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Abstract

The CASP experiment is a biannual benchmark for assessing protein structure prediction methods. 

In CASP11, RBO Aleph ranked as one of the top-performing automated servers in the free 

modeling category. This category consists of targets for which structural templates are not easily 

retrievable. We analyze the performance of RBO Aleph and show that its success in CASP was a 

result of its ab initio structure prediction protocol. A detailed analysis of this protocol 

demonstrates that two components unique to our method greatly contributed to prediction quality: 

residue–residue contact prediction by EPC-map and contact–guided conformational space search 

by model-based search (MBS). Interestingly, our analysis also points to a possible fundamental 

problem in evaluating the performance of protein structure prediction methods: Improvements in 

components of the method do not necessarily lead to improvements of the entire method. This 

points to the fact that these components interact in ways that are poorly understood. This problem, 

if indeed true, represents a significant obstacle to community-wide progress.
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Introduction

In this paper, we report on the performance of RBO Aleph [1] in the free modeling category 

of CASP11 (held in 2014). CASP is a biannual experiment to evaluate the state of the art in 

the field of protein structure prediction. RBO Aleph ranked third among all automatic 

methods in the free modeling category. The focus of the free-modeling category are difficult 

protein targets for which homologous structures (templates) are hard to find with fold 

recognition methods or do not exist. Researchers often approach these difficult modeling 

targets with ab initio prediction methods that do not depend on such templates.

Ab initio protein structure prediction approaches assume that the native structure coincides 

with the global minimum of an energy landscape. Finding this minimum can be cast as a 

search problem. This search problem is extremely difficult, because the energy landscape is 
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rugged and the high-dimensional conformational space is far too large for exhaustive search. 

Hence, state-of-the-art ab initio prediction methods use information from structural 

fragments to reduce the dimensionality of the search space and guide the search towards 

relevant regions (Rosetta [2], I-Tasser [3], QUARK [4], MULTICOM [5], FRAGFOLD [6]). 

Since information is highly valuable to guide search towards the most promising regions of 

conformational space, many methods focus on exploiting information sources, such as 

contacts (EV-Fold [7]). Other approaches leverage information from search space samples 

themselves, by analyzing the distribution of candidate protein structures (decoys) (MBS [8], 

NEFILIM [9]).

RBO Aleph includes two unique features that extract information from previously sampled 

decoys: EPC-map and model-based search. EPC-map [10] predicts residue–residue contacts 

from decoy structures. It leverages physico-chemical information about native-like 

properties in local contact networks and combines it with evolutionary information. Model-

based search (MBS) [8] guides conformational space search by exploiting the funnel-like 

structure of the energy landscape. MBS builds a model of the energy landscape by analyzing 

the distribution of decoy structures. Our ab initio prediction protocol uses these two methods 

and employs ProSA [11] for decoy selection.

In our analysis of RBO Aleph, we compare our performance to other participating servers in 

the free-modeling category and investigate three above-average and three below-average 

predictions (measured by z-score) as examples of successes and failures of our method. Our 

analysis shows that our above-average predictions (z-scores > 0) originate from the RBO 

Aleph ab initio structure prediction protocol. To investigate which components of the ab 
initio contribute to our performance, we analyze conformational space search, predicted 

residue-residue contacts, and decoy selection.

Our analysis shows that MBS finds lower energy structures than Rosetta’s Monte-Carlo-

based conformational space search algorithm [2], which translates into better structure 

predictions (higher GDT TS) in nine of of 18 cases. We show that using residue–residue 

contacts in combination with MBS increases the sum z-score of RBO Aleph by 28.8%. This 

suggests that MBS effectively leverages contact information.

Since our contact prediction (EPC-map) is an important component in RBO Aleph, we 

compare it with other contact prediction methods. For contact prediction, EPC-map (RBO 

Aleph) ranks second for medium+long-range contacts (sequence separation > 11) and fifth 

for long-range contacts (sequence separation > 23).

Finally, we analyze the improvement of the final prediction outcome (GDT TS of resulting 

first and best of five models) of the individual ab initio components—residue-residue 

contacts, conformational space search, and decoy selection—in the context of the entire 

RBO Aleph pipeline. Our data suggests that the performance of the pipeline depends on the 

interactions and dependencies between the components. These suggest that an entire 

pipeline cannot be improved by improving its components independently. To counteract this 

effect, early integration and continuous testing seem to be key factors for the development of 

effective protein structure prediction pipelines.
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Methods

Pipeline Overview

Overview of RBO Aleph: RBO Aleph[1] is a protein structure prediction pipeline that 

includes template-based modeling, contact prediction, ab initio prediction, domain boundary 

prediction and domain assembly. Figure 1 provides an overview of the pipeline. First, we 

describe the pipeline and then discuss the ab initio components in detail.

Contact Prediction: We predict residue–residue contacts with EPC-map. Later in the 

pipeline, we use contacts to re-rank templates and to guide ab initio structure prediction (see 

section Contact Prediction by EPC-map for details).

Template Retrieval: We retrieve structural templates using the following threading 

methods: HHPred [12], LOMETS [13], RaptorX [14], and SPARKS-X [15]. Next, we re-

score the templates using a random forest classifier [16, 17]. The classifier is trained on 

features that capture the consensus between the templates, scores of the threading 

algorithms, and the match between the predicted contacts and templates. Last, we select the 

best non-overlapping templates.

Domain Boundary Prediction: We split the target sequence into domains using the 

template alignments. Template-covered domains are assigned to template-based modeling. 

Uncovered domains, longer than 50 residues are submitted to ab initio prediction. If ab initio 
domains are larger than 250 amino acids, we split them recursively with a consensus score 

from PPRODO [18] and DomPro [19].

Modeling: We model template-based domains with MODELLER [20] and any uncovered 

terminal segments with RosettaRemodel [21]. Ab initio domains are modeled using a 

contact-guided model-based search (MBS) [8] (see Section Ab Initio Modeling of RBO 

Aleph).

Decoy Selection and Error Prediction: We score template-based models with the DOPE 

energy function [22] and ab initio decoys using Rosetta energy [23], decoy clustering [24] 

and ProSA’s knowledge-based potential [11] (see Section Decoy Selection in Ab initio 
Structure Prediction). We estimate the prediction error along the backbone with ModFOLD 

[25].

Domain Assembly: We generate around 200 permutations out of the selected decoys from 

each domain for assembly. We assemble the domains using Rosetta’s domain assembly 

protocol [26]. Finally, we select the five top scoring predictions by Rosetta energy[23]. Note 

that in the case of single domain targets, RBO Aleph submits the highest scoring decoys 

based on the DOPE energy or ProSA (see above).

Ab Initio Modeling of RBO Aleph

Ab initio prediction searches the native structure in a rugged energy landscape. Because of 

its size, the conformational space cannot be searched exhaustively [27]. Hence, exploiting 

Mabrouk et al. Page 3

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knowledge about the search space is key to guide search towards regions likely to contain 

the native conformation. We exploit two information sources: First, we leverage knowledge 

about the physicochemical propensities in proteins to predict contacts. Second, we exploit 

knowledge about the funnel-like structure of the energy landscape to improve search.

