment was cloned into the pCR-BluntII
vector. To analyze the promoter activity, a HindIII/XbaI frag-
ment of the PAcP promoter from the pCR-BluntII vector was
cloned into the pCAT-Basic plasmid. The reporter constructs
containing the promoter DNA with a deletion region of�3262/
�2598 (p4893DI), �3262/�1305 (p4893DII) and �3888/
�1305 (p4893DIII) were obtained by digestion of p4893
with KpnI, PpuMI and NheI/KpnI restriction enzymes, respec-
tively, followed by overhead removal (if necessary) by Mung
Bean Nuclease and religation. The DNA manipulation of
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plasmids was performed using conventional molecular bio-
logy techniques (44).

Transfection and reporter assays

For transient transfection experiments, cells were routinely
plated at a density of 2.5 · 105 cells per well in a 6-well
plate in RPMI 1640 medium containing 5% FBS for PC-3
cells, or in DMEM medium supplemented with 10% FBS
for HeLa cells, 48 h before transfection. The adherent cells
were transiently transfected using 6 ml of cationic lipid reagent
LipofectAMINE PLUSTM (Life Technology) with 1 mg of
plasmid DNA for the PAcP promoter/CAT reporter gene con-
structs in the serum-free Opti-MEM medium. The second
plasmid, p-SV-b-galactosidase, was co-transfected at a ratio
of 1:10 to the promoter/reporter gene construct, serving as an
internal control. After 4 h of incubation, an equal volume of
medium containing 10% FBS was added and incubated for an
additional 2 h. Cells were then fed with the fresh medium
supplemented with 5% FBS. For the CAT and b-galactosidase
assays, 48 h after transfection, cells were washed twice with
the PBS, scraped and lysed in 1· reporter lysis buffer (Pro-
mega). The protein concentration of cell extracts was meas-
ured according to Bradford (45) using the Bio-Rad protein
assay kit (Bio-Rad Laboratories) with bovine serum albumin
as the standard.

Quantitative CAT assays were performed with the same
amount of total cell lysate proteins in a reaction volume of
125 ml in the presence of 14C-chloramphenicol (Amersham
Life Science, Inc.) as described in the Promega CAT-assay
manual accompanying the assay kit. Samples were incubated
overnight followed by a single extraction with 300 ml xylene.
An aliquot of 250 ml of organic phase was transferred to a
scintillation vial containing 2 ml EcoLumeTM scintillation
fluid (ICN, Corp.) and counted using a Beckman LS 1801
scintillation counter.

b-galactosidase assay

Cultured PC-3 cells were co-transfected with a pSV-b-
galactosidase vector containing the b-galactosidase gene
driven by an SV40 promoter as described above. Quantitative
b-galactosidase assays were performed with the same amount
of total cell lysate proteins in a reaction volume of 200 ml, as
described in the Promega CAT-assay manual accompanying
the assay kit. Accordingly, cell lysate proteins were incubated
in 100 mM sodium phosphate buffer (pH 7.3) containing
50 mM b-mercaptoethanol, 1 mM MgCl2 and 0.66 mM
o-nitrophenyl-b-D-galactopyronoside at 37�C. The optical
density was measured at 420 nm.

DNase I footprint assays

For the nuclear protein extract preparations, HeLa, DU 145
and PC-3 cells were plated at a density of 7.5 · 105 cells per
T175 flask and harvested when they reached 70–80% conflu-
ence. Nuclear protein extracts were prepared as described
elsewhere (46). Protein concentration was measured with
the Bio-Rad protein assay kit using bovine serum albumin
as the standard. DNase I footprinting assays were performed
with 364 and 374 bp coding strands of the PAcP 50 flanking
sequences from �1356 to �992 and �1111 to �737 bp from
the start codon, respectively. To generate the probes, primers

50-GTT GAT GAC TAA TAA TATA-30 and 50-TCA ATG
GAC TCT CCT GCC TCG-30 were end-labeled using
[g32P]ATP and T4 polynucleotide kinase, and then used in
PCR with downstream primers of 50-GGT CAG GAG TTA
AGA CCA GCC-30 and 50-ATT CTT ACT CTG TTG GGA
GTC-30, respectively. The plasmid p1356 was used as the
template. The corresponding DNA fragment from �1356 to
�779 for the non-coding strand was labeled at one end with
[a32P]dTTPs and Klenow enzyme, and gel purified as
described in (46). DNase I footprint assays were performed
in a 20 ml reaction volume containing 50 mM Tris–HCl (pH
8.0), 100 mM KCl, 12.5 mM MgCl2, 1 mM EDTA, 20%
glycerol, 1 mM DTT and 2 mg poly(dI–dC). An aliquot of
the probe (2 · 104 c.p.m.) was incubated with or without
nuclear extract proteins for 20 min at 4�C. Subsequently,
50 ml of 10 mM MgCl2 and 5 mM CaCl2 were added, and
the reaction mixtures were maintained at room temperature for
1 min. After adding 0.15 U RQ I DNase (Promega), the mix-
ture was incubated for 1 min 30 s at room temperature. The
reaction was stopped by the addition of 200 ml of 200 mM
NaCl, 1% SDS, 30 mM EDTA and 100 mg/ml yeast RNA.
After phenol/chlorophorm extraction and ethanol precipita-
tion, the samples were resuspended in a loading buffer [1:2
(v/v) 0.1 M NaOH:formamide, 0.1% xylene cyanol, 0.1%
bromophenol blue], denaturated at 95�C for 2 min and
resolved in 6% sequencing gel. The gel was exposed to an
X-ray film at �80�C with an intensifying screen.

