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Abstract

Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is 

multifactorial in cause and only limited treatment or preventatives are available. The renal 

microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in 

both injury and recovery. Significant progress has been made in the ability to study the renal 

microvasculature following ischemic AKI and its role in repair. Advances have also been made in 

elucidating cell–cell interactions and the molecular mechanisms involved in these interactions. The 

ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies 

are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in 

mediating the inflammatory response, thereby complicating potential therapeutics. However, 

recent work with experimental animal models suggests that the endothelium and its cellular and 

molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, 

we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as 

repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair.
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 Introduction

Acute kidney injury (AKI) is characterized as a rapid (hours to days) decrease in kidney 

function [1]. AKI is one of the most serious and common health complications, occurring in 

up to 20 % of all hospitalized patients and over 45 % of patients in critical care settings [2, 

3]. While not well defined in children, the incidence of AKI in pediatric intensive care units 

is reported to range from 8 to 30 % and occurs in roughly 7 % of the general pediatric 
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population [4–6]. The incidence of AKI in children appears to be increasing, and the 

etiology over the past decades has shifted from primary renal disease to multi-factorial 

causes, particularly in hospitalized children. An important cause of AKI in hospitalized 

children is the setting of post-cardiac surgery and stem cell transplantation [7]. 

Pharmacotherapy is also one of the major causes of AKI and may play a causative role in as 

many as 25 % of all pediatric cases [6, 8]. Drugs, including antimicrobials, 

chemotherapeutic agents, and non-steroidal anti-inflammatory drugs, among others, have all 

been implicated in drug-induced renal injury in children [5]. Severe sepsis with shock, use of 

vasopressors along with invasive ventilation, fluid overload, and tumor lysis syndrome also 

contribute to the numbers of AKI seen in children [9]. In newborns, the incidence of AKI in 

the USA is 3.9 per 1000 live births and 34.5 per 1000 newborns admitted to the neonatal unit 

[7, 10]. Several genetic factors may also predispose some children to AKI [7]. As the kidney 

is a highly vascularized organ, the complex vasculature is extremely sensitive to damage 

during AKI. The role that the complex microvasculature system plays during AKI events 

remains vastly understudied. Subtle malformations in kidney vasculature development could 

leave the kidneys at significant risk of further insults.

 Microvascular development and the role of Foxd1 during AKI

Kidney development involves interactions between the metanephric mesenchyme and the 

ureteric epithelium [11–13]. The metanephric mesenchyme subdivides into the nephrogenic 

mesenchyme and the renal stroma [14]. As the kidney develops, the renal stroma 

interdigitates between the nephron progenitor caps, and the ureteric bud branches to form 

primary renal interstitium [11, 15]. The renal stroma eventually gives rise to many of the 

vascular supportive cells (including pericytes, fibroblasts, renin-producing cells, and 

mesangium), as well as to endothelial progenitors [11, 16, 17]. The kidney receives 

approximately 20 % of the cardiac output through its vasculature system [17, 18]. The 

vascular system begins with the growth and invagination (angiogenesis) of new blood 

vessels. At the same time, resident endothelial precursors, within the kidney mesenchyme, 

form primitive vascular structures (vasculogenesis) that eventually connect with the 

angiogenic vessels to form a patent vascular system. The exact combination of angiogenesis 

and vasculogenesis that contributes to the formation of the kidney vasculature is unclear. In 

an earlier study, our laboratory showed that a subset of the renal endothelium derived from 

the renal stroma (marked by the Foxd1 gene) gave rise to peritubular capillaries [16]. Foxd1 

is a transcription factor in the stromal cells and is the earliest identifier of the renal stroma 

[11, 18]. Kidneys with a Foxd1 deletion display severe structural deformities [11, 19] as well 

as reduced branching of the ureteric bud, decreased number of nephrons, abnormalities of 

the renal capsule, misplaced vasculature in the renal capsule, and overall aberrant patterning 

of renal structures [11, 19, 20]. Foxd1 has recently been shown to participate in the proper 

orientation of the kidney vasculature [18]. When the kidney is subjected to injury models 

[unilateral ureteral obstruction or ischemia–reperfusion injury (IRI)], it is the Foxd1-derived 

cells that contribute to the fibrotic response [21–47] (Table 1). Our laboratory is currently 

investigating the role of the Foxd1-derived endothelium in determining susceptibility to 

AKI.
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 Ischemic reperfusion AKI