In the following sections, we describe the three core components of RBO Aleph’s ab initio 
modeling pipeline: contact prediction by EPC-map, contact-guided model-based search 

(MBS), and decoy selection.

Contact Prediction by EPC-map—Residue–residue contact prediction identifies residue 

pairs that are close in space in the protein structure. Contacts can successfully guide the 

conformational space search if they are accurate enough [28].

Evolutionary algorithms identify co-evolution signals from multiple-sequence alignments to 

predict contacts, but require many homologous sequences [29, 30, 31]. However, proteins in 

the free-modeling (FM) category usually lack deep sequence alignments [32].

EPC-map [10] complements evolutionary information [33] with physicochemical 

information. While the evolutionary approach is accurate for proteins with deep alignments, 

the physicochemical approach can predict consistent contact maps, even for proteins without 

deep sequence alignments. This renders EPC-map an ideal contact prediction for FM targets.

EPC-map leverages physicochemical information encoded in the energy function: Low-

energy decoys often contain native-like contacts even if their overall fold is wrong. EPC-

map extracts local contact networks from low-energy decoy and encodes them with a graph. 

Graph-based features are used to differentiate native from non-native contacts using a 

trained support vector machine (SVM). EPC-map then combines the resulting contacts with 

the contacts predicted by GREMLIN [33].

RBO Aleph uses the contacts predicted by EPC-map to guide conformational space search 

towards biologically relevant regions (see Leveraging Contact Information to Guide Search).

Model-Based Search—Model-based search (MBS) [8] is a conformational search 

algorithm that actively guides search towards low-energy regions. MBS incrementally builds 

a model of the energy landscape, consisting of energy funnels derived from previously 

sampled decoys. MBS allocates the computational resources towards the most promising 

funnels, thereby guiding search towards low-energy regions.

The current implementation of MBS performs Monte-Carlo simulated annealing in six 

stages. The stages use different fragment libraries (9-mer fragments in the first five stages, 

and 3-mer fragments in stage six) and increasingly complex energy functions (similar to 

Rosetta’s ab initio protocol [2]).

In each stage, MBS performs the following steps: First, MBS clusters the sampled decoys 

into funnels with a heuristic clustering algorithm. Second, it refines the five lowest-energy 

conformations in each funnel with an all-atom energy function. Next, it scores each funnel 

using a minimization of the all-atom energy of the lowest energy decoy. Finally, MBS 
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discards half of the lowest-scoring funnels, then allocates the computational resources to the 

remaining funnels in accordance with their energy scores. Decoys from these funnels are 

then used as starting points to start new minimization runs, leading to the decoys used for 

the next stage of MBS.

In CASP11, we used MBS to sample different numbers of decoys for each target depending 

on the target size and the available computational resources at the time (see Table S2 for a 

detailed listing of the number of sampled decoys).

Leveraging Contact Information to Guide Search—RBO Aleph guides 

conformational search by leveraging contacts in the form of distance restraints. The contact 

restraints are incorporated into the energy function as additional terms, thereby reducing the 

ruggedness of the energy landscape. RBO Aleph uses the top scoring 1.5L contacts ranked 

by EPC-map to guide MBS, where L refers to the length of the target domain sequence.

FM targets in CASP are generally difficult, which results in a significant number of false-

positive contact predictions. In order for false positives not to negative affect structure 

prediction, we include the contact-based distances restraints into the energy function using a 

modified Lorentz potential. This potential does not penalize contact violations. Instead, it 

maximizes the number of satisfied contacts while allowing some constraints to remain 

violated without penalty [10]:

where di j denotes the distance between residues i and j in the decoy; the parameters l, u, and 

w refer to lower bound, upper bound, and half width, respectively. ci j is the weight for the 

contact between residues i and j and controls the maximum energy that the algorithm 

rewards to a satisfied contact. In CASP11, RBO Aleph used l = 1.5 Å, u = 8 Å and w = 1.0. 

We use a uniform contact weight of ci j =1.5 for all 1.5L contacts. Satisfied restraints get full 

reward, mildly violated ones still get small energy bonus, while strongly violated ones do 

not affect the energy. We use the same parameters (including the Lorentz potential) when 

using contacts with Rosetta in our analysis in this paper.

Decoy Selection in Ab initio Structure Prediction—During CASP11 we changed 

our decoy selection method from Rosetta energy [23] to decoy clustering [24], and finally to 

ProSA’s quality score [11]. The ProSA score was used for most of the CASP11 experiment. 

We compare the effect of all three decoy selection methods on our pipeline in this paper. We 

briefly describe herein the different methods.

ProSA is a knowledge-based potential used to assess the quality of structural models. ProSA 

uses statistics of the structures in the Protein Data bank (PDB) to identify errors in structural 

models. The Rosetta energy function is a physical/knowledge-based hybrid composite 
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potential. Decoy clustering is a decoy selection technique based on the assumption that 

highly populated low-energy regions are more likely to contain near-native folds than small 

ones [34]. In our pipeline, we use the decoy clustering method Durandal [24] to group 

decoys by structural similarity. We then select the lowest-energy decoys (using Rosetta 

Energy) from the three largest clusters.

Data set

Our analysis is based on domains which a) have a native structure available at the time of 

writing this manuscript, and b) were modeled with the ab initio prediction protocol of RBO 

Aleph in CASP11. Since the focus of our paper is the analysis of our ab initio structure 

prediction protocol, we exclude from consideration the seven free-modeling (FM) domains 

that were modeled by RBO Aleph’s comparative modeling protocol. Furthermore, we 

excluded target T0831 from our analysis, because we did not submit a prediction for this 

target in CASP11. This results in 17 target proteins, split into 18 DIFadd FM domains 

according to RBO Aleph’s definition of domains and split into 20 FM domains according to 

the official CASP11 domain definition (see Table S1 in Supporting Information).

We use the 18 RBO Aleph assigned domains when analyzing the decoy sets predicted by 

MBS (Section Evaluation of Conformational Search with Model-Based Search) and the 

effect of contacts on the decoy ensembles (Section Impact of Predicted Contacts on ab initio 
Predictions). We use the official CASP11 FM domains when analyzing the final predictions 

of the full pipeline and in the analyses presented in Sections Performance of Contact 

Prediction in CASP11 and Evaluation of the Dependencies between Prediction Components 

of RBO Aleph.

Results and Discussion

We now present the outcome of our analysis of RBO Aleph [1]. We first compare our 

predictions to the participating servers in CASP11. Then, we select a set of six 

representative targets that led to above-average and below-average predictions. We discuss 

these targets because they highlight the successes and challenges of our ab initio protocol. 

Next, we analyze the ab initio methods unique to our pipeline: conformational search by 

model-based search (MBS)) [8] and contact prediction by EPC-map [10]. We analyze the 

performance of the conformational search strategy implemented in MBS [8] and compare it 

to state-of-the-art methods. Then, we analyze the performance of contact prediction by EPC-

map [10] and its impact on our performance in structure prediction. Last, we analyze the 

interrelation between the components of the pipeline (conformational search, use of 

contacts, decoy selection) by comparing different pipeline configurations.