Electrophoretic mobility shift assay (EMSA)

Reactions were conducted in a total volume of 20 ml. An
aliquot of nuclear extracts was added to a reaction buffer
containing 20% glycerol, 5 mM MgCl2, 2.5 mM EDTA,
2.5 mM DTT, 250 mM NaCl, 50 mM Tris–HCl (pH 7.5)
and 0.25 mg/ml poly(dI–dC). The mixture was incubated
for 20 min at room temperature, and then 3 · 104 c.p.m.
(3000 Ci/mmol) of the [g32P]ATP-labeled oligonucleotide
probe PSD of �1262/�1241, containing the putative sequence
for the AP1 protein-binding site (50-TTG TCT TAA GGT
GTG ACT AAA-30), was added. The control probe for AP1
and NF-kB was labeled with 105 c.p.m. (3000 Ci/mmol) of
[g32P]ATP. For the competition assay, a 100-fold molar excess
amount of appropriate unlabeled probes was added to the
reaction mixture. Samples were electrophoresed in 4%
nondenaturing polyacrylamide gel in TBE buffer for 3 h at
room temperature. The gel was dried and autoradiography
was performed.

PAcP activity determination

PNPP was used as the substrate to quantify the activity of
PAcP at pH 5.5 by measuring the absorbance of released
p-nitrophenol at 410 nm (19).

TNF-a treatment

LNCaP cells were plated at a density of 2.5 · 105 cells per well
in a 6-well plate in RPMI 1640 medium containing 5% FBS.
After 48 h of incubation, cells were treated with different
concentrations of TNF-a for 72 h. PC-3 cells were plated
at a density of 1.8 · 105 cells per well in a 6-well plate in
RPMI 1640 medium containing 5% FBS for 48 h following
transient transfection as described above. Cells were treated,
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72 h after transfection, with different concentrations of TNF-a
for 48 h.

RESULTS

Functional analyses of the human prostatic acid
phosphatase promoter

In order to investigate transcriptional regulation of PAcP
expression by identifying the regulatory element(s) of the
PAcP gene, a 5 kb promoter fragment between �4893 and
+87 of the PAcP gene was subcloned into a CAT reporter
vector. We constructed a series of CAT reporter vectors con-
taining various external and internal deletions (Figure 1) and
then transiently transfected them into PC-3 human prostate
cancer cells in order to quantify CAT activities. The promoter
activity of p779 was arbitrarily assigned the value 1.0 and was

used as the reference for normalizing the activities of the other
constructs [Figure 1 and (25)].

Deletion analyses of the 5 kb promoter DNA fragment
revealed that the p1356 construct exhibited the highest
level of activity among the promoter constructs examined
(Figure 1). Similarly high levels of activity were observed
for p1305 and p1258 (Figure 1). Since p1258, p1305 and
p1356 exhibited approximately the same (high) level of activ-
ity, these plasmids were used interchangeably for constructing
various reporter vectors. The CAT activity of p4893 was <5%
of that of p1356. When the region from �3262 to �2598
(p4893DI) was deleted, the promoter activity of the resulting
plasmid was as low as that of p4893, indicating that there is no
putative regulatory element inside this fragment. The promoter
activity of p4893DII, containing a deletion between �3262
and �1305, was lower than that of p1305, indicating the pre-
sence of a negative regulatory element located between �4893
and �3262. Deletion of the region from �3888 to �1305

Figure 1. The effect of deletion in the 50 region of the PAcP promoter on the CAT activity in human prostate cancer cells. (A) PC-3 cells and (B) LNCaP and HeLa
cells. On the left, a schematic representation of the 5 kb PAcP promoter and its deleted variants inserted upstream of the CAT gene in the reporter plasmid pCAT-
Basic. The numbers indicate the 50 and the 30 ends of the promoter DNA inserts, in relation to the transcription start site (+1). Cells were transfected with 1 mg of the
indicated PAcP-CAT reporter constructs and assayed for CAT activity as described under Materials and Methods. On the right, the CAT activity is presented as the
ratio of the tested construct to p779. Values were normalized for transfection efficiency by co-transfection with the b-galactosidase expression plasmid. Bars
represent the SE of triplicates from at least two sets of independent experiments (n 5 6).
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(p4893DIII) caused an increase in the level of CAT activity, to
approximately twice that p4893DII, suggesting the presence of
a negative regulatory element within the region �3888/
�3262. The data also indicate the presence of negative regu-
latory element(s) between �4893 and �3888, because the
promoter activity of p4893DIII was �20% that of p1305.
Previous analyses of the region between �2899 and �1305
revealed the presence of two negative regulatory regions,
�2899/�2583 and �1668/�1356 (25).

We also analyzed whether p1305 exhibits a high level of
activity in LNCaP human prostate cancer cells that express
endogenous PAcP. As shown in Figure 1B, among the three
plasmids examined, p1305 exhibited the highest level of pro-
moter activity, as observed in PC-3 cells. The lower activity of
p1305 in LNCaP cells than in PC-3 cells is possibly due to
competition of transcriptional factors with the endogenous
gene. Interestingly, in HeLa human cervix epitheloid carci-
noma cells (Figure 1B), WI-38 human lung diploid cells and
A431 human epidermoid carcinoma cells [data not shown and
(25)], these three plasmids exhibited a similarly low level of
promoter activity. The data thus clearly show that the
sequences between �1258 and �779 are required for the
high level of PAcP expression in prostate cancer cells,
although p1356 exhibits an �20% higher level of promoter
activity than p1305 and p1258. Furthermore, the sequences
�4893/�3888, �3888/�3262, �2899/�2583 and �1668/
�1356 have negative regulatory effects (Figure 1).

Footprinting analyses of the positive-regulatory region

We characterized the cis-active region between �1356 and
�779 because this region contains sequences for the high level
of cell-specific expression of the PAcP gene [Figure 1 and
(25)]. To identify the potential protein-binding sites in the cis-
active region, a DNase I protection assay was carried out using
nuclear protein extracts from PC-3, DU145 and HeLa cells.
Two partially overlapping subsegments of the enhancer, i.e.
from �1356 to �992 and from �1111 to �737, which were
synthesized by PCR with end-labeled primers, were used as
probes for the positive strand, while a filled-in fragment from
�1356 to �779 was used as the probe for the negative strand.
The labeled probes were incubatedwith prostate (DU145 or PC-
3) or non-prostate (HeLa) nuclear proteins and subsequently
digested with DNase I. As shown in Figure 2A and B, DNase
footprinting analyses identified at least six protected regions in
the coding strand from �1300 to �1286 (I), �1277 to �1238
(II), �1228 to �1199 (III), �1082 to �1073 (IV), �1069 to
�1047 (V) and �986 to �976 (VI). Two footprints were
detected in the non-coding strand from �1266 to �1240 (II0)
and from �1226 to �1191 (III0) (Figure 2C). Similar results
from footprinting analyses were obtained when LNCaP nuclear
proteins were utilized (data not shown). The data indicate that
several transcriptional factors interact with the positive regula-
tory fragment of the PAcP promoter sequence, while no
distinct protection region by prostate nuclear proteins, differing
from HeLa nuclear proteins, was identified.