There are many different causes of pediatric AKI; however, hypoxic/ischemic AKI will be 

the focus of this review. IRI leading to AKI is characterized by early vasoconstriction 

followed by patchy tubular necrosis. Mild to moderate acute ischemic injury results in 

epithelial injury and death, although the renal tubules can repair following injury. However, 

severe or multiple ischemic injury events cause incomplete repair resulting in fibrogenesis 

[24] (Fig. 1). Part of the work carried out in our laboratory has focused on the relative tissue 

hypoxia following ischemic AKI in mice using pimonidazole hydrochloride 

(Hypoxyprobe™-1). Hypoxyprobe™-1 is activated in hypoxic cells and forms covalent 

adducts with sulphydryl groups within the tissue. Immunostaining of kidneys for 

hypoxyprobe, as well as for the endothelial marker endomucin 24 h post unilateral IRI was 

performed, and hypoxic tissues were visualized (Fig. 2). The kidney receives approximately 

25 % of the cardiac output, however it is also one of the most naturally hypoxic organ 

systems. Oxygen tensions in the renal parenchyma are lower than that in most other organs, 

with the renal medulla considered an area with one of the lowest oxygen tensions [25, 26]. 

Twenty-four hours following IRI, a significant amount of hypoxic tissue was visible, and it 

was especially prevalent around the renal tubules compared to the contralateral control 

kidney (Fig. 2a, b). The pathophysiology of IRI in the kidney is very complex, with many 

pathological pathways implicated, including activation of neutrophils and the release of re-

active oxygen species and other inflammatory mediators, including adhesion molecules and 

cytokines [27]. In response to hypoxia, inflammatory, renal tubular epithelial cells, and 

vascular cells secrete thrombospondin-1 (TSP1), which is a matricellular glycoprotein [22, 

23, 48, 49]. TSP1 binds to the cell surface receptor CD47 to regulate the canonical nitric 

oxide (NO) pathway, which is suppressed in IRI [29, 49–51]. Several therapies have 

mitigated IRI through NO supplementation [49, 52–55]. Furthermore, Rogers et al. 

demonstrated that limiting CD47 activation prevents TSP1 binding and reduces 

complications of renal IRI in mice, providing a potential therapeutic intervention [49] (Table 

1).

Recent studies suggest that the renal vasculature plays a role in acute and chronic injury. 

Furthermore, the endothelial cells have been identified as a target of injury and potential for 

therapeutics. The peritubular capillaries, which comprise the arterial portal system derived 

from the efferent arteriole, supply adjacent tubules in the cortex and renal medulla [28]. 

During AKI, peritubular capillary blood flow is abnormal during reperfusion, and this is 

accompanied by loss of endothelial cell function in association with distorted peritubular 

capillary morphology and function [7, 30, 56]. Moreover, pediatric patients following 

ischemic AKI have a high predisposition to progressive renal failure and hypertension, [30–

32], while injury in the setting of transplantation (i.e., delayed graft function) represents an 

independent risk factor for graft survival and the development of post-transplant 

hypertension [31, 57]. These observations suggest that ischemic acute injuries to the kidney 

predispose to chronic complications.
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 Kidney microvasculature and AKI

The kidney contains one of the most diverse and rich populations of endothelial cells within 

the body [58]. Tubular epithelial cell injury is linked to AKI. However, unlike the renal 

tubules, the kidney microvasculature lacks regenerative capacity following severe or 

multiple AKI events [24, 31, 59]. Renal injury may directly damage the renal vasculature 

and alter its activity; such damage may influence vascular responsiveness, barrier function, 

coagulation cascades, and/or inflammatory processes [33, 56, 60]. Early alterations in 

peritubular capillary blood flow during reperfusion is linked with the loss of endothelial cell 

function [59]. Capillary loss, which alters renal function and predisposes patients to the 

development of chronic renal insufficiency, is due in part to hypoxia [30, 59]. Inflammation 

and procoagulant activity, which contribute to vascular congestion, are also induced by 

hypoxia/ischemia [59]. Several significant studies suggest that altered renal endothelial 

function contributes to a reduction in renal blood flow following AKI [34]. Arrerio and 

colleagues propagated endothelial like cells from mesenchymal stem cells; these cells 

expressed markers typical of endothelial cells such as Tie-2 (an angiopoietin receptor), 

vascular endothelial growth factor receptors (VEGFR) 1 and 2, and endothelial nitric oxide 

synthase 3 (eNOS3). Prophylactic injection of these cells to control rats generated short-term 

engraftment into the vasculature and short-term protection from AKI [35]. These studies 

suggest that endothelial function may have protective effects on AKI. Dimke and colleagues 

recently determined that VEGF-A is highly expressed in renal tubular epithelial cells, 

allowing tubulovascular cross-talk to its receptor (VEGFR2) which is located almost 

exclusively to peritubular capillary endothelial cells. Using a genetic approach to excise 

