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ABSTRACT

Guessing the boundaries of structural domains
has been an important and challenging problem in
experimental and computational structural biology.
Predictions were based on intuition, biochemical
properties, statistics, sequence homology and other
aspects of predicted protein structure. Here, we intro-
duced CHOPnet, a de novo method that predicts
structural domains in the absence of homology to
known domains. Our method was based on neural
networks and relied exclusively on information
available for all proteins. Evaluating sustained perfor-
mance through rigorous cross-validation on proteins
of known structure, we correctly predicted the number
of domains in 69% of all proteins. For 50% of the
two-domain proteins the centre of the predicted
boundary was closer than 20 residues to the boundary
assigned from three-dimensional (3D) structures; this
was about eight percentage points better than predic-
tions by ‘equal split’. Our results appeared to compare
favourably with those from previously published
methods. CHOPnet may be useful to restrict the
experimental testing of different fragments for
structure determination in the context of structural
genomics.

INTRODUCTION

Most proteins contain multiple structural domains. Large-
scale sequencing efforts have confirmed that eukaryotes
differ from all other kingdoms in the significantly higher pro-
portion of proteins extending over 1500 residues (1-7). These
large proteins undoubtedly consist of many structural
domains. Structural domains are regions that are either
compact, globular modules (‘beads-on-a-string’), or are
clearly distinguished from flanking regions such as the mem-
brane regions or long coiled-coil helices separating other
domains (8), or tethering proteins (9). Domains can be viewed
as semi-independent three-dimensional (3D) units in proteins;
they may fold independently (10) and may constitute ‘units of
evolution’ (11). Often these domains have particular functions
and are recombined in different proteins (12). In fact, we
recently proposed (13,42) that almost 60-70% of most

non-eukaryotic proteins have multiple domains, and that
many multiple domain proteins contain one long (200-400
residues) and many significantly shorter domains (~100 resi-
dues). Many of these short domains may constitute modules
enabling higher complexity in regulation (14). Thus, a detailed
understanding of the domain organization and domain—
domain interactions is essential to advancing our understand-
ing of structure and function. Detailed knowledge of domain
boundaries is often particularly relevant for experimental
structure determination. Many proteins of known structure
constitute fragments of native proteins. More coarse-grained
identifications of the approximate map of domain organization
benefits sequence analysis, and may also constitute a
simple means of increasing the signal-to-noise ratio in
yeast-two-hybrid screens by simply running the screen
separately with all putative domains, rather than with the
full-length protein.

Domains most accurately assigned from 3D structures. Vari-
ous domain assignment methods and databases have been
developed for proteins of known 3D structures. Structural
Classification of Proteins (SCOP) is fully based on expert-
driven, visual domain assignments (15). All other databases
and methods are more or less automated. For instance, the
Class Architecture Topology Homology (CATH) database
of protein structure relations combines different assignment
methods (16), the Dali Domain Dictionary (17) uses the PUU
assignment method (11), and MMDB uses VAST (18). Such
methods usually define domains as the structurally most com-
pact local region, frequently clipping that stick out from the
domain. The only fully automated method that assigns
sequence-continuous domains from 3D structures is Protein
Informatics System for Modeling [PrISM (19)]. Undoubtedly,
automatic domain assignments capture reality much more
accurately than any method attempting to define domains
without structures. Nevertheless, different methods agree
only for ~81% of all domains (20). While disagreements
may indicate errors of the individual methods, they often
also reveal that the concept of a structural domain is—albeit
powerful—not fully defined.