RBO Aleph’s Performance in CASP11

RBO Aleph ranked third among all automated CASP11 methods in the free-modeling 

category (as ranked by the assessor’s formula by the GDT TS z-scores criterion, computed 

on first submitted model, called model1 below). Figure 2A compares the performance of 

RBO Aleph to the other participating servers. We compare the quality (GDT TS) of model1 

submissions by RBO Aleph to 1) the best submitted model1 2) median GDT TS of model1 
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submissions by the top 5 servers (excluding RBO Aleph) 3) median GDT TS of all model1 

submissions. To study the effect of contacts on our predictions, we rerun our pipeline 

without the use of contacts and perform the same comparison as for RBO Aleph (Figure 2B, 

refer to Table S6 in the Supplementary Information for a complete list of targets and GDT 

TS values).

Our server consistently provides above-average predictions for the majority of the targets: 

twenty out of the 27 domains modeled by our server (See section Data set) had positive z-

scores. We modeled 20 out of the 27 domains using ab initio modeling; the rest has been 

modeled using template-based modeling. Strikingly, 18 of the ab initio modeled domains 

had positive z-scores. In contrast, only two of the seven domains modeled with template-

based modeling obtained positive z-scores (see Figure S1 in Supporting Information). This 

indicates that the success of our server in the free modeling category is grounded on its ab 
initio pipeline, hence we limit the analysis in this paper to targets modeled using ab initio.

We compare in Figure 2A the performance of RBO Aleph to the performance of other 

servers. The accuracy of our model1 predictions (GDT TS) is higher than the median GDT 

TS of all model1 submissions for 20 out of 27 domains, whereas it is higher than the median 

GDT TS of top five servers model1 submissions for eleven domains. Despite consistently 

providing above-average predictions, we only predict the best model1 for three domains. We 

discuss one of these targets (T0834 D1) in detail in the next section.

A unique feature of RBO Aleph is the use of contacts predicted by EPC-map in ab initio 
prediction (see Section Contact Prediction by EPC-map). We compare our prediction with 

and without the use of contacts to the other servers (Figure 2). Using contacts improves the 

prediction slightly, increasing the sum of GDT TS of all model1 submissions by 21 points. 

The use of predicted contacts increases the number of targets for which we rank first from 

one to three. Nevertheless, we note that even without using contacts, our pipeline performs 

considerably well compared to the top five predictors: higher GDT TS of model1 

submissions than the median GDT TS of top five servers in eleven out of 27 cases. We 

hypothesize that the reason behind this performance lies in our conformational search 

algorithm Model-Based Search (MBS). We analyze this further in Sections Evaluation of 

Conformational Search with Model-Based Search and Evaluation of the Dependencies 

between Prediction Components of RBO Aleph.

To summarize, Figure 2 gives an overview on the strong performance of our pipeline in 

CASP11 and offer two preliminary insights: i) contacts predicted by EPC-map improves 

slightly the ab initio prediction of our pipeline ii) our conformational search algorithm MBS 

plays an important role in our performance in CASP11. In the remainder of this paper, we 

analyze the effect of residue-residue contacts, conformational search, and decoy selection on 

our performance and probe the interrelation between them.

Evaluation of Selected Free Modeling Targets

In the following section, we describe and discuss the prediction of targets that highlight the 

achievements and problems of our protein structure prediction pipeline. We select a set of 

six representative targets that led to above-average and below-average predictions (Colored 
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in red and blue respectively in Figure 2). We compare our predictions to other server 

submissions in CASP11 and analyze the effect of decoy sampling (MBS), contact prediction 

(EPC-Map) and decoy selection (ProSA) on the overall prediction quality. We focus our 

analysis on these components because they are the main components of our ab inito 
prediction protocol and, in the case of MBS and EPC-map, are the unique features of our 

pipeline.

High quality predictions—We analyze three targets for which RBO Aleph produced 

models with high GDT TS and z-score, compared to the other servers (Figure 3).

T0834 D1: T0834 is a two-domain target with the non-sequential domain T0834 D1. RBO 

Aleph incorrectly modeled the full-length target as a single domain. Nevertheless, our 

algorithm accurately predicted the first half of the first domain containing three helices and a 

beta-sheet motif. The GDT TS score of the submitted model1 is 37.9. Our five submissions 

rank at positions 1–3 and 5–6. Overall, all ab initio components (decoy sampling, contact 

prediction, and decoy selection) performed well for this target. The sampled decoy set had a 

median GDT TS of 30.2, which is higher than the GDT TS of model1 of all other servers 

except for RaptorX-FM (GDT TS: 32.07). The contact prediction accuracy of 45% for L/5 

long+median range contacts only improved the quality of the best decoys (median GDT TS 

without/with contacts: 31.6/30.2; median GDT TS without/with contacts of top 20% decoys: 

34.6/38.1). All five submitted models have higher GDT TS values than the median GDT TS 

of the decoy set indicating that the decoy selection was successful. In this example the high 

performance of the individual components results in a high quality prediction despite the 

incorrect domain parsing.

T0837 D1: RBO Aleph has predicted the fourth best model1 for the single domain target 

T0837 D1 (GDT TS: 39.7). The gap between the best submitted model (QUARK, GDT TS: 

65.7) and the second best submitted model (RaptorX-FM, GDT TS: 45.45) is high (~20 

GDT TS values). The top 20% submissions were able to identify and model the seven 

helices of the target. However, the winning model (QUARK, model1) has the best 

arrangement and packing of these helices. The median GDT TS of RBO Aleph’s decoy set 

(GDT TS: 43.6) is higher than the overall performance of the other servers (median GDT 

TS: 24.8, median GDT TS of the top 20% submissions: 40.2). The best decoy in our decoy 

set (GDT TS: 64.9) is of similar quality to the best submission for this target (QUARK, 

GDT TS: 65.7). In addition, the high accuracy of predicted long+medium range contacts 

(91.7) improved the quality of the decoy set (median GDT TS without/with contacts: 

39.1/40.6). Among the five submitted models of RBO Aleph, only model5 has an higher 

GDT TS value than the median GDT TS of the decoy set. This means that the decoy 

selection method was not able to produce models with higher quality than expected by a 

random selection. To summarize, the quality of the sampled decoys together with the 

accuracy of predicted contacts produced a high quality decoy set that helped to compensate 

the low performance of decoy selection for this target.

T0855 D1: Model1 for the single domain target T0855 D1 has an GDT TS score of 38.9 and 

is ranked seventh among the servers. Contact prediction performed well (L/5 long+medium 
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range contact accuracy 91.3%) but did not have a positive effect on the quality of the decoys 

set (median GDT TS without/with contacts: 37.4/36.3). However, using contacts slightly 

improved the quality of the top 20% decoys (median GDT TS without/with contacts: 

41.0/41.7). The performance of the decoy sampling was of medium quality; the median 

GDT TS of decoy set (36.3) is higher than the median GDT TS of all servers (23.0). 