Computer analyses of the positive regulatory sequence
in the PAcP promoter

We investigated putative transcriptional factor-binding sites in
this cis-active region using the MatInspector database. As

shown in Figure 3, within the cis-active region II of
�1277/�1238, there was one putative AP1-binding site and
one putative Sox-5 protein-binding site. The sequences
between �1240 and �1191 were extremely T-rich and con-
tained two putative HNF/FKH-binding sites in each strand.
However, there was no significant homolog to the known
putative binding site in regions I, IV, V or VI.

EMSA analyses of the �1262/�1242 sequence in the
cis-active region

To characterize further the cis-active region of the PAcP pro-
moter, we carried out EMSA assays. Since region II contains a
putative binding site for the AP1 protein, a 32P-labeled oligo-
nucleotide, designated PSD and corresponding to the sequence
between �1262 and �1242 of the PAcP promoter (shown in
bold in Figure 3), was incubated with nuclear protein extracts
from HeLa, DU 145 and PC-3 cells. Purified AP1 protein and
its consensus oligonucleotide were used as a positive control
(Figure 4A, lane 2). As shown in Figure 4A, there were several
bands with reduced mobilities revealed by EMSA using
nuclear extracts with the PSD oligonucleotide. These nuclear
protein–DNA complexes were outcompeted by the addition of
a 100-fold molar excess of unlabeled PSD oligonucleotide,
indicating the specific interaction of nuclear proteins with
PSD oligonucleotides. Similar patterns of nuclear protein–
DNA complex formation were obtained by utilizing LNCaP
nuclear proteins, although overall the signal was weaker than
for PC-3 nuclear proteins (data not shown). However, no com-
plex formation was observed between the AP1 protein and the
32P-labeled PSD oligonucleotide (Figure 4A, lane 3), and the
unlabeled PSD oligonucleotide failed to compete with the AP1
consensus oligonucleotide in complex formation with the AP1
protein (Figure 4A, lane 4). Similarly, the AP1 consensus
oligonucleotide could not compete with the PSD oligonucleo-
tide in complex formation with nuclear proteins from PC-3
cells (Figure 4B, lane 3). Therefore, the consensus AP1
sequence on PSD was unable to function as an AP1-binding
site, i.e. the AP1 protein could not bind to the PSD oligonu-
cleotide, while several DNA-binding proteins can bind to the
PSD fragment of the PAcP promoter in vitro.

A novel NF-kB-binding site located in the �1262/�1242
sequence of the cis-active region of the PAcP promoter

In order to determine whether the PSD oligonucleotide could
interact with known transcription factor(s), several commer-
cially available consensus oligonucleotides were utilized to
compete with the PSD oligonucleotide in complex formation
with nuclear proteins from PC-3 cells. Unexpectedly, the
formation of PSD–protein complexes was outcompeted by
an NF-kB consensus oligonucleotide (Figure 5A), but not
by AP2, OCT1, CREB, SP1 or TFIID. To confirm that the
NF-kB protein could bind directly to the PSD oligonucleotide,
we performed an EMSA using the p50 NF-kB protein. The
formation of a DNA–protein complex was clearly seen between
the NF-kB protein and the PSD oligonucleotide (Figure 5B,
lane 1) as well as between the NF-kB protein and the authentic
NF-kB consensus oligonucleotide (Figure 5B, lane 3). The
specificity of the interaction was confirmed by the successful
competition from an excess amount of corresponding, unla-
beled oligonucleotides (Figure 5B, lanes 2 and 4). Similarly,
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the p65 NF-kB protein formed complexes with the authentic
NF-kB consensus oligonucleotide (Figure 5C, lane 1) as well
as PSD oligonucleotides (Figure 5C, lane 3). Unlabeled PSD
oligonucleotides competed with the formation of the PSD
oligonucleotide and p65 NF-kB complexes, indicating the
specificity of the interaction (Figure 5C, lane 5). In order to
further determine the interaction between the NF-kB subunit
and PSD oligonucleotides, we performed super-shift assays
with the corresponding Ab. Although the anti-p65 NF-kB
Ab had a super-shift effect on the complexes formed by the
authentic NF-kB consensus oligonucleotide and the p65 pro-
tein (Figure 5C, lane 2), this anti-p65 Ab failed to have a super-
shift effect on the PSD oligonucleotide–p65 NF-kB complex
(Figure 5C, lane 4). Furthermore, in the presence of the Ab, the
PSD oligonucleotide–p65 NF-kB complex disappeared
(Figure 5C, lane 4). Similarly, in the presence of the
anti-p50 NF-kB Ab, the p50 NF-kB–PSD oligonucleotide
complex disappeared (data not shown). The DNASIS program

was utilized to analyze the sequence similarity between AP1 or
NF-kB consensus oligonucleotides and the PSD sequence.
Interestingly, the PSD oligonucleotide exhibited a slightly
higher homology with the AP1 oligonucleotide than with
the NF-kB consensus oligonucleotide, i.e. 52 versus 46%,
in the total alignment window (Figure 5D). The data may
indicate a novel binding site for NF-kB in the PAcP promoter.