Predicting domain boundaries from sequence remains an open
problem. In the absence of 3D structures, domain assignment
becomes much more difficult. Early methods tried to predict
domain boundaries without explicitly using alignments, for
instance by exploiting interactions between secondary struc-
ture units and simulations of protein folding (21), short-range
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amino acid composition and association preference (22), and
predicted inter-residue contact maps (23). Although based on
very sound concepts, none of these methods achieved reason-
able levels of accuracy. Several later methods explored pat-
terns of conservation in alignments. The most prominent
example is a database of putative protein domains [ProDom
(24,25,26)] that generates a comprehensive set of protein
domain families automatically from the SWISS-PROT and
TrEMBL sequence databases (27). DOMO applies successive
steps based on similarity in amino acid composition, dipeptide
composition, local sequence similarity and multiple sequence
alignment similarity to detect domain boundaries (28).
DOMAINATION (29) delineates domains through analyzing
position-specific iterated database search [PSI-BLAST (30)]
alignments. Databases such as Pfam-A (31), SMART (32),
TIGRFAMs (33), COG (34), SBASE (35), CDD (36), SUPER-
FAMILY (37), the CATH-related Gene3D and PFDB (38,39),
and other methods (40,41) in some way or other base domain-
like assignments on homology. Similarly, CHOP (42) identi-
fies potential domain boundaries through hierarchical searches
against databases of more or less well defined domains.
Although all these methods provide valuable information
about putative domains for proteins with similar sequences,
they fail for small families or in the absence of homologous
domain assignments. Recently, quite a few novel methods
have been developed to predict domain boundaries directly
from sequence. The ‘Domain Guess by Size’ (DGS) algorithm
(43) ‘guesses’ domain boundaries solely based on the length
distribution observed for proteins of known structure. Domain
assignment from, sequence through protein folding simula-
tion [SnapDRAGON (44)] performs 100 runs of ab initio
protein structure prediction using DRAGON (45), assigns
domain boundaries for each model with a fast structure-
based domain dissecting method (46), and then predicts the
domains through statistical analysis. According to the esti-
mates of the authors, SnapDRAGON is currently the most
accurate de novo domain assignment method. However, given
the CPU resources needed, it is certainly not a feasible strat-
egy in the context of analysing entire proteomes. More
recently, a fast domain prediction method DomSSEA (47)
has been proposed. The underlying idea is incredibly simple:
align the secondary structure predicted for a query protein
against a database of domains assigned from 3D structures
(CATH) and simply derive the domain boundaries from the
known domain with the most similar secondary structure.
Albeit this simplicity, the authors found that DomSSEA
correctly identified the number of domains in 72% of all
proteins tested, and correctly identified 24% of all domain
boundaries within 20 residues of the boundaries annotated
in CATH.

Here, we introduced a novel method that predicts domain
boundaries through a neural network using evolutionary infor-
mation, predicted One-dimensional (1D) structure (secondary
structure, solvent accessibility), amino acid flexibility, and
amino acid composition. The final predictions of domain
boundaries resulted from post-processing the raw network
output by removing noisy peaks. We evaluated sustained per-
formance in terms of correctly predicting the number of
domains in a protein and in correctly predicting the domain
boundary.
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METHODS
Data

Sequence-unique set of PDB chains. The EVA server [a server
automatically evaluating structure prediction methods (48,49)]
continuously maintains a set of sequence-unique PDB chains:
no pair in that set exceeds a sequence similarity above an
HSSP value of 0 (50) (set available at ftp://cubic.bioc.
columbia.edu/pub/eva/unique_list.txt). The HSSP curve
relates alignment length to pairwise sequence identity or
similarity (50,51); for alignments of 100 residues, HSSP = 0
corresponds to 33% pairwise sequence identity, for alignments
longer than 250 residues to ~20%. The version that we used
(December 6, 2003) contained 2773 sequence-unique PDB
chains.

Structural domains assigned from 3D structures. Structural
domains were extracted automatically by the program
PrISM (52), and taken from the more or less expert-based
assignments from SCOP (15) and CATH (16). Note that we
developed separate prediction methods for each assignment
scheme, and that we also evaluated performance based on the
different assignments. Domain linkers were defined as the
regions between two continuous PrISM/CATH/SCOP
domains.