Selected decoys have higher GDT TS than the median GDT TS of the predicted decoy 

ensemble (median GDT TS of the five submitted models/decoy ensemble: 37.83/36.3), 

however no model from the top 20% sampled decoys was submitted. The GDT TS of our 

model1 (GDT TS: 38.91) is 10 units lower than the best submitted model1 (MULTICOM-

NOVEL, GDT TS: 51.09). To conclude, contact prediction had a high performance but 

decoy sampling and selection only showed a medium performance.

Low quality predictions—We analyzed three targets for which RBO Aleph yields 

models with low GDT TS and z-score in comparison to the other servers (see Figure 4).

T0761 D2: T0761 D2 is part of a target consisting of two free modeling domains (see Table 

S1 in Supplementary Information) which we modeled as a single ab initio domain. Our 

pipeline predicts a badly packed structure for T0761 D2. Overall, none of the components of 

the ab initio protocol had a high performance for this target. The predicted long-range 

contacts have a low accuracy (13.04%). The predicted decoy ensemble is of a higher quality 

(median GDT TS: 24.5) than the median of server submissions (median GDT TS: 21.9) but 

worse than the median submissions by the top 20% predictors (median GDT TS: 26.3). The 

selected decoys have lower GDT TS than the median GDT TS of the predicted decoy 

ensemble (model1 GDT TS 23.7 / median GDT TS decoy ensemble 24.5). The two best 

servers for model1 predictions for this target (SAM-T08-server (29.65), ZHOU-SPARKS-X 

(GDT TS: 28.98) are template-based prediction methods. Furthermore, the server with the 

best submission for this target used templates to model the structure (BAKER-

ROSETTASERVER, GDT TS: 38.27, model4). This might suggests that modeling this target 

using TBM might have improved our predictions.

T0824 D1: Contact prediction (L/5 long+medium range contact accuracy: 9.1), decoy 

sampling and decoy selection for the single-domain target T0824 D1 performed poorly 

resulting in a model that is not able to capture the beta-sheet arrangement of the native 

structure. The median GDT TS of the decoy set is 23.8 and hence slightly higher than the 

median GDT TS of the server predictions (22.6) but worse than the median of the 20% best 

server submissions for model1 (27.6). Decoy selection was not able to select a decoy among 

the 20% best decoys, but selected a decoy as model1 that is better than the median of the 

decoy set. One reason for the bad performance is the wrong predicted helix on position 65 to 

71 and the missing beta-sheet motif in the core of the structure. Overall, the submissions for 

this target are of medium quality and the best server submission has a GDT TS value of 33.0 

(MULTICOM-CONSTRUCT).

T0834 D2: T0834 is a two domain protein target with a non-sequential domain T0834 D1. 

RBO Aleph incorrectly modeled the full-length target as one single domain. While RBO 

Aleph predicted part of the first domain (T0834 D1) with high quality (see above), the 
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prediction quality (model1) for target T0834 D2 is low. For this target the decoy selection 

performed badly. Although the accuracy of the long range contact prediction was high (long 

range accuracy: 29.4) and decoy sampling produced a high quality decoy set (median GDT 

TS of decoy set 31.1), the submitted decoys had far worse quality (median GDT TS of 

submitted decoys: 30.5; GDT TS of model1: 27.0) than expected by chance (median GDT 

TS of decoy set 31.1). Overall, the median GDT TS of the decoy set is higher than the 

median GDT TS of the top 20% predictors for this target (30.8). To sum up, contact 

prediction and decoy sampling performed well, but decoy selection submitted models with 

worse quality than expected by chance.

Summary of single targets analysis—Analyzing the target predictions separately 

provides some insight that might explain the performance of our server. However, the 

pipeline’s complexity and the interplay of its components makes any conclusion uncertain. 

With this in mind, we summarize here our observations from this analysis. In the remainder 

of the paper, we test in more details some of the arising hypothesis.

Our main observation is that the most contributing factor for the success of a prediction is 

the quality of the sampled decoy set. This in turn is determined by the method used for 

conformational search and the quality of the guiding contacts. However, to our best 

knowledge, it is still unclear which properties makes contacts useful in structural prediction; 

accuracy alone is not a indicator for the effect of distance constraints on ab initio prediction 

performance [35].

Secondly, we observe that decoy selection can be decisive for the success of a prediction. 

The case of T0834 D2 provides a very good demonstration of its effect: we predicted 

accurate contacts and sampled decoys of good quality (relative to the median GDT TS of 

other servers submissions), yet decoy selection failed by selecting models with lower GDT 

TS than the median GDT TS of sampled decoys.

In the remainder of the paper, we analyze thoroughly the prediction components we have 

discussed here. First, we analyze the properties of our conformational search method MBS 

and compare it to the widely used Monte Carlo search. Then, we attempt to measure the 

effect of predicted residue-residue contacts on our prediction. Last, we analyze the effects of 

the different components on a pipeline level and investigate their interrelation.

Evaluation of Conformational Search with Model-Based Search

Model-Based Search (MBS) is a conformational space search algorithm used in our ab initio 
prediction protocol. MBS’s approach leverages information accumulated during search 

about the energy landscape. The accumulated information is used to steer search towards 

low-energy regions. The algorithm incrementally builds a model of the energy landscape 

using the sampled decoys. This model groups decoys into energy funnels and uses them to 

guide search towards low-energy regions. For method details please refer to section Model-

Based Search.

RBO Aleph’s ab initio prediction protocol uses predicted contacts to guide the 

conformational search in MBS. In this section, we attempt to analyze the performance of our 
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conformational search in isolation, therefore, we evaluate the performance of MBS without 

the use of contacts.

In CASP11, we used MBS to predict decoy ensembles with sizes ranging from 1000 to 5000 

decoys depending on the target length and the available computational resources (see Table 

S2 for a detailed list). We used ProSA to select five models for final submissions. We 

evaluate in this section both the quality of the decoy ensembles predicted by MBS and the 

quality of the final predictions selected by ProSA.

Evaluation of MBS’s Search Strategy—We evaluate here the performance of the 

conformational search strategy of MBS by analyzing the quality of the predicted decoy 

ensembles. Ideally, we would like to compare the decoys predicted by MBS with the decoy 

ensembles from all other servers. Unfortunately, we do not have access to the predicted 

decoy ensembles for other servers. Therefore, we evaluate our conformational search 

strategy by comparing it to the Monte Carlo (MC) strategy, as implemented in Rosetta 3.4. 

Please note that the predictions by Rosetta 3.4 are different to the BAKER-

ROSETTASERVER, which uses a more sophisticated protocol. We evaluate next predictions 

made with MBS and Rosetta (both without use of contacts) and use the same parameters 

when running both methods: The same energy function, fragment library, and a 

corresponding amount of computational resources (see Table S2 for a detailed list of number 

of generated decoys). By using the same parameters, we ensure that the two methods only 

differ in their conformational search strategies.

We compare the performance of MBS and Rosetta to sample decoys in terms of 1) the 

median energy and GDT TS of the decoy set, 2) the median of the 10% lowest-energy 

decoys, and 3) the highest GDT TS value in the decoy sets. Our aim is to determine if the 

MBS search strategy succeeds in producing lower energy decoys than Rosetta, and if the 

MBS search strategy succeeds in producing more accurate decoy ensembles than Rosetta 

(measured in mean GDT TS and best GDT TS in predicted decoys).