Effects of TNF-a and IL-1 on the level of PAcP
promoter activity

We investigated whether NF-kB can regulate the level of
PAcP promoter activity in vivo. Since TNF-a can induce
NF-kB activation in PC-3 cells (47), PC-3 cells were transi-
ently transfected with p779 or p1356 and then grown in media
containing different amounts of TNF-a. Cells were harvested
to determine the level of CAT activity. As shown in Figure 6A,
in PC-3 cells, a 48 h TNF-a treatment could stimulate the

Figure 2. DNase I footprinting analysis of the PAcP promoter. The labeled fragments (as described in Materials and Methods) were reacted with nuclear extracts from
HeLa, DU 145 and PC-3 cells, respectively. The data obtained with the coding strand of �1356/�992 bp DNA are shown in the autoradiogram (A), those obtained
with�1111/�737 bp DNA are shown in (B), and those obtained with the protection of the non-coding strand�1356/�731 are shown in (C). The protected promoter
sequences were determined by a direct comparison with the sequencing reaction. (A) Lanes 1 and 2, sequencing ladders; lane 3, control DNase I reaction of probe
DNA without nuclear extracts; lanes 4 and 5, 25 and 50mg, respectively, of HeLa cell nuclear extracts; lanes 6 and 7, 25 and 50mg, respectively, of DU 145 cell nuclear
extracts; lanes 8 and 9, 25 and 50mg, respectively, of PC-3 cell nuclear extracts. (B) Lanes 1 and 2, sequencing ladders; lane 3, control DNase I reaction of probe DNA
without nuclear extracts; lanes 4 and 5, 25 and 50 mg, respectively, of HeLa cell nuclear extracts; lanes 6 and 7, 25 and 50 mg, respectively, of DU 145 cell nuclear
extracts; lanes 8 and 9, 25 and 50mg, respectively, of PC-3 cell nuclear extracts. (C) Lanes 1 and 2, sequencing ladders; lane 3, control DNase I reaction of probe DNA
without nuclear extracts; lanes 4, 5 and 6, 25, 50 and 150 mg, respectively, of HeLa cell nuclear extracts; lanes 7, 8 and 9, 25, 50 and 150mg, respectively, of PC-3 cell
nuclear extracts.
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transcriptional activity of p1356 approximately 2-fold, while it
failed to have the same effect for p779. This TNF-a stimula-
tion resulted in an overall activity of p1356 20-fold higher
than that of p779 (Figure 6A). However, in HeLa cells TNF-a
did not have an effect on the transcriptional activity of p1356
or p779 (Figure 6B). Similar results were obtained when tran-
siently transfected PC-3 cells were treated with IL-1, another
NF-kB-activating cytokine (data not shown). These data
collectively indicate that TNF-a and IL-1, via NF-kB,
up-regulate the level of PAcP promoter activity in PC-3
cells but not in HeLa cells, and that the cis-active enhancer
region �1356/�779 is essential for this stimulation.

Effects of NF-kB and IkB on the level of PAcP
promoter activity

To determine whether NF-kB can directly regulate the level of
PAcP promoter activity, the p1356 reporter plasmid and
expression vectors encoding NF-kB p65 or p50 subunit pro-
teins were transiently co-transfected into PC-3 cells. Over-
expression of the p50 protein, an NF-kB subunit without
the transcriptional activation domain, could not activate the
PAcP promoter activity (Figure 7A). Instead, higher dosages
of p50 expression resulted in suppression of the PAcP pro-
moter activity, similar to previous observations for the p50
subunit (29,31,48). Conversely, overexpression of the p65

subunit, which contains a transactivation domain, increased
the level of p1356 PAcP promoter activity by over 2-fold
(Figure 7A), which is similar to the effect of TNF-a
(Figure 6A). These results showed that the p65 subunit of
NF-kB could directly activate the PAcP promoter.

IkBa effectively inhibits NF-kB dimers that contain the
p65/RelA or c-Rel subunit and responds to several known
NF-kB-inducing signals (34). The role of NF-kB in activating
the p1356 PAcP promoter activity was further determined
using IkBaAA, a mutant form of IkBa, which can constitu-
tively inactivate the NF-kB dimer that contains the p65 and/or
c-Rel subunit. Expression of IkBaAA alone showed only up to
an �20% inhibitory effect on the basal activity of the p1356
promoter construct, indicating the inhibition of endogenous
NF-kB activity in PC-3 cells (Figure 7B). Co-transfection of
IkBaAA completely abolished the stimulating effect by 0.5 mg
p65 NF-kB on p1356 promoter activity, following a dose-
dependent response (Figure 7B). Similarly, an NF-kB inhib-
itory peptide that can competitively inhibit the subcellular
traffic of NF-kB from the cytoplasm to the nucleus (49) at
18 mM concentration exhibited the optimal inhibitory activity,
abolishing the p65 NF-kB-induced activation of PAcP pro-
moter activity in p1356- and p65 NF-kB-co-transfected PC-3
cells (data not shown). These data thus demonstrate that the
p65 NF-kB protein can activate the PAcP promoter activity in
prostate cancer cells.

Figure 4. Gel shift analyses of nuclear proteins binding to the PSD oligo-
nucleotide. 32P-labeled oligonucleotide probes were incubated with nuclear
extract proteins from HeLa, DU 145 or PC-3 cells. Protein–DNA complexes
were resolved on 4% non-denaturing polyacrylamide gel and visualized using
autoradiography. (A) Lane 1, PSD probe alone; lane 2, end-labeled AP1
consensus oligonucleotide incubated with AP1 protein; lane 3, end-labeled
PSD consensus oligonucleotide incubated with AP1 protein; lane 4, end-
labeled AP1 consensus oligonucleotide incubated with AP1 protein in the
presence of 100-fold molar excess of unlabeled double-stranded PSD
oligonucleotide; lanes 5–10, the PSD nucleotide was end-labeled and
incubated with HeLa, DU 145 or PC-3 nuclear extracts in the absence or
presence of 100-fold molar excess of unlabeled double-stranded PSD; lanes
5 and 6, HeLa extract; lanes 7 and 8, DU 145 extract; lanes 9 and 10, PC-3
extract. Reactions were performed with�0.03 ng of radiolabeled probe (30 000
c.p.m.) and 5 mg nuclear extracts. (B) Lane 1, the PSD probe alone was
incubated with 10 mg of PC-3 nuclear extracts; lanes 2 and 3, PSD
nucleotide was incubated with 10 mg of PC-3 cell nuclear extract proteins
with a 100-fold molar excess of unlabeled PSD or AP1 consensus
oligonucleotides.