Cross-validation of networks. We randomly selected ~9% of
our dataset as internal control sets to optimize free parameters
(e.g. number of hidden units, types of input, stop of training),
and the rest for training and testing. Note that we refer to the
testing set as predictions for proteins pretended to be unknown,
i.e. for which we did use 3D data only to evaluate, not to
develop. While we used the same protocol to build the train-
ing, validation and testing sets for CATH (set_CATH with
1300 proteins) and SCOP (set_SCOP with 2127 proteins) as
for PrISM (set_PrISM, 1918 proteins), the actual sets differed
slightly since these expert-based databases do not have assign-
ments for all proteins in PDB. For set_PrISM, we excluded
NMR and low-resolution X-ray structures (>3.0 A) from our
sequence-unique set of PDB chains. Finally, we compiled the
overlap between SCOP and CATH in a set used to establish
how well the combination of both methods works (set_SC with
1187 proteins). Since by construction of our dataset, no pair of
chains in the set had significant levels of sequence similarity,
we could simply split these high-resolution structures at ran-
dom into training and testing sets. We used 10 splits such that
each protein was used for testing exactly once.

Feature extraction and prediction method

Sequence features. As the input to the neural networks we used
amino acid composition (averaged over an alignment profile),
predicted secondary structure and solvent accessibility (details
below). We obtained multiple sequence alignments by search-
ing with PSI-BLAST (30) against all known sequences con-
tained in SWISS-PROT (27), TTEMBL (27) and PDB (53). All
hits below a PSI-BLAST E-value of 10~ were subsequently
filtered (50) and included in the sequence profile. The filtered
PSI-BLAST alignments were used as input for PROFsec
(B. Rost, submitted for publication) for secondary structure
prediction, and PROFacc (B. Rost, submitted for publication)
for solvent accessibility prediction.
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Neural network architecture. We trained a three-layer
feed forward artificial neural network using the standard
back-propagation algorithm with momentum term (54,55).
Since our dataset was rather small, the major problem was
to optimally choose input features that were as informative for
the prediction task as possible. We accomplished this through
the validation set in the following way: first, we trained a
network with a group of simple features (evolutionary profiles
in window); then we added features grouped by intuition and
monitored the increase in performance (on the validation set).
Groups of features that yielded no improvement were rejected,
all others included and the next group was tested. Note that this
strategy by no means guaranteed to find the optimal set of
features and that we did not use any information from the test
set in order to avoid over-fitting. The final network used 57
input nodes from consecutive sequence segments of 5 residues
[shifted through the protein as standard for other prediction
methods (56-60)]. For each residue in this local sequence
window, three nodes encoded secondary structure (raw output
scores from PROFsec representing helix, strand and loop), one
node encoded solvent accessibility (PROFacc prediction of
relative solvent accessibility) and one node represented the
sequence conservation [conservation weight in HSSP files
(51,61)]. We also added features for the entire five-residue
segment, namely the difference in secondary structure content
between the flanking regions of the segment (eight nodes), the
difference in solvent accessibility (four nodes), the position of
the sequence segment with regards to the N- and C-termini
(eight nodes), the flexibility index (62) averaged over the
entire five-residue segment and that for the central residues
(two nodes), and the amino acid composition in the profile for
the entire window (six nodes for residues {P, H, D, Y, V, C},
which are most different between linkers and domains).
Finally, we added global nodes representing the length of
the protein (four nodes). The hidden layer of the network
had three nodes, and the output layer had two nodes: one
coding for ‘domain-boundary’ the other for ‘not-domain-
boundary’.

Post-processing neural network output. For the combination
method (set_SC), we took the more reliable score from the
SCOP network and the CATH network as the network output.
The raw output from the neural networks had many local
peaks. Thus, we had to filter these raw outputs. Towards
this end we employed the following five steps. (i) We deter-
mined the threshold for the domain boundary network output
unit dynamically according to the length (L) of the protein and
to the distribution of raw output values for all residues in that
protein. Specifically, we compiled the 92nd percentile of the
raw output T and set the threshold T to

max(7y,60) for L < 100
T = < max(T;,30) for 100 < L < 200
T for L > 200

All residues with raw output values above T were considered
as domain boundaries. (ii) Next, we smoothed the raw output
through averaging over windows of eleven consecutive
residues. (iii) For each nine-residue window averages, we
assigned the central residue as ‘domain boundary’ if three
out of the three residues were predicted as ‘domain-boundary’.

(iv) We removed ‘isolated’ predictions, i.e. those for which
‘domain-boundaries’ were not predicted for at least three con-
secutive residues. (v) Finally, we had to remove conflicts. In
particular, we simply predicted a domain boundary exactly in
the middle between two adjacent (central residues less than 30
residues apart) boundary predictions. Note that all parameters
for these filters were developed using the validation set only.