Figure 5 compares the median GDT TS and energies of decoy sets predicted by both 

methods (See Figure S4 for a detailed plot for all targets decoy sets). MBS finds lower-

energy decoys for all domains. The median energy difference over all ensembles between 

both methods is −35 Rosetta energy units. These findings indicate that MBS successfully 

allocates resources towards low-energy regions and effectively minimizes the energy.

We investigate whether the reduced energy translates into decoys with higher GDT TS. We 

find that, with the exception of five targets, MBS decoy sets have higher median GDT TS 

than Rosettas Monte Carlo-based search. Over all decoys, MBS produces predictions with 

median GDT TS that is slightly higher than Rosetta’s Monte Carlo-based search (0.565 

median GDT TS difference). These results show that MBS predicts decoy ensembles that 

have higher median GDT TS and lower median energy than Rosetta. However, this does not 

mean that MBS is a better search strategy than Rosetta: usually, only the lowest-energy 

decoys are considered for final model submissions. Therefore, we compare next the 

performance of the two methods on the lowest-energy decoys.
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We analyze the GDT TS and the energy of the 10% lowest-energy decoys (See Figure S2 for 

a comparison of GDT TS for different energy thresholds). We find that for half of the 

domains (9/18), MBS produces low-energy decoys with better median GDT TS values than 

Rosetta. The median GDT TS of MBS and Rosetta are virtually identical (median difference 

between GDT TS: 0.035). This is in contrast to the analysis of the decoy ensembles which 

showed that MBS finds better decoys. We compare the best decoys (highest GDT TS) 

predicted for each target (without regard to energy). We find that Rosetta predicts at least 

one decoy with better or similar GDT TS than MBS for all targets. On the other hand, we 

find that for 17 out of 18 domains, MBS finds at least one decoy with lower energy than 

Rosetta.

These results show that MBS predicts decoy sets with lower energy and higher GDT TS in 

median than Rosetta. However, when considering the top 10% lowest energy decoys, both 

method performs similarly in terms of GDT TS. These results suggest that there might be a 

discrepancy between the energy function and the quality of the decoys: finding lower energy 

decoys does not always translate into finding decoys with a higher GDT TS. We believe that 

the reason for this behavior lies in the exploitative strategy employed by the algorithm: MBS 

focuses search on only a small number of regions of the conformational space. We 

hypothesize that the addition of new information sources, for instance residue-residue 

contacts could help steer search from non-native low-energy regions and thereby improve 

prediction. We evaluate the effect of contacts in section Impact of Predicted Contacts on ab 
initio Predictions

Impact of Model-Based Search on Final Predictions—The results from the last 

section show that MBS succeeds in predicting decoys ensembles with similar quality to 

Rosetta, one of the state-of-the-art methods for ab initio prediction. We evaluate here the 

models selected by ProSA (without use of contacts) and compare them to other servers in 

CASP11. We find that the sum of GDT TS z-scores for model1 decreases from 29.5 (with 

contacts) to 22.9 (without contacts) but this does not impact the ranking of our server. We 

explain this by the large difference between the z-score of our server and the preceding 

(Zhang-server, sum of z-scores: 37.9) and the following server (MULTICOM-CLUSTER, 

sum of z-scores: 20.9) in the ranking. These results confirm that the conformational search 

strategy of MBS performs comparably to other state-of-the-art prediction methods in the 

field.

Evaluation of Contact Prediction with EPC-map

Predicted residue-residue contacts by EPC-map are an integral component of RBO Aleph. 

RBO Aleph uses contacts in two ways: 1) The match between contacts and templates is used 

as a feature in template selection; 2) The resulting distance constraints are used to direct 

conformational search in ab initio prediction. In this section, we analyze the results of our 

contact prediction and its impact on ab initio structure prediction with model-based search 

(MBS).

Performance of Contact Prediction in CASP11—Figure 6 shows a detailed analysis 

of contact prediction by RBO Aleph in CASP11, which is performed with EPC-map [10]. 
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The analysis in this section is based on official data from CASP11 (data taken from http://

www.prediction-center.org/). Thus, we report here the L/5 ( L is the length of the domain) 

contact prediction performance on all free-modeling domains that were processed by RBO 

Aleph.

First, we compare contact prediction accuracy by RBO Aleph with the leading methods that 

participated in CASP11. In this analysis, we compare RBO Aleph with CONSIP2 (the best 

contact prediction method in CASP11), and with the mean accuracy obtained by the other 

top five groups excluding RBO Aleph (see Figure 6A). Since we only include free-modeling 

targets that have been submitted by RBO Aleph and the compared method, the averages 

might slightly differ from the results on the CASP11 website.

Overall, the average contact prediction accuracy of RBO Aleph for medium+long range 

contacts (sequence separation >11 amino acids) is 43.2% for the L/5 top scoring contacts (39 

evaluated domains). RBO Aleph’s medium+long range contact prediction accuracy is 

comparable with CONSIP2 (mean accuracy 43.0% for 39 evaluated domains) and higher 

than the mean medium+long contact prediction accuracy of the top 5 methods (37.3%). On 

the other hand, RBO Aleph’s long-range contacts are much less accurate than the contacts 

from CONSIP2 and lower than the mean contact accuracy of the top 5 methods (mean 

accuracy 13.7/25.5/18.8 for RBO Aleph/CONSIP2/mean top 5 group performance).

Next, we analyze the performance of RBO Aleph, compared with all other groups in 

CASP11. This is quantified by per-target z-scores. Intuitively, a positive z-score indicates 

that RBO Aleph performed better in contact prediction than the average CASP11 predictor. 

Figure 6B shows the z-scores for all target domains. Tables S4 and S5 show accuracy, Xd 

values, and z-scores for each target domain. RBO Aleph reaches positive z-scores for 17/36 

domains (47.2%) for long-range contacts and 34/39 (87.1%) for medium+long-range 

contacts.

We analyze the correlation between RBO Aleph’s contact prediction performance and RBO 

Aleph’s ab initio structure prediction performance (see Figure 6C). Contact prediction and 

tertiary structure prediction z-scores correlate moderately (pearson/spearman rank 

correlation coefficients are 0.51/0.47 and 0.45/0.48, for long and long-medium range 

contacts, respectively). This indicates that EPC-map contacts contribute, at least partially, to 

RBO-Aleph’s tertiary structure prediction performance of CASP11 free-modeling targets.

Overall, RBO Aleph ranks 5th for long-range contacts and 2nd for medium+long range 

contacts in CASP11 (Figure 6D).

In summary, medium+long range contacts from RBO Aleph are comparable in accuracy 

with the top groups in CASP11. Long range contacts are less accurate than from the best 

CASP11 groups, but we find a moderate correlation between long-range contact z-score and 

tertiary structure prediction z-score, which indicates some contribution of EPC-map to the 

free-modeling performance of RBO Aleph.

Impact of Predicted Contacts on ab initio Predictions—In this section, we evaluate 

whether EPC-map contacts improve tertiary structure prediction. We evaluate first the 
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impact of incorporating contacts on the median GDT TS of the predicted decoy ensembles. 