VEGF-A from the renal tubules, the authors demonstrated a substantial reduction in 

peritubular capillary density upon its removal. VEGF-A is deemed necessary and critical for 

maintenance of the peritubular microvasculature by directing tubulovascular cross-talk with 

the VEFGR2-expressing endothelial cells. This implicates a physiologic role of tubular 

VEGF-A in mediating cross-talk between the tubular system and the vasculature in the 

kidney [61]. Several studies have provided further evidence supporting endothelial cell/

tubule cell cross-talk. It has been elegantly demonstrated that proximal tubule cells release 

cytokines and chemokines in response to cell injury and that these agents have direct effects 

on endothelial function [36, 37, 62, 63].

Adenosine plays an important role in the kidney by regulating renin release, glomerular 

filtration rate (GFR), and renal vascular tone [64, 65], while also playing a critical role in the 

regulation of tubular glomerular feedback [64–66]. During pathological insults to the kidney, 

adenosine levels increase due to renal ATP consumption, impaired renal perfusion, and 

hypoxia [65]. Grenz and colleagues demonstrated how adenosine provides protection against 

ischemic AKI in mouse models by preserving peritubular capillary blood flow during 

reperfusion. These authors showed that adenosine activation of endothelial Adora2b results 

in less tissue hypoxia and improved reperfusion [38, 44].

With damage to the microvasculature leading to capillary loss following AKI, fibrogenesis 

and capillary rarefaction progress, which induces focal hypoxia activating an injury, cascade 

leading to inflammation, and continued fibrosis [24, 67, 68]. The damaged or dysfunctional 

renal endothelium is often characterized by an impaired dilator capacity, which can be 
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attributed to reduced production of NOS3 [39]. Unfortunately, it is unclear whether 

vasodilators can work to correct this impaired dilator capacity, as the endothelial tissue 

injury prevents vasodilator therapy from generating the desired effects [34]. Several studies 

have demonstrated that infusing endothelial cells with NOS3 gene expression constructs 

help to protect against early compromised blood flow in the peritubular capillaries caused by 

ischemic AKI, thereby supporting the positive effects of NOS3 on endothelial function [33–

35] (Table 1). Following endothelial damage during AKI, the majority of normal renal 

function can be restored. However, hypoxic areas may remain, which can alter sodium 

reabsorption [69]. Furthermore, an increased expression of hypoxia inducible factor-1α 

(HIF-1α) and HIF-2α has been found in AKI. The role of these HIFs in the pathogenesis of 

AKI was unclear until recently [70]. Kapitsinou and colleagues utilized a genetic approach 

to inactivate both HIF-1α and HIF-2α in the renal endothelium, where they found that the 

HIF-2α isoform in the renal endothelium was critical for protection from AKI (Table 1) [70]. 

Until recently, microvascular damage following AKI was assessed through examination of 

the surface area of endothelial cells, or visualization of the capillaries [24, 40–42], through 

immunostaining and genetic labeling of the endothelium. Advani and colleagues were able 

to develop a fluorescence microangiography technique by renal artery injection in rats [71]. 

This technique was refined by Kramaan and colleagues and utilized in a mouse model of 

AKI to evaluate the microvasculature; they also generated a sophisticated MATLAB-based 

script for high-throughput analysis of the microvascular changes [24] (Table 1). This 

methodology to evaluate the renal endothelium will be invaluable to understand 

microvasculature alterations.

Renal ischemic injury alters the cytoskeletal organization of small arterioles and endothelial 

cells that may relate to the presentation of surface expression molecules. This disruption in 

cellular morphology may also disrupt endothelial cell tight junctions, resulting in endothelial 

leakiness. Endothelial leakiness can cause an increase in edema and compromise renal 

perfusion [56, 72, 73]. The loss of endothelial cell function may represent an important 

therapeutic target in which vascular trophic support and/or endothelial regeneration by 

progenitor cells ameliorate the acute and chronic effects of ischemic AKI [74].