Measuring performance

All estimates for performance were obtained from the test sets
in 10-fold cross-validation. In particular, we never showed any
data from the training sets. We evaluated performance in two
different ways. First, we monitored the percentage of proteins
for which the number of domains was predicted correctly. We
separated this number into different ‘classes’ of proteins,
namely those with M, observed domains and showed the
percentages of those that were predicted with M,y domains
(note Mops = Mg are those correctly predicted; Mops < Mpq
mark over-predictions and M, > M,,.q under-predictions). For
domain boundary predictions, we measured the distance
between predicted and observed domain boundaries as the
distance between the central residues of the predicted and
observed boundary, and calculated the percentage of correctly
predicted domain boundaries.

Random control predictions. Given a set of proteins, the num-
ber of domains was predicted at random for each protein
according to the composition of domain numbers in a parti-
cular set. For instance, ~68% of the proteins were predicted as
single-domain proteins, 24% as two-domain proteins and 7%
as three-domain. The success rate of random prediction of the
number of domains was obtained for the whole dataset, then
the test was repeated 100 times, and the average accuracy over
all random choices was reported. In order to measure the
random background for the domain boundary prediction, we
chose M,,s—1 domain boundaries at random in each protein
with M, domains. Again, we repeated this random cut 100
times and reported the average over all 100 randomizations.

RESULTS

Correctly predicted number of domains for 38% of the multi-
domain proteins. The most coarse-grained task of methods
detecting domain boundaries (linkers) is to correctly predict
the number of domains. We have reliable information about
structural domains only for proteins of known structure. Even
for these the numbers assigned by different methods and
experts differed significantly. For instance, for our cross-
validation set, only 93% of the assignments agreed between
CATH and SCOP. For the same set, the automatic domain
assignment method PrISM agreed for 80 and 73% of all pro-
teins with CATH and SCOP, respectively. Since Protein Data
Bank (PDB) is highly biased toward single-domain proteins
(depending on the assignment method 60-80%), this number
was biased towards more simple cases: only 67-69% of the
multi-domain assignments agreed between SCOP and CATH;
PrISM agreed with 54 and 44% of the assignments by CATH
and SCOP, respectively. While the agreement between auto-
matic and expert-based assignments provided an upper limit
for predictions, the lower limit was given by random predic-
tions that correctly identified 8% of all multi-domain proteins.
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Figure 1. Predicting the number of domains. (A) We compared the success in predicting the number of domains to random predictions. Our method was significantly
better than random for all multi-domain proteins. (B) For 69% of all and for 38% of all multi-domain proteins the number of domains predicted by CHOPnet and
observed by CATH were identical. Overall, CHOPnet appeared to slightly over-predict the number of domains (solid bars on right higher than those on left).
However, the data for multi-domain proteins revealed that it actually under-predicted significantly, in particular the number was under-predicted more often than

it was predicted correctly (stippled bar at ‘—1" higher than that at ‘0’).

Table 1. Domain number prediction accuracy (set_ CATH)*

Table 2. Different methods and different gold standards®

Observation (CATH assignment) Prediction
1 2 3

1 73+4 25+5 2+2
54+8 4117 5+4

3 50+ 12 29+6 21 +£12

“Percentage of proteins observed with N (1-3) domains (rows) and predicted
with M domains (column). The diagonal highlights correct predictions in bold.
For example, 41% of the two-domain proteins were correctly predicted as such,
for 54% the domain boundary was missed incorrectly predicting single domains
and 5% were over-predicted to contain three instead of two domains.

Our prediction method, CHOPnet, correctly predicted the
number for ~38% for all multi-domain proteins. While this
was much closer to structure-based assignments than to
random predictions (Figure 1A), our method was seemingly
outperformed by random for single-domain proteins. When
comparing how often CHOPnet over- and under-predicted
domains, it appeared that the network leaned toward over-
prediction (grey bars in Figure 1B). However, this figure
was again biased by the over-representation of single-domain
proteins in our dataset: for most multi-domain proteins, the
method, in fact, under-predicted domain boundaries (Table 1
and stippled bars in Figure 1B).

