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Abstract

Leukemia stem cells (LSCs) are self-renewable leukemia-initiating populations that are often 

resistant to traditional chemotherapy and tyrosine kinase inhibitors (TKI) currently used for 

treatment of acute or chronic myeloid leukemia (AML or CML). The persistence and continued 

acquisition of mutations in resistant LSCs represent a major cause for refractory disease and/or 

relapse following remission. Understanding the mechanisms regulating LSC growth and survival 

is critical for devising effective therapies that will improve treatment response and outcome. 

Several recent studies now indicate that the p53 tumor suppressor pathway is often inactivated in 

de novo myeloid leukemia through oncogenic specific mechanisms, which converge on aberrant 

p53 protein deacetylation. Here, we summarize our current understanding of various mechanisms 

underlying deregulation of histone deacetylases (HDACs), which could be exploited to restore p53 

activity and enhance targeting of LSCs in molecularly defined patient subsets.

Introduction

Leukemia stem cells (LSCs), characterized by unlimited self-renewal capacity, are shown to 

be central to the initiation, growth and relapse of acute and chronic myelogenous leukemia 

(AML and CML). Studies in recent years have led to the view that the persistence of these 

clonal LSC subpopulations could be a major driving mechanism contributing to treatment 

refractory and/or relapse following remission [1-3]. It has also recently been brought to light 

that after chemotherapy treatment, clonal evolution from preleukemic hematopoietic stem 

cells (HSCs) could occur and promote development of chemoresistant relapse [4-6]. The 

heterogeneity and the dynamic nature of malignant disease progression appear increasingly 

complex. Meanwhile, it is now clear that new therapies more effective in targeting quiescent 

and chemoresistant LSCs are needed to improve treatment outcome and cure.
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The tumor suppressor protein p53 is arguably the most studied molecule due to its central 

role in coordinating regulatory circuits that sense and respond to a wide variety of stressors 

including DNA damage and oncogenic events and ultimately control fundamental cell fate 

decisions such as cell cycle progression, apoptosis, senescence, metabolism, and autophagy 

[7,8]. The important role of p53 in cancer is underscored by the fact that genetic mutations 

in TP53 have been detected in approximately half of all human cancers and disruption of 

other p53 pathway components is prevalent in the remainder [9]. In myeloid leukemias, 

however, TP53 mutations are relatively infrequent (less than 10%) and mostly associate with 

complex karyotype and therapy related neoplasms [10-13]. Nevertheless, TP53 mutation is 

recognized as an adverse risk factor for chemotherapy response and prognosis [14,15]. As a 

master coordinator of important cellular processes, p53 function is regulated by a wide 

spectrum of post-translational modifications including phosphorylation, ubiquitination, 

acetylation, methylation and sumoylation [7,16-19]. It has been suggested that inactivation 

of non-mutated p53 frequently occurs through binding to its principal regulator MDM2, a 

E3 ubiquitin ligase that mediates degradation of p53 [20-22]. Compounds that directly 

interfere with the binding of p53 and MDM2, including Nutlins and MI-series inhibitors, 

have been developed and evaluated for anti-leukemia efficacy [23-32]. Multiple mechanisms 

have been observed to influence the efficacy of MDM2 inhibitors, underscoring the need to 

further dissect the heterogeneity and oncogene-specific mechanisms inhibiting p53 response 

in various types of leukemia. In particular, LSCs pertinent to refractory disease and relapse 

could rely heavily on alternative p53-inactivating mechanisms for survival and continued 

evolution during and following chemotherapy. Understanding these mechanisms presents 

new opportunities to specifically reactivate p53 and elicit LSC-selective vulnerability.

Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl moieties 

from ε-amino groups of lysine residues in a variety of proteins, including histones and 

nonhistone proteins [33]. Based on homology to the yeast HDACs and their enzymatic 

activities, HDAC proteins are categorized into four classes, including class I (HDAC1, 2, 3 

and 8), class II (HDAC4, 5, 6, 7, 9 and 10), class III (SIRT1, 2, 3, 4, 5, 6 and 7) and class IV 

(HDAC11). HDACs are widely recognized as important epigenetic regulators of gene 

expression via histone modification and chromatin remodeling. Many broad spectrum 

HDAC inhibitors have potent anticancer activities and are in various stages of clinical trials 

[33-38]. However, these inhibitors are highly toxic and lack selectivity, which have greatly 

hampered their clinical application and efficacy. More selective inhibition of mechanistically 

defined HDAC targets is needed to effectively eliminate cancer cells and minimize toxicity. 