Figure 3. Potential transcription factor-binding sites in the enhancer region of
the PAcP promoter. The sequences shown are from�1382 to�883 nt, covering
the enhancer region of the PAcP gene. Sequence analyses using MatInspector
data bank searches identified several region sequences consistent with known
nuclear factor-binding sites. The nuclear factors typed above and below a
sequence are for its binding to the coding and non-coding strands,
respectively. Regions protected in DNase I footprinting experiments shown
in Figure 2 are underlined. Double-stranded PSD oligonucleotides used in gel
shift experiments are shown in bold.
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Figure 5. Analysis of transcription factors binding to the PSD oligonucleotide by competitive EMSA. (A) Of the end-labeled PSD nucleotide, 0.03 ng (30 000 c.p.m.)
was incubated with 10 mg PC-3 cell nuclear extract proteins in the absence (lane 1) or presence (lanes 2–7) of 100-fold molar excess of different unlabeled
consensus oligonucleotides. The 32P-labeled PSD DNA–protein complex formation was conducted in the presence of AP2 (lane 2), NF-kB (lane 3), OCT1 (lane 4),
CREB (lane 5), SP1 (lane 6) or TFIID (lane 7) consensus oligonucleotides. (B) Electrophoretic mobility experiments using 32P-labeled PSD and consensus NF-kB
oligonucleotides. Labeled oligonucleotides were incubated with 1 · 10�3 gsu [1 gsu = the amount of protein required to gel shift the NF-kB oligo under defined
conditions (Promega)] purified p50 NF-kB protein in the absence (�) or presence (+) of 100-fold molar excess of the unlabeled corresponding oligonucleotide. Lanes
1 and 2, end-labeled PSD oligonucleotide incubated with purified p50 NF-kB protein in the absence (�) or presence (+) of 100-fold molar excess of unlabeled PSD
oligonucleotide; lanes 3 and 4, end-labeled NF-kB consensus oligonucleotides incubated with purified p50 NF-kB protein in the absence (�) or presence (+) of 100-
fold molar excess of unlabeled NF-kB consensus oligonucleotide. (C) Electrophoretic mobility super-shift experiments using labeled PSD and consensus NF-kB
oligonucleotides. Labeled oligonucleotides were incubated with the p65 NF-kB protein in the presence or absence of the anti-p65 NF-kB polyclonal antibody. Lanes
1 and 2, end-labeled NF-kB consensus oligonucleotides were incubated with 1 · 10�3 gsu purified p65 NF-kB protein in the absence (�) or presence (+) of the
anti-NF-kB Ab; lanes 3 and 4, the end-labeled PSD oligonucleotide was incubated with purified p65 NF-kB protein in the absence (�) or presence (+) of the anti-NF-
kB Ab; lane 5, the end-labeled PSD nucleotide was incubated with 1· 10�3 gsu purified p65 NF-kB protein in the presence of 100-fold molar excess of unlabeled PSD
oligonucleotide. (D) Computer alignments of the PSD oligonucleotide sequence with the AP1 or NF-kB consensus sequences in the commercial oligonucleotides
were analyzed according to the Needleman–Wunsch algorithm using the DNASIS sequence analysis software (Hitachi). The maximal match was achieved by the
insertion of gaps, designated as hyphens. Vertical bars indicate matching regions. The highest score is presented. The consensus AP1 and NF-kB-binding sites are
underlined. The putative AP1 binding site in the PSD oligonucleotide was shown in bold.
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Determination of the minimal sequence requirement for
NF-kB protein-binding to the PSD oligonucleotide

In order to determine the minimal sequence requirement
for NF-kB protein-binding, two double-stranded oligo-
nucleotides, in which the 50- or 30-PSD oligonucleotide was

substituted by random sequences, were generated for gel shift
analyses with PC-3 nuclear proteins. Figure 8A (left panel)
shows that the 30-PSD oligonucleotide failed to interact with
nuclear proteins, while the 50-PSD oligonucleotide showed a
band of complex formation. The specificity of the interaction
between the 50-PSD oligonucleotide and nuclear proteins was
confirmed by the competition between excess amounts of
unlabeled probe (Figure 8, left panel). To confirm that the
NF-kB protein can bind to the 50 part of the PSD oligonucleo-
tide, the 50 probe was incubated with the p65 NF-kB protein.
Incubation of the 32P-labeled 50 probe with the p65 protein
formed complexes (Figure 8A, right panel) that were outcom-
peted by the addition of excess amounts of an unlabeled homo-
logous probe (data not shown). These results indicate that the

Figure 6. Transcriptional activation of the PAcP promoter by TNF-a in PC-3
and HeLa cells. (A) PC-3 cells were transfected with p779 or p1356 promoter
constructs. Cells were treated, 24 h after transfection, with 5, 15 or 25 ng/ml of
TNF-a for 48 h. Control cells received the solvent alone. CAT assays were
performed as described under Materials and Methods. The CAT activity of p779
in control cells was assigned a value of 1.0. The results shown are the average
–SD from two sets of duplicate transfections (n = 2 · 2). (B) HeLa cells were
transfected with p779 or p1356 promoter constructs. Cells were treated, 24 h
after transfection, with 5, 15 or 25 ng/ml TNF-a for 48 h. Control cells received
the solvent alone. CAT assays were performed as described under Materials and
Methods. The CAT activity of p779 in control cells was assigned a value of 1.0.
The results shown are the average –SD from two sets of duplicate transfections
(n = 2 · 2).