Performance overall and for single domains not informative.
We found estimates for the performance on single-
domain proteins so sensitive to the particular assignment
method that they appeared almost meaningless: our basic
methods varied between 49 and 63% (Table 2 third column;
datasets in second column). Random predictions also varied
considerably (63-88%, values in brackets in second
column). This problem also over-shadowed estimates for
the overall performance, since for all PDB-derived datasets

Assignment Data set Correctly Correctly Linker position
used for used for predicted predicted for two-domain
training evaluation one-domain  two-domains proteins
(random) (random) (equal split)
SCOP set_SCOP  49% (83%) 49% (15%)  50% (42%)
SCOP set_CATH  69% (88%) 44% (11%)  40% (27%)
SCop set_Jones 42% (16%) 58% (18%)  53% (49%)
CATH set_SCOP  58% (88%) 54% (10%)  49% (52%)
CATH set_CATH  52% (88%) 53% (14%)  58% (47%)
CATH set_Jones 42% (16%) 59% (18%)  53% (53%)
SCOP+CATH set_SCOP  73% (88%) 40% (10%) 46%(44%)
SCOP+CATH set_CATH  73% (88%) 41% (10%)  47% (39%)
SCOP+CATH set_Jones 60% (76%) 50% (18%)  51% (43%)
PrISM set_PrISM  63% (63%) 55% (24%)  48% (30%)
PrISM set_Jones 52% (76%) 52% (18%)  42% (53%)
DomSSEA® set_Jones 82% (16%) 46% (17%)  49% (49%)
DGS-M" set_Jones  100% (76%) 0% (17%)  46% (49%)

“The leftmost column distinguishes different versions of CHOPnet (trained on
SCOP, CATH, SCOP+CATH and PrISM), and previously published methods
[DomSSEA (47) and DGS-M (43)]. The second column identifies different test
sets [set_Jones taken from (47)], the third and fourth the accuracy in predicting
the number of domains (values in brackets give random predictions), and the last
column the percentage of linker regions for two-domain proteins predicted
within 20 residues of the observation (values in brackets mark performance
of equal split).

"All values taken directly from a previous publication (47).

single-domain proteins dominated. We trained different
methods on different assignments and observed that the
method trained on standard-of-truth X performed best if
and only if evaluated on method X (Table 2; note that the
networks trained on SCOP to some extent constituted an
exception). The method combining SCOP and CATH assign-
ments appeared overall slightly superior for all datasets.
Therefore, we chose this one as our final prediction method
CHOPnet.
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Figure 2. Accuracy of predicting the precise domain boundary. For all two-domain proteins for which the domain number was predicted correctly, the distance
between predicted and observed domain boundaries was measured, and the accuracy of the prediction was calculated for thresholds ranging from 0-20 residues and
compared with that of two trivial predictions: ‘random split’ and ‘equal split’. The left panel (A) gives the results for using SCOP assignments as standard-of-truth.
The lines for CATH and PrISM mark the agreement between SCOP and these two methods that are based on known 3D structures. The two panels on the right (B and
C) are based on using CATH assignments as standard-of-truth. Panels (A and B) were based on the cross-validation section common between CATH and SCOP

(set_SC), while (C) was based on the test set used to evaluate DomSSEA (47).

Table 3. Overall prediction of domain number and boundary (+20 residues)

Number of
domains observed

Percentage of proteins
with correctly predicted
number of domains

Percentage of proteins

with correctly predicted
number and location of
domains (320 residues)