Several members of the class I (HDAC1, 2 and 3) [39-41] and class III HDACs [42,43] are 

known to deacetylate the p53 protein. Given that acetylation modification of the p53 protein 

is essential for stabilization, nuclear localization, and transcriptional activation [44,45], p53 

activity can be specifically altered by deregulation of HDACs. Here we focus on recent 

advances in our understanding of divergent p53-inactivating mechanisms and how 

deregulation of specific HDAC proteins could be exploited to restore p53 activity and 

enhance targeting of LSCs.
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BCR-ABL activates SIRT1 expression in CML

CML has served as a paradigm for neoplasia evolution and targeted molecular therapy [46]. 

CML usually presents in a chronic phase and progresses through an accelerated phase 

followed by a terminal acute leukemia-like blast crisis [47]. It is uniformly associated with a 

chromosomal translocation t(9;22)(q34; q11) which results in the generation of BCR-ABL 
fusion gene. A unique feature of CML is that a single genetic lesion encoding the BCR-ABL 

fusion protein is sufficient to initiate malignant transformation of hematopoietic stem cells 

(HSCs). The use of tyrosine kinase inhibitor (TKI) to target BCR-ABL signaling has 

revolutionized the standard of care and greatly improved patient outcome. Treatment with 

TKI such as imatinib (IM), nilotinib, and dasatinib has been effective in inducing complete 

cytogenetic remissions and prolonging survival of chronic phase CML patients, but less 

effective against advanced phases of disease [48]. Even though TKI treatment effectively 

inhibited BCR-ABL kinase activity and reduced proliferation of primitive CML LSCs, it has 

been unable to eliminate residue LSC populations that may be potential sources of relapse 

[49-52]. In addition, mutations in BCR-ABL that confer resistance to TKI are common 

[53-55].

Sirtuin 1 (SIRT1) is a member of the sirtuin family of nicotinamide adenosine dinucleotide 

(NAD)-dependent deacetylases that regulate numerous biological processes, including 

aging, DNA repair, cell cycle, metabolism, and cell survival [56,57]. SIRT1 is shown to play 

important roles in the maintenance and differentiation of HSCs, especially under conditions 

of stress [58,59]. In CML, Wang et al. showed that SIRT1 deacetylase promotes acquisition 

of TKI resistant BCR-ABL mutations [60]. Given that acetylation is indispensible for 

transcriptional activation of p53 protein [44,45], SIRT1 functions as a negative regulator of 

p53 by deacetylating several lysine sites [42,43,61,62]. SIRT1 expression can be upregulated 

by multiple mechanisms including epigenetic silencing of a negative regulator HIC1 [63] or 

altered miRNA regulation [64]. In a study by Yuan et al., it was shown that BCR-ABL 

activates SIRT1 through STAT5 signaling and SIRT1 act as a survival pathway, which 

promotes oncogenic transformation and leukemogenesis [65]. Meanwhile, Li et al. showed 

that SIRT1 is overexpressed in primitive CML stem and progenitor cells compared to their 

normal counterparts [66]. Genetic knock-down of SIRT1 or pharmacological inhibition by 

the small molecule inhibitor tenovin-6 (TV-6) [67] impaired proliferation and induced 

apoptosis of CML stem and progenitor cells. In addition, combination of TV-6 with IM TKI 

treatment significantly reduced CML LSC growth and prolonged survival in vivo. Inhibition 

of SIRT1 led to enhanced p53 acetylation, and p53 activation is required for observed 

growth inhibitory effects of CML stem/progenitor cells. Another recent study by Wang et al. 

further demonstrated that genetic loss of SIRT1 depleted maintenance of CML LSCs [68]. 

Collectively, these studies establish that inhibiting the SIRT1-dependent survival pathway 

effectively activates p53 response and enhances targeting of CML LSCs. Combination of 

SIRT1 inhibitors with TKI could be efficacious for treating advanced CML disease and/or 

eradicating minimal residual disease.

FLT3-ITD induces SIRT1-c-MYC network in AML

AML is a form of highly heterogeneous hematopoietic malignancy with diverse cytogenetic, 

genetic and molecular abnormalities [69]. Identification of cytogenetic and genetic lesions 
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has revolutionized AML disease classification and prognosis stratification [70-73]. However, 

treatment outcome in the majority of patients remains poor, with frequent and fatal relapse. 

Seminal work by Lapidot et al. provided the first proof that the continued growth and 

propagation of AML depends on a rare population of leukemia-initiating LSCs [74]. With 

the advent of next generation sequencing technologies, the profound heterogeneity in 

genomic and epigenetic landscapes in AML is undoubtedly clear [75,76]. It has also allowed 

detection of stepwise acquisition of AML driving mutations and infer clonal architecture 

[4-6,77]. In addition, it has led to identification of preleukemic stem cells harboring one or 

few founding mutations and the ability to acquire additional mutations contributing to 

relapse. The dynamic clonal and subclonal evolution during or following treatment further 

contributes to the complexity and heterogeneity of therapy response and outcome in AML. 