Second, we evaluate the effect of contacts on the final predictions submitted by the pipeline.

RBO Aleph uses contact information from EPC-map to guide MBS runs. In contrast to 

evolutionary contact prediction methods, EPC-map is specifically designed to have low 

dependency on available homologous sequences [10]. We suspect that this could provide an 

advantage in the context of CASP since deep alignments are often not available for hard 

CASP targets [36].

To assess the influence of contact prediction on ab initio structure prediction, we rerun 

structure prediction with MBS, albeit without EPC-map contacts. We implement EPC-map 

contacts in MBS as described in section Leveraging Contact Information to Guide Search.

The results of this analysis are summarized in Figure 7. Overall, the impact of contact 

information on the decoy quality is modest (median GDT TS improvement by 0.45). The 

improvement is more pronounced in the 10% low-energy ensemble (median GDT TS 

improvement of 1.07). Refer to Figure S3 in Supporting Information for detailed energy-

GDT TS scatter plots.

One remarkable example of contact-guided search is T0837 for which the median GDT TS 

improves by 4.55 (3.94 for low-energy ensemble). We also have precise contacts for T0806 

but this did not result in pronounced sampling improvements (median GDT TS 

improvement: 1.27), presumably due to the size (256 residues) and the complex topology of 

the target. We could not identify the reasons why low contact precision decreases decoy 

quality in some cases (T0761), while improving the decoy quality in other cases (T0777 and 

T0832 D1). We analyze next the effect of the contacts on the submitted predictions to 

CASP11. We find that incorporating contacts into MBS increases the sum GDT TS of the 

model1 submissions by 21. This result in an increase of the GDT TS z-score of RBO Aleph 

from 22.9 to 29.5 (relative increase by 28.8%, absolute increase by 6.6%). However, the 

increase in z-score do not result in change of ranking in the FM-category.

To summarize, these results shows that contacts improves decoy sampling, however this 

effect is weak when averaged over all targets. Still, a small number of targets seems to 

benefit significantly from predicted contacts. Most importantly, the small correlation 

between the z-scores of contact and protein structure prediction (Figure 6C) seems to imply 

that contacts may provide an edge over other groups. Consequently, contacts may be most 

important in the context of CASP which rewards the relative and not the absolute 

performance in prediction.

Impact of Domain Boundary Prediction

Our pipeline predicts domain boundaries using an algorithm based on template alignments 

and a consensus of state-of-the art prediction methods (see Domain Boundary Prediction). In 

the course of CASP11, we only split three free modeling targets into multiple domains. In 

comparison, the official assignments counts seven free modeling targets containing multiple 

domains (see Table S1 in Supporting Information). We predicted accurate domain 

boundaries (within 40 residues from the official assignment) for only two of these: T0794 
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and T0808. The model1 prediction for these domains ranked fourth and seventh respectively. 

We modeled the remnant five multi-domain targets as single-domain targets. Despite the 

incorrect domain parsing, our predictions had positive z-scores (GDT TS) for all but one 

(T0834 D2) of these FM-domains (see Table S1 and Figure S1 in Supplementary 

Information). In summary, domain boundary prediction has been used scarcely in our 

predictions, we believe this suggests it has only played a minor role in our performance in 

CASP11.

Evaluation of the Dependencies between Prediction Components of RBO 

Aleph

The analysis of individual pipeline components (conformational search, contact prediction, 

decoy selection, etc) in separation is necessary to understand their potential of improving the 

outcome of prediction. But does a ”better” individual component always translate into an 

improved pipeline? Or do pipeline components interact in unexpected ways with each other?

We set out to investigate the interaction between individual components and quantify their 

net effect on the prediction quality of the final pipeline. We measure the pipeline quality by 

the GDT TS of the first or best-of-five selected models. In this analysis, we rerun all 

predictions using the different pipeline configurations and assess the changes in prediction 

quality. In particular, we are interested in the following three questions: What is the effect of 

contact restraints on performance? Does MBS search improve performance? Which decoy 

selection method is the best?

Recall that RBO Aleph uses the following component combination: Contact restraints from 

EPC-map, MBS as a search method, and ProSA for decoy selection. We compare all 

combination of pipelines made of the following con-figurations: Contacts/no contacts, MBS/

Monte Carlo (Rosetta 3.4) as search methods and ProSA/Clustering/Rosetta Energy for 

decoy selection. We note here that we use the same paramters for the use of contacts in 

Rosetta (see Leveraging Contact Information to Guide Search for more details).

We start our analysis by running a head-to-head bootstrap analysis to compare the different 

configurations. This analysis provides robust comparisons between the different 

configuration pairs. Then, we inspect how the different configurations would have ranked in 

CASP11. Lastly, we discuss how the different components interrelate, what is their effect on 

the pipeline, and what lessons we learned.

How Do the Different Pipeline Configurations Compare to Each Other?

On a sufficiently large set of proteins, it would suffice to simply compare the outcome (sum 

of GDT TS, mean GDT TS and median GDT TS) of different pipeline combinations. 

However, since we have a small data set of few free-modeling domains (20 official CASP11 

domains, see Section Data set), the results could strongly depend on the used data set. To 

mitigate the effect of small data set size, we compare the different configurations by a head-

to-head bootstrap analysis. In this analysis, we randomly remove five target domains for a 

pair of pipeline configurations and note which configuration has a higher mean GDT TS 

over the modified target set. This process is repeated 1000 times. The fraction of ”wins” 

Mabrouk et al. Page 15

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicates the relative performance of a configuration over another. This analysis reduces the 

effect of small data set size by sampling different data set compositions.

The results of the head-to-head bootstrap analysis are shown in Figure 8B. The target based 

performance of each pipeline relative to RBO Aleph is shown in Figure 8A.

The head-to-head comparison indicates that RBO Aleph is an effective pipeline that is only 

slightly outperformed by No Contacts/Rosetta/ProSA (RBO Aleph fraction of wins: 0.36) 

and No Contacts/Rosetta/Clustering (RBO Aleph fraction of wins: 0.25). Notably, RBO 

Aleph is more effective than any configuration using contacts. However, we find that 

differences in performance are generally small. The worst performing contact-guided 

combination is Rosetta with ProSA for decoy selection, with a sum/mean/median ΔGDT TS 

of −14.7/−0.7/−1.3, relative to RBO Aleph (Figure 8A).

We also compare RBO Aleph to pipeline variants without contact restraints. Contact 

restraints improve the quality of the first models that result from MBS search (for example, 

sum/mean/median ΔGDT TS of −21.2/−1.1/−1.8 for MBS with ProSA). We also find that 

Rosetta without contacts and either ProSA (sum/mean/median ΔGDT TS of 2.3/0.1/−0.3) or 

Clustering (sum/mean/median GDT TS of 8.4/0.4/−0.1) as a decoy selection method 

perform slightly better than the RBO Aleph configuration. However, Rosetta does not 

perform better if Rosetta Energy is used to select decoys.

How Would Have the Different Pipelines Ranked in CASP11?