Figure 7. Effect of the NF-kB protein on the PAcP promoter activity. (A) PC-3
cells were co-transfected with the reporter construct p1356 (1 mg) plus
increasing amounts of human p50 or p65 NF-kB expression plasmids.
(B) A quantity of 1 mg of p1356 reporter construct was transiently
co-transfected into PC-3 cells with increasing amounts of p65 NF-kB (open
squares), a dominant-negative mutant of IkBaAA alone (closed triangles), or
the combination of 0.5 mg of p65 NF-kB and increasing amounts of IkBaAA
(closed circles) as indicated. The CAT activity was measured and then was
normalized to b-galactosidase. Results were the average from two sets of
duplicate transfections (n = 2 · 2). The bar represents SD.
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Figure 8. Determination of NF-kB-binding sequences in the PAcP promoter. (A) 32P-labeled PSD oligonucleotides and PSD oligonucleotides containing random
sequences at the 50- or 30-region, or NF-kB consensus oligonucleotides, were incubated with nuclear extracts from PC-3 cells (left panel) or recombinant NF-kB p65
protein (right panel) in the absence or presence of 100 molar excess of unlabeled corresponding probe. (Upper) The authentic PSD oligonucleotide sequence is
underlined. (B) Oligonucleotides containing different overlapping sequences from the wild-type PSD oligonucleotide (indicated in bold) surrounded by random
sequences were tested for in vitro binding with p65 NF-kB. (C) Effect of point mutation inside the AGGTGT motif on NF-kB-binding. The 32P-labeled
oligonucleotide probes containing the wild-type or mutated AGGTGT motifs surrounded with random sequences were incubated with recombinant p65
NF-kB protein. Mutated oligonucleotides are indicated with italic letters. The nuclear extract was prepared and EMSAs were performed as described under
Materials and Methods.
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50 sequence of the PSD oligonucleotide contains an element
that could be recognized by the NF-kB transcription factor.

In order to identify the core NF-kB-binding sequence within
the PSD oligonucleotide, we synthesized eight oligonucleo-
tides containing 6–8 bp overlapping sequences from the PSD
oligonucleotide surrounded by random sequences. Incubation
of each 32P-labeled probe with the p65 NF-kB protein pro-
duced a band of reduced mobility, as seen using EMSA
(Figure 8B). The intensity of binding increased when the
core sequence moved toward the 30 end of the PSD oligonu-
cleotide. A clear, pronounced band was seen with the
oligonucleotide containing the AGGTGT core sequence
(Figure 8B, lane 5). These results reveal that a sequence of
AGGTGT is required for NF-kB-binding.

Each nucleotide within the AGGTGT motif was analyzed
individually for its impact on p65 NF-kB protein binding using
EMSA analyses (Figure 8C). The substitution of A!C at
position +1 or T!G at position +6 had only a marginal
effect on the binding to p65 (Figure 8C, lanes 2 and 7).
When the 32P-labeled oligonucleotides contained a single
substitution at positions from +2 to +5, the band disappeared
or the intensity was significantly reduced (Figure 8C, lanes
3–6). Moreover, a significant reduction in binding was also
observed in substitutions of AGG!TCC (+1/+3) (Figure 8C,
lane 8) or TGT!ACA (+4/+6) (Figure 8C, lane 9). These data
together show that the presence of all four nucleotides at
positions +2/+5 of the (A/C)GGTG(T/G) motif is required
for its effective binding to p65 NF-kB.

A functional NF-kB site in the 50-flanking region of the
PAcP promoter

In order to determine the effect of the novel NF-kB binding
site on the PAcP promoter activity, PAcP promoter �1356/
+86 plasmids with deletion of the putative NF-kB-binding site
(DAGGTGT) or a single base mutation (ATGTGT) were trans-
fected into PC-3 cells following by 24 h of TNF-a treatment.
The deletion or the point mutation at the putative NF-kB-
binding site in the p1356 promoter had only a minor effect
of �10–15% on its basal activity, i.e. in the absence of TNF-a
(Figure 9A). Nevertheless, the deletion or the point mutation
of AGGTGT!ATGTGT effectively abolished TNF-a stimu-
lation (Figure 9A). Similar results were obtained for the repor-
ter construct containing triple substitution of AGG!TCC at
positions +1/+3, i.e. TCCTGT (data not shown). These results
clearly indicate that the novel NF-kB-binding site is critical
for the further activation of the cis-active element in the PAcP
promoter by TNF-a.

To determine the biological significance of the effect of
NF-kB on activating the activity of the PAcP promoter, we
analyzed whether NF-kB does indeed have an effect on endo-
genous PAcP expression in LNCaP human prostate carcinoma
cells. We exposed these cells to various concentrations of
TNF-a for 72 h and determined cPAcP activity, because
cPAcP activity in general correlates with its expression
level. Interestingly, TNF-a stimulated PAcP expression fol-
lowing a dose–response fashion and a 50 ng/ml concentration
could increase PAcP expression up to 3-fold (Figure 9B), as
observed in the promoter activity assay in PC-3 cells. Thus,
NF-kB activation up-regulates endogenous PAcP expression
in LNCaP cells.

Comparative analysis of the novel NF-kB-binding site
in prostate-enriched genes

We analyzed the presence of the AGGTGT motif in the pro-
moter regions of several other genes that have high levels of
expression in prostate cells, including PSA, Nkx-3.1, MIC-1
and DD3. Computer analyses of an �4 kb fragment of the
50-flanking promoter region upstream of the start codon
revealed the presence of AGGTGT motifs within the promoter
regions of the PSA, Nkx-3.1 and MIC-1 genes (Table 1).
Although no AGGTGT motif was found inside 4 kb of the
50-flanking promoter region of the DD3 gene, there were four
reminiscent motifs with T!G substitution at position +6 that
had no significant impact on NF-kB/AGGTG(T/G) interac-
tions (Figure 8C, lane 7). Taken together, the data indicate that

Figure 9. Effect of TNF-a on PAcP promoter activity. (A) The effects of
deletion or mutation in the AGGTGT sequence on TNF-a-activated PAcP
promoter activity. The wild-type p1356, DAGGTGT and ATGTGT mutant
constructs (1 mg of each) were transfected into PC-3 cells. Transfected cells
were incubated for 48 h and subsequently were treated with or without 25 ng/ml
of TNF-a for 24 h. CAT activities were determined as described under
Materials and Methods. Bars represent the SE of triplicates from at least
two sets of independent experiments (n > 6). (B) The effect of TNF-a on
endogenous PAcP in LNCaP cells. LNCaP cells in tripicates were treated
with 5, 10, 25 and 50 ng/ml TNF-a, respectively, for 72 h. Control cells
received the solvent alone. The PAcP activity in total cell lysates was
determined to represent the PAcP expression. The results shown are the
average – SD (n = 3).
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AGGTG(T/G) is a common motif in prostate-enriched genes,
and it could potentially participate in the regulation by NF-kB
of expression not only for PAcP but also for other prostate-
enriched genes in a cell-specific manner.