In-depth understanding of molecular alterations and oncogenic mechanisms underlying 

diverse genetic lesions and LSC resistance is needed to devise effective targeted therapies.

Activating mutations in receptor tyrosine kinases and signaling components constitute one of 

the classical types of mutations associated with AML. FMS-like tyrosine kinase-3 (FLT3) 

internal tandem duplication (ITD) is observed in 25–30% of AML patients and predicts poor 

prognosis [78-84]. The ITD mutation disrupts the negative regulatory function of the 

juxtamembrane domain, rendering FLT3 receptor constitutively active [85-87]. FLT3-ITD 

mutation activates canonical receptor tyrosine kinase signaling, most prominently via 

STAT5, RAS/MAPK, and PI3K [86,88-91]. Expression of FLT3-ITD from the endogenous 

promoter results in loss of HSC quiescence and a myeloproliferation neoplasm, which is 

reversible by FLT3-TKI treatment [92]. There are several small molecule FLT3 TKIs 

including quizartinib (AC220) and sorafenib being evaluated in clinical trials; however, 

responses have been heterogeneous and transient [93-96]. These results suggest that the 

leukemia-initiating LSCs may be escaping FLT3 TKI-induced cytotoxicity [96-99].

In an effort to better understand drug resistance mechanisms, Li et al. showed that FLT3-ITD 

caused increased SIRT1 protein expression via enhanced expression of USP22 

deubiquitinase induced by c-MYC [100,101], which is activated by PIM1 as well as SIRT1-

c-MYC feed forward loop in FLT3-ITD AML cells [102,103]. Inhibition of SIRT1 by 

shRNA-mediated knock-down or pharmacological inhibitor TV-6 reciprocally increased c-

Myc acetylation and reduced its stability. SIRT1 knock-down or inhibition by TV-6 resulted 

in enhanced p53 acetylation and p53 target gene expression. Combination of TV6 with 

AC220 reduced FLT3-ITD+ AML CD34+ cell growth and survival, and enhanced TKI-

mediated targeting of AML LSCs in vivo [100]. Meanwhile, Sasca et al. demonstrated that 

tyrosine kinase signaling including STAT5 and RAS activation likely acts in concert to 

activate SIRT1 expression [104]. In addition, it is proposed that FLT3-ITD regulates p53 

acetylation via the ATM-DBC1-SIRT1 axis, which could also be regulated by irradiation-

induced genotoxic stress [104]. In murine AML models driven in combination with MLL-

AF9 or RUNX1-ETO, the combination of TV-6 and TKI modestly enhanced inhibition of 

proliferation [104]. The impact of additional genetic and cytogenetic aberrations on the 

sensitivity to SIRT1 inhibition remains to be determined. It is noteworthy that this p53 

activating effect elicited by SIRT1 inhibition was not seen in FLT3 non-mutated AML cells 

or normal cells, underscoring the importance of identifying oncogene-specific adaptive 

response in the face of chemotherapy and other targeted therapy. However, there appears to 

Kuo et al. Page 4

Exp Hematol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be some discrepancy regarding whether SIRT1 activation was selective for FLT3-ITD+ AML 

and not for AML with FLT3-TKD mutations. Further studies are needed to clarify the nature 

and spectrum of oncogenic stimuli rendering SIRT1 activation and sensitivity to SIRT1 

inhibition.

HDAC8 mediates deacetylation of p53 in inv(16) AML

In AML, chromosomal abnormalities frequently result in transcription factor fusion proteins 

that contribute to the unique etiology and prognosis of distinct cytogenetic subsets [105]. As 

a master transcriptional regulator of hematopoiesis, the core-binding factor (CBF) complex 

is a common target of leukemia-associated mutations [106,107]. Among the most common 

cytogenetic aberrations found in AML patients is chromosome 16 inversion inv(16)

(p13.1q22) or translocation t(16;16)(p13.1;q22) [108]. Inv(16) generates a fusion gene Cbfb-
MYH11, leading to expression of a fusion protein CBFβ-SMMHC [109,110]. A series of 

studies revealed that CBFβ-SMMHC dominantly inhibits CBF function, impairs 

hematopoietic differentiation and predisposes for leukemia transformation [111-115]. 