1 73 73
2 41 19
3 21 0

Domain boundaries predicted better than random. For all
proteins that were assigned two domains by CHOPnet, we
analysed how close the predicted and observed linker regions
were (Figure 2). Using CATH as predictions for SCOP obser-
vations (Figure 2A) and SCOP as predictions for CATH obser-
vations (Figure 2B), both found almost all linkers within £20
residues. In contrast, the automatic PrISM assignments agreed
only for ~80% of the linkers with SCOP (Figure 2A) and
CATH (Figure 2B). In practice, this level constitutes an
upper limit for methods predicting domain boundaries in
the absence of structure. Conversely, the lower limit is pro-
vided by a random prediction. Following the work of David
Jones’ group (2), we tested two different random predictions,
namely a ‘random split’ of each two-domain protein into two
fragments, and an ‘equal split’ introducing a domain boundary
in the middle. We then monitored how often a domain bound-
ary was predicted closer than =D residues from the observed
boundary (Figure 2). Note that the absolute value of the per-
formance of ‘random split’ and ‘equal split’ depends on the
number of correct predictions and the particular assignment
method (therefore the values differ slightly for the different
data in Figure 2). At 20 residues, ‘random split’ correctly
predicted ~16% and ‘equal split’ ~39-44% of the boundaries.
CHOPnet correctly assigned 46—51% of the boundaries at £20
residues (Figure 2). Thus, our method consistently outper-
formed equal split.

10 ———m—m—m————r—————r—————
CATH assignment
2 8F from 3D &
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E from sequence
o 6 __
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Figure 3. Length distribution of predicted and observed domains. Overall, the
length of structural domains predicted by CHOPnet (black line with open
circles) was rather similar to that assigned from 3D structures by CATH
(light grey with plus signs). We compiled the distribution with 10 residue
bins. The obvious noise in the distributions revealed the limited size of our
datasets (1187 PDB chains).

Correct number and location of boundaries for 19% of two-
domain proteins. If assessed on all proteins in our dataset, our
method correctly predicted both the number of domains and the
boundary within £20 residues for 19% of all two-domain pro-
teins (Table 3). On average, the distributions of domain lengths
from CHOPnet and from CATH (Figure 3), SCOP, and PrISM
(data not shown) were surprisingly similar. The major differ-
ence was that CHOPnet slightly over-predicted short domains.

DISCUSSION

Domain assignment is more accurate for proteins with fewer
domains. Our method predicted the number of protein domains



much better for single-domain than for multi-domain proteins
(Figure 1, Table 1). Nevertheless, two-domain proteins were
identified much more accurately than could have been done
through simple ‘guesses by length’ or random predictions.
Furthermore, for about 50% of all boundaries in two-domain
proteins, our predictions fall within 20 residues of the bound-
aries assigned from the known 3D structures (Figure 2).
The combination of both errors (wrong number and wrong
location) dropped the percentage of three-domain proteins
for which both the number and location were correctly pre-
dicted to 0% (Table 3). Since there are supposedly two to five
times more single-domain proteins in PDB than in nature (42),
the estimates for multi-domain proteins are more likely to
reflect the sustained performance of CHOPnet. Thus, in con-
text of chopping entire proteomes, we need methods that
reduce the number of unknown linkers by pre-processing
the sequences. Candidates for such pre-processing are methods
based on homology to known structure domains or reliably
annotated sequence domains. We previously developed CHOPto
dissect proteins into structural domain-like fragments according
to sequence homology known domains (42,63). CHOP was able
to process 69% of the proteins in 62 entirely sequenced
proteomes. Over two-thirds of these proteins have more
than one domain. Single-domain proteins are clearly over-
represented in the 31% of the proteins for which we could not
chop due to missing homology information. Although CHOP
may have identified a considerable fraction of the structural
domains in these proteomes, it undoubtedly missed many
domain boundaries. We hope that CHOPnet will allow the reli-
able dissection of these remaining multi-domain fragments.
CHOPnet becomes increasingly unreliable for proteins with
more domains. However, many of the fragments with domain
boundaries undetected by CHOP are likely to have fewer
domains, i.e. instead of having to break down the entire protein,
CHOPnet may only have toidentify one boundary. We have also
begun to experiment with acombination of CHOPnetand CHOP
hoping that the combination of both will increase the reliability
of chopping.