DISCUSSION

This article describes our finding that the �1356/�779 region
represents the unique positive regulatory domain in a 5 kb
promoter DNA fragment (�4893/+87) of the PAcP gene
although there are at least four negative regulatory elements.
This positive cis-element is also involved in regulating the
prostate cell-specific expression of the PAcP gene. However,
DNase I footprinting analyses on the �1356/�779 fragment
do not reveal a discrete binding site for prostate nuclear pro-
teins versus non-prostate nuclear proteins, although there are
at least six potential regulatory domains in this fragment. A
similar phenomenon is observed in the PAcP promoter region
�231/+50 (21). These results may suggest that other weak
binding sites or unstable interactions of transcriptional factors
with the PAcP promoter are responsible for mediating its
prostate-specific expression. Alternatively, cofactors required
for the prostate-specific activation of the PAcP promoter are
not recruited through their direct interactions with promoter
DNA, but rather through the cofactor–cofactor interaction and/
or histone modification. For example, the SWI/SNF complex
is required for hormone-dependent activation (50). Recruit-
ment of SWI/SNF is mediated through CBP/p300, which itself
is recruited through the interaction with the SRC coactivator,
which leads to chromatin remodeling with altered DNA topo-
logy (50,51). It is also possible that HNF/FKH proteins con-
tribute to the prostate-specific regulation because in the region
between�1235and�1205bp, thereare fourconsensus-binding
sites for HNF/FKH proteins. Forkhead gene proteins interact
with chromatin (52,53) and are involved in regulating gene
expression in various developmental contexts (54,55), includ-
ing genes with liver-specific function (56) and in gut devel-
opment (57,58). Detailed analyses of transcriptional factors
interacting with the PAcP promoter may require the utilization
of chromatin immunoprecipitation assays. Additionally, it
should be noted that there are minor differences in footprint-
ing analyses (Figure 2A and B) and EMSA assays (Figure 4A)
between nuclear proteins from PC-3 and DU 145 cells. These
differences are apparently due to the nature of the two cell

lines, because prostate cancer cells are known to exhibit
heterogeneity and these two cell lines were derived from
different origins (10,17). Nevertheless, the two cell lines
exhibit similar patterns of PAcP promoter activity in transient
transfection assays (25). Thus, the effects of these minor
differences in regulating the PAcP promoter activity require
further investigation.

Unexpectedly, sequence analyses using a MatInspector data
bank search for the PAcP positive regulatory fragment from
�1356 to �779 reveal that there is no potential binding site for
ubiquitous transcription factors, except for the AP1 and CREB
proteins. The AP1 protein includes c-fos and c-jun proto-
oncogene products and can be induced by phorbol ester
12-O-tetradecanoylphorbol-13-acetate (TPA). It regulates a
diverse range of cellular activities (59) through its interaction
with the TPA-responsive element (60,61). Unexpectedly, the
putative AP1 binding sequence in the cis-active region of the
PAcP promoter does not interact with the AP1 protein in
EMSA, nor can its consensus oligonucleotides compete
with the PSD oligonucleotide in DNA–protein complex for-
mation (Figure 4). The results indicate that the AP1 protein
does not directly bind to the PAcP promoter DNA. This notion
is parallel to our observations that the effect of TPA on the
PAcP mRNA level is a slow response (62). Interestingly,
overexpression of c-Jun and c-Fos proteins inhibits
androgen-stimulated PSA promoter activity (63,64). Thus,
different mechanisms are involved in regulating the expression
of PAcP and PSA, two major prostate differentiation antigens
(62). Additionally, the putative CREB-binding site is not
within the protein interaction domain in footprinting assays.
Further analyses of the putative CREB-binding site are
required to determine the involvement of the CREB protein
in the regulation of PAcP promoter activity.

Based on the results from searching the transcription factors
database, the enhancer element of the PAcP promoter between
�1356 and �779 does not contain a sequence corresponding
to the consensus NF-kB element (Figure 3). Interestingly, the
consensus NF-kB oligonucleotide competes with the PSD–
protein complex formation in EMSA. Similarly, in the murine
tissue inhibitor metalloproteinase-1 gene, the AP1 factor binds
to a sequence that exhibits no consensus with the AP1 response
element (65,66). Our data further show that the PSD oligonu-
cleotide can directly interact with the NF-kB p50 (Figure 5B)
and p65 proteins (Figure 5C), and overexpression of the p65
subunit activates the PAcP promoter activity. The inhibitory
effect of p50 is similar to its effect on the PSA promoter (67).
In general, it is p65, not p50, that serves as the positive effector
of NF-kB-activated genes (68,69). Overexpression of a mutant
IkBa (Figure 7B) and treatment with an NF-kB inhibitory
peptide (data not shown) effectively abolish p65 NF-kB-
induced activation of PAcP promoter construct p1356. The
data collectively indicate that NF-kB directly activates the
PAcP promoter via a novel binding site specifically in prostate
cancer cells. This mode of regulation is biologically significant
because the activation of the PAcP promoter activity by
NF-kB correlates with elevated expression of endogenous
PAcP in LNCaP cells.