After comparing the performance of different pipeline compositions, we investigate whether 

different configurations would have changed our rank in CASP11. We perform a rank 

stability analysis to measure the robustness of a particular pipeline composition on the final 

CASP11 ranking. In this analysis, we randomly remove five target domains and compute the 

resulting rank. We rank the servers by the sum of z-scores (based on GDT TS) of the first 

submitted model (model 1). We repeat this process 1000 times. We also include the 

submitted models of FM targets that RBO Aleph modeled by template-based modeling, but 

should have been modeled by ab initio modeling. This results in 27 analyzed, official target 

domains.

Table 1 summarizes the results of this analysis. Most component combinations do not impact 

the rank of RBO Aleph. All configurations with a lower rank involve not using contacts. 

These include i) all configurations based on MBS without contact restraints (mean rank 3.5–

6.0) and ii) the configuration Rosetta no contacts and decoy selection using the Rosetta 

energy (mean rank 3.8). This result indicates again that the predicted contacts by EPC-map 

are helpful.

Across all other method combinations, the rank of RBO Aleph is remarkably stable. This 

might be explained by the relatively high z-score difference between RBO Aleph (sum z-

score: 29.5) and the next higher ranked server (Zhang-Server[37] sum z-score: 37.9), and the 

next lower ranked server (MULTICOM-CLUSTER[38], sum z-score: 20.9).

We repeat the analysis with the best out of five models (see Table S3 in Supporting 

Information). In this case, Rosetta with contact restraints and ProSA is the winning 
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component combination (mean rank 5.0). We attribute this finding to Rosetta’s exploratory 

sampling strategy that infrequently produces higher GDT TS decoys that are then selected 

by decoy selection. In this analysis too, using contact restraints improve the ranking of the 

pipelines: The best combination using contacts ranks 5.0 while the best configuration not 

using contacts only ranks 5.5 (mean rank over 1000 trials).

Discussion of Pipeline-Level Analysis

Overall, the rank of RBO Aleph remains remarkably stable along the investigated 

dimensions: Contact restraints, search methods, and decoy selection. Certainly, there are 

more components in RBO Aleph that might have contributed to our CASP11 rank, such as 

domain boundary prediction and assembly, decision whether or not to model a protein with 

ab initio methods, secondary structure prediction, and fragment selection for ab initio 
structure prediction. It is beyond the scope of this paper to analyze all of these elements.

We discuss in this section the three main findings on the interaction of the components on 

the pipeline level. Please recall that this analysis is based on 20 official CASP11 free-

modeling domains (because not all structures where available to us at the time of the 

analysis), which is about half of the domains that have been officially evaluated in CASP11. 

Therefore, our findings might not hold for the entire CASP11 free-modeling experiment and 

do not perfectly explain the performance of RBO Aleph. Nevertheless, this analysis 

represents our best effort to understand the intricacies of structure prediction pipelines. 

However, our results are at least true for the analyzed data set and our findings might be 

similar when other target sets are investigated.

RBO Aleph leverages contacts effectively—We find that contact restraints clearly 

improves the performance when MBS is used as a search method (Figure 8). A possible 

explanation is that contact restraints complement the search strategy of MBS.

Recall that MBS leverages observations from the energy landscape to steer search towards 

promising regions. Briefly, MBS leverages sampled decoys to build a model of the energy 

landscape, then directs the search towards the most promising regions in that model (see 

Model-Based Search). This strategy succeeds in finding lower energy decoys (see Figure 5) 

but can lead to poor results when we exploit inaccurate information. In this case, MBS ends 

up steering the search towards the wrong regions of the space. As a result, despite having 

low energy, the accuracy of the predicted models will be low. This might be especially true 

for difficult modeling targets in CASP, where search might easily mislead by local minima 

or errors in the energy function. EPC-map contacts include additional information about the 

native state and guide MBS towards regions containing native-like conformations. Thus, 

contact restraints effectively counteract the weakness of MBS to overly exploit information 

from the energy landscape. Contact information effectively smooths the energy landscape 

and in this more ”funnel-like” energy landscape, the MBS search heuristic performs much 

better. Since MBS seems to effectively leverage contact restraints effectively, it might 

particularly benefit from future improvements in contact prediction.

Pipeline Analysis Reveals Other Effective Component Configurations—The 

pipeline analysis reveals configurations that are as effective or slightly better than RBO 
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Aleph. In particular, we find that Monte Carlo sampling (implemented in Rosetta) without 

contacts and ProSA/Clustering for decoy selection performs slightly better than MBS. We 

note here that the difference in performance is minimal and does not affect the rank of the 

pipeline in CASP11.

We suspect that the exploratory sampling used in Rosetta’s Monte Carlo search, coupled 

with effective decoy selection, provide an advantage in the CASP context: Free-modeling 

targets in CASP are very difficult modeling cases. For these targets, MBS might not identify 

the correct funnels and therefore can not correctly guide conformational search. In addition, 

the accuracy of contact prediction for CASP targets is low in some cases and can therefore 

guide search towards regions without native-like structures. In these cases, the exploitative 

behavior of MBS has a detrimental effect. In contrast, broad sampling with Monte Carlo 

explores the energy landscape without being too much biased by potentially wrong 

information. On the other hand, Monte Carlo search in Rosetta leverages contacts less 

effectively than MBS(see Figure 8). We believe that a successful search strategy should 

effectively balance the exploitation of prior knowledge (energy function information, 

contacts) in search with the exploration of the conformational space. MBS and Monte Carlo 

search seem to fall on opposite ends of the exploration-exploitation spectrum and a method 

that unites the strength of both approaches should result in improved structure prediction.

The Effect of Decoy Selection Strongly Depend on the Pipeline Configuration
—Our last finding is that certain combinations of components perform well in a structure 

prediction pipeline and others do not. Notably, our analysis confirms the finding of 

Kosciolek and Jones [31] that, for contact-guided predictions, decoy selection based on 

energy is superior to Clustering.

We believe this has important implications on the general approach of analyzing structure 

prediction systems. We note that individually assessing single components of our pipeline 

would have led to different and sometimes contradicting conclusions regarding the 

performance of our pipeline. For example, had we only used Clustering as a decoy selection 

method, we would have concluded that contact restraints improve prediction by MBS but 

hurt predictions made by Rosetta. On the other hand, had we analyzed the components 

individually, we would have come to the conclusion that contact restraints improve 

conformational space search for MBS and Rosetta.

Clearly, the systematic analysis of pipeline configurations reveals that improvements in 

components of the method do not necessarily lead to improvements of the entire method. 

This counter intuitive finding suggests that the components interact in ways that are 

currently poorly understood. This points to a possible fundamental problem in evaluating 

and developing protein structure prediction methods.

Our finding, if true, suggests that a practitioner that aims to build and improve a structure 

prediction pipeline, cannot simply incorporate a seemingly improved component, because it 

might negatively interact with other pipeline components. This is a significant obstacle, 

because individual components might —in the most extreme case— only effective in the 

context in which they were originally developed. This limited compatibility of structure 
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prediction components might severely hinder community-wide progress and understanding 

the interactions between components might be a critical to advance the field.