Major problems: limited and contradictory data. In our final
network, we encoded various sequence and structure features
into 57 input nodes. Presumably, there are other ways of
encoding the input information that better represent the neces-
sary information. For example, the information from multiple
sequence alignments was encoded only in 11 nodes over the
sequence window of five residues (five for sequence weight,
six for amino acid composition of the sequence profile). A
20-dimensional vector for the full information contained in sub-
stitution profiles of the alignment might perform more accu-
rately. However, we failed to successfully explore more input
information due to the rather limited size of the dataset. There-
fore, we assume that our method will become more accurate
when high-resolution structures for more multi-domain pro-
teins will become available. Another major limitation for our
method was the inconsistency of domain assignment methods.
If expert-based annotations agree for only two-thirds of the
multi-domain proteins, then the implicit assumption for devel-
oping a prediction method, namely that there is a bio—physical
reason for domain formation is partially flawed. This strongly
impacts the ability of methods such as neural networks in
extracting such rules. Our differently trained networks all
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performed best on the assignment scheme used as standard-
of-truth. Thus, the networks extracted some of the rules under-
lying the different assignment programs; there is no objective
means of telling which one is better. While all PrISM domains
are consecutive in sequence, 5% of the domains in SCOP and
15% of those in CATH are not consecutive in sequence. Our
neural networks largely failed on most of these non-consecutive
domains, no matter on which assignment schema we trained.

CHOPnet appeared to perform favourably in comparison
to other methods. Although we evaluated the performance
of our method through measures previously established, it
was not straightforward to meaningfully compare our esti-
mates to those published by others. Previous results were
based on different datasets, benchmark standards, cross-vali-
dation and evaluation procedures. For example, a previous
study using neural networks to predict domain boundaries
reported a coverage of 36% at 58% accuracy for all predicted
domain boundaries (64). The dataset came from 99 domain
linkers defined by SCOP in 74 multi-domain proteins, and the
sequence redundancy was removed at BLAST E-values of
1077° for training and 1072° for evaluation. At such high
levels of sequence similarity between the training and the
testing set, we can predict boundaries through sequence
homology at higher levels of accuracy/coverage. Since the
neural network used only sequence information as input it
may well be that it simply found all boundaries with homology
to training proteins and missed all others. However, the paper
did not address this possibility. The ‘Domain Guess by Size’
[DGS (43)] was reported to reach an accuracy of 50% for
proteins shorter than 400 residues, given the gold standard
from MMDB (65). This was surprisingly accurate given
that the only input to the program was the protein length. How-
ever, for this value, predictions were considered as correct, if
one of the top 10 predictions was within 20 residues of the
observed domain boundary. Accuracy was much lower if only
the top hit was assessed: when we applied DGS to our dataset,
all proteins in that set were predicted as single-domain proteins
by the top-ranking prediction [data not shown; note: a similar
result was previously observed (47)]. SnapDRAGON (44) was
evaluated with similar criteria for separating training and test-
ing set as applied for this work. Since the dataset differed,
comparing the numerical values has rather limited validity.
Nevertheless, the numerical results were the following: Snap-
DRAGON correctly identified 47%, CHOPnet ~70% of the
single-domain proteins. Comparing the numbers for the suc-
cess in correctly identifying the boundary region was even
more difficult as was illustrated by the differences for the
‘equal split’ scenario. ‘Equal split’ accuracy was 30% for
SnapDRAGON’s data set (all multi-domain proteins in
continuous set), 50% for DomSSEA’s set (two-domain pro-
teins), and 27-53% for our different sets (two-domain pro-
teins). One possible base for comparison could then be the
difference between the accuracy of the actual prediction
method and the ‘equal split’ background. SnapDRAGON
was nine percentage points more accurate than ‘equal split’
for all multi-domain proteins (39 versus 30%). Since the accu-
racy of ‘equal split’ is more likely to drop for proteins with
more than two domains, it is not unlikely that the difference
between prediction and random would be lower than this for
two-domain proteins. Depending on the dataset, CHOPnet was
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four to eight percentage points better than equal split for two-
domain proteins. The only more or less straightforward com-
parisons were those to DomSSEA as we tested on the same
dataset (in cross-validation mode, Methods) and to DGS (43)
as that was tested carefully on the same dataset by the Jones
group. Both DomSSEA and DGS clearly outperformed
CHOPnet in correctly identifying single-domain proteins as
such (Table 2). DomSSEA was slightly less accurate for multi-
domain proteins. In terms of correctly identifying the linker
region, DGS was outperformed by ‘equal split’; DomSSEA
performed at par with ‘equal split’, and CHOPnet about eight
percentage points better (Table 2). While we could read these
data to mean that all methods fail to consistently capture
important information, in reality the vast majority of domains
in entirely sequenced proteomes appear to extend over 70—130
residues (13,42). In other words, most domains have similar
lengths. Thus, ‘equal split’ is not really that uneducated a
guess as it might seem. In fact, CHOPnet is slightly closer
to the ‘best we can do automatically’ (PrISM assignments in
Figure 2A and B) than to ‘random splits’ (open triangles in
Figure 2). Note that the Jones group received their values for
DomSSEA and DGS under the explicit assumption that the
proteins contained two domains (exclusive alignment against
two-domain proteins). In contrast, we applied CHOPnet pre-
tending not to know the number and evaluated then. Itis unclear
how this difference would affect the performance of DomSSEA
and DGS; however, using the explicit knowledge of the number
of domains did not improve CHOPnet markedly.