 Immune response to AKI is mediated by endothelial cells

In addition to the myriad of altered vascular functions that influence AKI progression, 

inflammation is mediated in part by the adhesion of leukocytes to damaged endothelial cells 

[75]. Following AKI, tissue damage initiates an inflammatory cascade including reactive 

oxygen species (ROS), cytokines, chemokines, and leukocytes [27, 43, 76].

In combination with endothelial adhesiveness, inflammatory mediators are synthesized and 

released by both tubular epithelial cells (one of the primary sites of damage) and activated 

leukocytes. Tubular epithelial cells produce tumor necrosis factor-alpha, interleukin (IL)-1, 

IL-6, IL-8, transforming growth factor beta, monocyte chemotactic protein 1 (MCP-1), 

ENA78, RANTES and fractalkines, while leukocytes produce IL-1, IL-8, MCP-1, ROS, and 

eicosanoids. These factors act in concert to promote inflammation in a positive feedback 

loop, promoting further kidney injury [75, 77]. The endothelium is also a source of 

chemoattractant factors, such as fractalkine (CX3CL1), which is expressed following renal 
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injury and promotes macrophage infiltration [75]. Numerous studies conducted over the past 

two decades have revealed that inflammatory processes mediated by the immune system are 

crucial in mediating renal injury [78, 79]. Both innate and adaptive immune systems are 

directly involved in the pathogenesis of ischemic AKI. Various cellular and humeral immune 

system components contribute to AKI, some of which are also thought to be involved in the 

repair process following AKI [76, 79, 80]. Resident macrophages in normal kidneys are few, 

while in post-ischemic kidneys (especially in the outer medulla), directly following IRI, their 

number markedly increases [79, 81]. Monocytes then adhere to the vasa recta 2 h after 

reperfusion, while most macrophage recruitment occurs around post-capillary venules in the 

outer medulla [79, 82]. Chemokines are also direct mediators of chemotaxis and activation 

of immune cells; specifically, they guide neutrophils and pro-inflammatory (M1) 

macrophages to the injury site [83, 84]. M1 macrophages amplify the inflammatory response 

and promote tissue damage following AKI. Over time (days) M1 macrophages are replaced 

by alternatively activated M2 macrophages that promote repair [85–87]. The mechanisms 

that regulate these macrophage phenotypes remain poorly understood. Chiba and colleague’s 

recently demonstrated that retinoic acid (RA) is able to regulate macrophage activation 

following AKI through suppressing M1 macrophages and indirectly inducing M2 

macrophages, thereby enhancing post-AKI repair [86] (Table 1). Neutrophils, which are 

important effector cells of the innate immune system, then phagocytose pathogens and 

particles, generate reactive oxygen and nitrogen species, and release antimicrobial peptides. 

Neutrophil infiltration has been detected in post-ischemic mouse kidneys [88, 89] and in 

biopsy samples from patients with early AKI [90, 91]. Neutrophils are, therefore, expected 

to play an important role in the pathogenesis of IRI [79]. Intra-renal activation of HIFs 

following AKI occurs in tubular, interstitial, and endothelial cells. Upregulation of HIF-1α 

occurs within 1 h and is sustained for up to 7 days; it induces the infiltration of macrophages 

following IRI [79, 92]. Mechanical interruption of renal vascular endothelial integrity caused 

by IRI, and the consequent increase in vascular permeability is another factor that facilitates 

infiltration of immune cells into the post-ischemic kidney [33, 72, 79]. Furthermore, 

endothelial cell dysfunction is thought to contribute to the failure of blood to re-perfuse an 

ischemic area after removal of any physical obstruction (termed the ‘no-reflow’ 

phenomenon) in post-ischemic kidneys [79].

 Therapeutic intervention

As the number of AKI patients continues to grow, so has the interest in therapeutic 

interventions. However, due to the complex and multifaceted nature of AKI, successful 

treatment or prevention will involve cellular, molecular, and immune processes. Appropriate 

therapeutics for AKI will most likely involve targeting the endothelium and renal tubule 

cells to minimize injury, as well as mediating the immune response [37]. Studies are 

currently being conducted to modulate the involvement of immune infiltrating cells in AKI 

in order to limit their associated damage [37, 93]. Most immune invading cells are 

detrimental, but some, such as regulatory T cells (Tregs), are beneficial [37, 94–96], and 

enhancing Tregs using IL-2 complexes has been shown to reduce histologic injury and 

improve function in mice [37, 97].
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Endothelial dysfunction has been shown to be one of the earliest pathological sequences 

following AKI [98, 99]. When endothelial cells are damaged during AKI, they undergo 

apoptosis, which further amplifies the coagulation cascade [37, 100]. This cascade leads to 

enhanced microvascular coagulation and endothelial cell dysfunction. Ultimately, 

microvascular function is compromised, and local tissue perfusion is decreased. 