Conclusion

We presented an analysis of the results obtained by our server RBO Aleph in the free-

modeling (FM) category during CASP11. We compared the results of our pipeline to all 

participating servers and investigated which parts of our pipeline have contributed to our 

performance. We found that the success of RBO Aleph was the result of the ab initio 
modeling protocol. Hence, we analyzed the performance of the unique methods in this 

protocol: Conformational space search by model-based search (MBS) and contact prediction 

by EPC-map.

In our analysis, MBS consistently finds lower-energy decoys than the Monte-Carlo-based 

sampling algorithm of Rosetta. However, in only half of the cases the MBS conformational 

space search method also leads to decoy ensembles of higher GDT TS (median GDT TS of 

all decoys). This means that conformational space search consistently finds lower-energy 

decoys without increasing the structural accuracy of the sampled decoys. This finding may 

mean that there are deficiencies in the employed energy functions, hindering progress in 

protein structure prediction.

We showed that MBS benefits from additional information contained in residue–residue 

contacts. This additional information may in fact counteract deficiencies in the energy 

function, leading MBS towards promising regions of conformational space in spite of these. 

However, Rosetta’s Monte-Carlo-based search, which in contrast to contact-guided MBS 

relies heavily on exploration during search, infrequently samples higher GDT TS decoys 

than MBS. This suggests that a central remaining problem in conformational space search is 

to adequately balance exploration of the search space and the exploitation of available 

information. We believe that addressing this problem in future research would result in 

improved conformational space search strategies.

We also analyzed the interactions of the individual ab initio components (conformational 

search method, use of contacts, decoy selection method) in the context of the entire structure 

prediction pipeline. We find that components interact in unexpected ways. An improved 

component does not necessarily lead to improved results of the entire pipeline. If this 

observation also holds true for pipelines other than RBO Aleph, it would point to a 

significant impediment of the community-wide effort to advance structure prediction. We 

believe that understanding the effects of component interactions on the overall performance 

of a prediction pipeline may be vital to enable progress in the field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of RBO Aleph’s structure prediction pipeline used in CASP11. After predicting 

contacts with EPC-map, the server retrieves templates with HHsearch, LOMETS, RaptorX, 

and SPARKS-X. These templates get re-scored with a random-forest classifier. Depending 

on the existence of suitable templates, RBO Aleph runs template-based modeling with 

MODELLER or ab initio modeling with MBS guided by predicted contacts. The server 

ranks decoys sampled by MBS with ProSA and selects the five structures with highest rank 

as best predictions. RBO Aleph infers domain boundaries of longer sequences from 

templates or from sequence-based domain prediction with PPRODO and DomPro in the 

absence of suitable templates. After predicting the individual domains the server assembles 

them into a whole structure and submits the highest scoring models based on Rosetta energy.
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Figure 2. 
Comparison of the GDT TS of first models by our pipeline (with and without the use of 

contacts) to the first models submitted by other servers. We compare our first models to 

(from above) the best first model submitted by all servers, the median GDT TS of the first 

models submitted by top 5 servers in the FM category (according to the website ranking and 

excluding RBO Aleph), the median GDT TS of the first models submitted by all servers 

(excluding RBO Aleph). FM Targets that we modeled using ab initio are in black, targets we 

modeled using template-based modeling are in grey. The targets discussed in the paper are in 

red (good predictions) and blue (bad predictions).
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Figure 3. 
High quality prediction produced by RBO Aleph. RBO Aleph submitted better models for 

the targets T0834 D1, T0837 D1, and T0855 D1 than most of the other servers. The arrows 

on the right side indicate the performance of the individual components (such as decoy, 

contacts prediction, and decoy selection). An upwards pointing arrow states good 

performance whereas a downwards pointing arrow indicates bad performance. Although the 

individual components did not always perform well, the overall prediction quality was high.
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Figure 4. 
Low quality prediction produced by RBO Aleph. RBO Aleph has submitted worse models 

for the targets T0761 D2, T0824 D1 and T0834 D2 than most of the other servers. The 

arrows on the right side indicate the performance of the individual components such as 

decoy sampling, contacts prediction and decoy selection. An upwards pointing arrow states 

good performance whereas a downwards pointing arrow indicates bad performance. 

Although the individual components often performed well, the overall prediction quality of 

the models is weak.
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Figure 5. 
Comparing energies and GDT TS of decoys obtained by MBS and Rosetta’s Monte Carlo-

based search. The median energy and GDT TS were calculated for each free-modeling 

domain using all decoys. Negative numbers at the y-axis indicate how much lower the 

energy of MBS-modeled decoys is compared with Rosetta-modeled decoys. The x-axis 

shows the difference of the median GDT TS of MBS compared to Rosetta obtained decoys. 

MBS consistently finds lower energy decoys (−35 lower median energy over all in the 

ensembles) and better quality decoys (0.565 higher median over all decoys).
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Figure 6. 
Overview of residue-residue contact prediction results of EPC-map, the contact prediction 

method employed by RBO Aleph. All results in this Figure refer to the top L/5 predicted 

contacts. All targets in this Figure are free-modeling targets. A: Comparison of long 

(sequence separation > 23) residues and long+medium (sequence separation > 11) range 

contact prediction accuracy of EPC-map with CONSIP2, the winning method in CASP11, 

and the per-target mean accuracy of the top 5 contact predictors of CASP11. B: z-scores for 

individual targets of RBO Aleph. C: Correlation between contact prediction z-scores (Acc) 

with tertiary structure prediction z-scores (average of MAMMOTH and Dali scores, model 

1) of RBO Aleph. The z-scores weakly correlate with a pearson/spearman rank correlation 

coefficients are 0.51/0.47 and 0.45/0.48, for long and long-medium range contacts, 

respectively. This indicates that EPC-map contacts at least partially contribute to the 

performance of RBO Aleph in the FM category. Targets that we discuss later in this paper 

are marked red (RBO Aleph submitted good predictions, compared to the other groups) and 

blue (RBO Aleph submitted poor predictions, compared to the other groups). D: Ranking of 
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the top ten contact prediction methods by the sum of z-scores (total, i.e. Acc+Xd). RBO 

Aleph (EPC-map) ranks second for medium+long range contacts and fifth for long-range 

contacts.
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Figure 7. 
Analysis of improvements in ab initio structure prediction by comparing MBS with and 

without the help of contacts. The median energy and GDT TS were calculated for each free-

modeling domain using all decoys. Negative numbers at the y-axis indicate how much lower 

the energy of decoys from contact-guided MBS is compared to MBS without contact 

guidance. The x-axis shows the difference of the median GDT TS of MBS with contacts and 

MBS without contacts. Contact-guided prediction runs produce decoys with slightly higher 

quality (0.45 higher median GDT TS over all decoy ensembles).
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Figure 8. 
Effect of component combinations on the performance of the RBO Aleph pipeline (model 

1). A: Target-based analysis of various component combinations. The colors of the heat map 

cells encode the difference in performance of a particular component combination, relative 

to RBO Aleph. B: Head-to-head bootstrap analysis of the different component combinations. 

In this analysis, we randomly remove five target domains for a pair of component 

combinations. The method with higher mean GDT TS scores a ”win”. We repeat this process 

1000 times for each component combination pair. The colors of the heat map cells encode 

the fraction of ”wins” of a particular method combination over another one.
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