Interestingly, the PSD oligonucleotide could form multiple
complexes with nuclear proteins (Figures 4 and 5A), while it
forms only one major band with the purified NF-kB protein
(Figure 5B and C). It seems that NF-kB is directly interacting

Table 1. Location of the NF-kB-binding motif AGGTGT within the

promoter sequences of various prostate-enriched genes

Promoter Position(s)

PAcP �1254
PSA �3984
Nkx-3.1 �1407
MIC-1 �2261

�3991
DD3a �3642

�3585
�2791
�1895

aComputer analyses of the promoter sequence of the DD3 gene revealed the
presence of NF-kB-binding motifs with AGGTGG sequence that exhibit a
similar binding activity to AGGTGT (Figure 8C, lane 1 versus lane 7).
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with this DNA sequence in the PAcP promoter because NF-kB
consensus oligonucleotides effectively compete with the for-
mation of three major complexes. This direct interaction dif-
fers from observations in several other systems that NF-kB
cooperates with other transcription factors and is not involved
in direct DNA binding (70–73). Furthermore, this PSD
sequence containing the NF-kB-binding site is required for
activating the PAcP promoter activity using TNF-a (Figures 6
and 9) and IL-1 (data not shown) through NF-kB activation in
p1356-transfected PC-3 cells but not in HeLa cells (Figure 6).
The data collectively indicate that NF-kB-induced PAcP
expression exhibits a cell-type-specific manner. However, it
should be noted that in the presence of the anti-p65 NF-kB Ab,
the complex formation between PSD oligonucleotides and p65
protein disappeared (Figure 5C, lane 4), while the same Ab had
a super-shift effect on the NF-kB consensus oligonucleotide
and p65 protein (lane 2). Similarly, the anti-p50 Ab abolished
the interaction between the p50 NF-kB protein and PSD
probes (data not shown). We hypothesize that both Abs
have high affinities to corresponding proteins and that after
their binding, the corresponding subunit protein undergoes a
conformational change, resulting in the loss of their interac-
tions with PSD oligonucleotides, which apparently have low
affinity interactions. Of course, there are alternative explana-
tions, e.g. the Abs may recognize the domain that also interacts
with PSD probes and thus blocks the interaction. Further
experiments are required to identify the mechanism of this
Ab effect.

Owing to the potential importance of PAcP expression in
prostate cancer as well as the biological significance of NF-kB
signaling in general, we examine further the interaction
between the DNA sequence AGGTGT and the NF-kB protein.
It is known that different NF-kB dimers can interact with vast
sequence variations in the kB-binding site. Further analyses of
various NF-kB crystal structures reveal that all kB sites con-
sist of two half-sites in which p50 and p52 monomers bind to a
5 bp 50-GGGRN-30 consensus, while p65 and c-Rel monomers
do not require the first G:C base pair and bind to a 4 bp
50-GGAA-30 consensus (74–76). These half-sites are separated
by a 1 bp spacer. For example, as shown in Figure 10, p65
NF-kB homodimers can bind to target sites with only one
cognate half-site with the consensus sequence GGAA sepa-
rated by an A–T base pair with highly conservative G at
position +2 and a conservative G–C base-pair at position
�3 of the other half (75). Significantly, the results of our
EMSA analyses of the AGGTGT motif oligonucleotide reveal
that the presence of G at positions +2 and +3 is indispensable
for binding to the NF-kB p65 protein (Figure 8C). Our

observation is thus in agreement with the results of crystal
structure analyses of the p65 NF-kB homodimer complex (75).
The conserved G–C base pairs at positions +2 and �3 that are
present inside kB-like elements regulated by p65 and p50 are
also present inside the PSD oligonucleotide (Figure 10) in
which GGTG is sufficient and essential for NF-kB-binding
(Figure 8A). We therefore hypothesize that GGxxTxxCx is a
consensus sequence that can be recognized by both p65 and
p50 NF-kB homodimers (Figure 10). Furthermore, the GGTG
motif could have a higher binding preference for p65 than for
p50 homodimers because it exhibits a slightly higher
homology with the p65 consensus than the p50 consensus
(Figure 10). Interestingly, the nucleotide polymorphism within
the NF-kB motif contributes to the binding affinity of NF-kB
proteins toward the target sites, thus regulating different levels
of gene transcription (77). This novel NF-kB-binding site may
contribute to the differential regulation of gene expression by
NF-kB and thus merits further study.

The presence of this new NF-kB-binding site in the positive
regulatory region of the PAcP promoter allows the NF-kB
signal pathway to further activate the p1356 PAcP promoter
activity by >20-fold, higher than the basic p779 promoter
activity in a cell-specific manner (Figure 6). It is imaginable
that other factor(s), e.g. HNF/FKH, may also interact with this
577 bp fragment to provide additional up-regulations, adding
up to an extremely high level of PAcP expression in normal,
differentiated prostate epithelia. In addition, NF-kB activation
of the p1356 PAcP promoter occurs in androgen-insensitive
PC-3 cells in the absence of added androgens, indicating that
NF-kB activates PAcP expression via an androgen-indepen-
dent pathway. In contrast, the PSA promoter contains four
low-affinity consensus NF-kB-binding sites. They are either
adjacent to or overlapping with androgen-response elements,
indicating that possible cooperative interactions between NF-
kB and AR contribute to PSA transcription (67). In addition to
these low-affinity NF-kB-binding sites, computer analyses
reveal the existence of one AGGTGT motif in the PSA pro-
moter (Table 1). Similarly, the promoters of the MIC-1 and
Nkx-3.1 genes contain at least one AGGTGT motif. Interest-
ingly, the promoter of the DD3 gene has at least four reminis-
cent sequences containing one non-essential base pair
substitution at position +6, i.e. AGGTGG, although it lacks
the AGGTGT motif. The presence of this novel NF-kB-binding
motif inside the promoter of prostate-enriched genes may
indicate the importance of NF-kB to transactivation of the
respective promoters in a prostate cell-specific manner for a
high level of expression. In summary, owing to the impor-
tance of PAcP expression in prostate cancer biology, further
characterizations of its promoter will provide useful informa-
tion for understanding the regulation of PAcP expression in
prostate epithelia and may contribute to new insights into
prostate cancer progression.
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