Dominant inhibition of RUNX proteins, either through cytoplasmic sequestration [116,117] 

or constitutive repression [118,119], was considered the main leukemogenic mechanism of 

CBFβ-SMMHC chimeric protein. However, more recent studies indicate that functional 

RUNX proteins are in fact needed for CBFβ-SMMHC leukemogenesis and growth of CBF 

AML cells [120-124]. It was previously reported that p53 response was reduced by CBFβ-

SMMHC [125], although the underlying mechanism was not clear. A recent study by Qi et 

al. revealed that CBFβ-SMMHC gains p53-inhibiting function via aberrant protein-protein 

interaction with HDAC8 and the p53 protein [126]. HDAC8 is a member of the zinc-

dependent class I HDAC enzyme known to deacetylate lysine residues in a variety of 

proteins, including histones and transcription factors [127-129]. Qi et al. showed that like 

other members of class I HDAC, HDAC8 is capable of deacetylating the p53 protein. Thus, 

CBFβ-SMMHC promoted HDAC8-mediated deacetylation of p53 by recruiting HDAC8 and 

p53 into an aberrant protein complex. Consequently, p53 induction and target gene 

expression is largely inhibited in the presence of CBFβ-SMMHC. Although CBFβ-SMMHC 

binds p53 and HDAC8 independently via distinct protein domains, the p53-inhibiting 

activity is dependent on the presence of both p53 and HDAC8 proteins in the ternary 

complex. Depleting CBFβ-SMMHC or HDAC8 resulted in restoration of p53 acetylation 

and activation upon exposure to genotoxic stress such as irradiation. Genetic deletion of 

Hdac8 in a conditional CBFβ-SMMHC knock-in mouse model dramatically diminished LSC 

transformation, as evidenced by greatly reduced AML incidence and delayed onset. Qi et al. 

also found that HDAC8 expression was significantly higher in the primitive CD34+ 

population and that inv(16)+ AML CD34+ cells express 5-12 fold higher levels of HDAC8 

compared to non-inv(16) AML or normal CD34+ cells. In line with the differential HDAC8 

expression, pharmacologic inhibition of HDAC8 enzyme using HDAC8 isoform-selective 

inhibitors (HDAC8i) [130,131] resulted in enhanced p53 acetylation, p53 target gene 

activation, and p53-dependent apoptosis selectively in inv(16)+ AML CD34+ cells while 

sparing the normal CD34+ stem/progenitor population. This activity further translated into 

elimination of AML propagation and leukemia-initiating activity in both murine AML and 

human AML xenograft models in vivo. Importantly, HDAC8i treatment was capable of 

enhancing the chemosensitivity of inv(16)+ CD34+ cells. Despite having a relatively 
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favorable prognosis, only approximately half of the patients with inv(16) AML eventually 

achieve long-term survival with the standard chemotherapy regimens [132,133]. These 

results highlight the potential efficacy of HDAC8i in overcoming chemotherapy resistance 

and relapse of inv(16)+ AML.

Conclusion

In recent years, several alternative p53 inactivation mechanisms specific to the underlying 

oncogenic lesions have been shown for CML, FLT3-ITD+ AML, and inv(16)+ AML. These 

divergent pathways converge on inhibiting p53 acetylation via deregulation of alternative 

protein deacetylases (Figure 1). These results partly explain the heterogenous response to 

other p53 activating agents such as MDM2 inhibitors. Given that TP53 is rarely mutated in 

de novo myeloid neoplasm, these findings present new opportunities to regain control of p53 

activity and enhance response to chemotherapy or other targeted therapies. Importantly, LSC 

populations relevant to refractory disease and relapse are selectively sensitive to perturbation 

of the specific protein deacetylase defined by the specific oncogenic mechanism. Thus, 

selective inhibition of context-specific HDAC isoforms is a promising approach to eradicate 

residual drug resistant LSCs, prevent further acquisition of mutations and reduce relapse. 

This highlights the importance to dissect the genetic and molecular heterogeneity, 

particularly in AML. These studies also demonstrate that by attacking cancer-specific 

vulnerability, the normal HSC counterpart can largely be spared. Further development of 

isoform specific HDAC inhibitors is critical to translate these insights into the clinic.
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Figure 1. Multiple leukemogenic pathways converge on p53-inactivation through enhanced p53 
protein deacetylation
SIRT1 deacetylase is stabilized and activated through multiple mechanisms downstream of 

BCR-ABL in CML (left) and FLT3-ITD (center) signaling in FLT3-ITD+ AML. In inv(16) 

AML (right), CBFβ-SMMHC fusion protein recruits HDAC8 and p53 in a protein complex, 

thereby promoting deacetylation of p53 by HDAC8. Inhibition of oncogenic context-specific 

deacetylase is a promising approach to specifically activate p53 pathway and enhance 

sensitivity of leukemia-initiating LSCs to TKI or chemotherapy.
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