Target selection in structural genomics needs predictions
of structural domains. The largest funding for structural geno-
mics worldwide originates from the Science & Technology
Agency in Japan and is concentrated at the RIKEN Structural
Genomics Initiative (RSGI) at the Institute of Physical and
Chemical Research (66). The second largest funding origin-
ates from the National Institute of General Medical Sciences
(NIGMYS) at the National Institute of Health (NIH) in the USA.
The NIGMS protein structure initiative (PSI) formulates as
one of the goals of structural genomics ‘to determine repre-
sentative structures from all protein families’ (67). The see-
mingly simple task for computational biology then is to cluster
all proteins into sequence—structure families, such that one
experimental structure per family optimally covers protein
space. The basic concepts to solve this task were laid out before
structural genomics started (68—74). Meanwhile structural
genomics has proven that we have to revise many of the initial
assumptions. For example, we cannot adequately realize the
concept of one representative structure per sequence—structure
family without dissecting proteins into structural domains
before we cluster into such families (42,75,76). Furthermore,
while about 3000 sequence—structure families allow the predic-
tion of 3D structure through comparative modelling for about
one-third of all residues in 62 entirely sequenced proteomes
(13,42,77), we need to experimentally determine representative
structures for almost 10 times more families to double this
coverage (J. Liu and B. Rost, unpublished data; C.A. Orengo,
unpublished data). Another surprising result is that consortia
have began running out of high-hanging fruits, in particular,
we have to begin chopping proteins into domain-like fragments
to further large-scale experimental efforts. Homology-based
methods alone will not suffice. Thus, we need de novo prediction

methods. The good news is that structural genomics efforts
will provide large-scale experimental means of refining such
methods by trial and error.

CONCLUSIONS

We introduced CHOPnet, a novel method for predicting
structural domain boundaries in the absence of homology to
structurally known domains. The good news is that CHOPnet
appeared superior to previously published methods and it was
significantly better than random by all measures that we inves-
tigated. For example, for ~50% of the two-domain proteins
that were correctly predicted as having two domains by
CHOPnet, the boundary predictions were within 20 residues
of the boundaries assigned by PrISM from the 3D structures
(Figure 2). The bad news is that CHOPnet correctly identified
only 41% of the two-domain proteins as such (Table 1), and for
only 21% of the two-domain proteins were both the number
and the location of the boundaries correct (Table 3). Undoubt-
edly, these numbers were rather low. However, no alternative
method appears available that performs significantly better. In
particular, the expert-curated solution to grouping proteins
into fragment-based families, Pfam-A bases its fragmentation
on functional rather than structural criteria. Previously, we
found that Pfam-A agrees in the number of domains assigned
with PrISM for ~41% of all proteins (48). This number is
similar to that for CHOPnet (Table 1). And even if Pfam-A
were more accurate in identifying structural domains, a con-
siderable fraction of putative targets for structural genomics
would remain untouched by Pfam-based fragment parsing.
The crucial question to be answered experimentally is to
which extent predictions from methods such as CHOPnet
will help advancing large-scale experimental efforts toward
structure determination. Structural genomics consortia will tell.
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