Pretreatment or post-injury treatment with soluble thrombomodulin (TM) attenuates 

ischemic AKI by reducing vascular permeability defects and minimizing white blood cell–

endothelial interactions, and thus improves microvascular perfusion [37, 101]. Ischemic 

injury leads to the release of many cytokines that downregulate the expression of TM, hence 

causing a state of relative TM deficiency, leaving the microvasculature in a pro-coagulant 

state [43, 102]. TM has now been well established to possess beneficial roles in 

inflammation, fibrinolysis, apoptosis, cell adhesion, and cellular proliferation [45, 46, 101, 

103].

Selective inhibition, depletion, or deletion of inducible NOS (iNOS) has also clearly shown 

renoprotective effects during ischemia [37, 47, 104]. It has been proposed that with a relative 

decrease in endothelial NOS (eNOS), secondary to endothelial dysfunction and damage, 

there is a loss of antithrombogenic properties of the endothelium, leading to increased 

susceptibility to microvascular thrombosis [37, 105]. Administration of the L-arginine nitric 

oxide (NO) donor molsidomine or the eNOS cofactor tetrahydrobiopterin can preserve 

medullary perfusion and attenuate IRI-induced AKI; conversely, the administration of N-

nitro-L-arginine methyl ester, an NO blocker, has been reported to aggravate the course of 

AKI following IRI [37, 106, 107].

It is not clear yet whether apoptosis and necrosis play a major role in endothelial cell 

dropout. Ischemia has been shown to inhibit the angiogenic protein vascular endothelial 

growth factor (VEGF), while inducing the putative VEGF inhibitor ADAMTS-1 [37, 108]. It 

has been postulated that the lack of vascular repair could be due to VEGF deficiency, as 

shown by experiments where the administration of VEGF-121 preserved microvascular 

density [37, 109].

In a recent study, Pabla and colleagues provided evidence that the CDK4/6 (cyclin-

dependent kinases) pathway is activated early during AKI and demonstrated significant 

protective effects of CDK4/6 inhibitors in animal models of cisplatin-induced AKI. In 

addition, these authors found that the CDK4/6 inhibitors palbociclib and LEE011 are potent 

inhibitors of organic cation transporter 2 (OCT2), a cisplatin uptake transporter highly 

expressed in renal tubular cells [110–113]. Their findings provide a rationale for the clinical 

development of palbociclib and LEE011 for the prevention and treatment of AKI (Table 1).

Fairly recently, micoRNAs (miRNAs) have emerged as potential biomarkers useful in AKI 

risk assessment, diagnosis, prognosis, and severity of injury [114]. miRNAs are highly 

conserved and are essential for normal development and physiology [114]. Lorenzen and 

colleagues identified 13 miRNAs with differential regulation between AKI and healthy 

control patients [115]. The authors proceed to describe miR-210, a miRNA known to be 

upregulated in endothelial cells in association with tissue hypoxia and upregulated in 

patients with AKI [116, 117], and miR-320 and miR-16, both downregulated, as potential 
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biomarkers. Cantaluppi and colleagues suggest that miRNAs such as miR-126 and miR-296, 

which are derived from microparticles in circulating endothelial progenitor cells, may 

ameliorate the effects of AKI [118, 119]. While the research on miRNAs in AKI is still 

limited, these molecules hold much promise as a potential therapeutic application.

Notably, despite the high prevalence and mortality rates of AKI, no clinically proven 

therapeutic interventions are available to prevent it [120]. While many laboratories are 

working on possible treatments or preventatives for AKI, a significant amount of pre-clinical 

studies are required to test efficacy.

 Conclusion

In conclusion, this review highlights the role of the renal microvasculature in AKI. We have 

highlighted the many causes of AKI while focusing on those related to ischemic injury (as 

described in Fig. 1; [121]). Furthermore, this review examines the molecular and cellular 

mechanisms that currently exist and have been elegantly studied in murine models. The 

study of the renal microvasculature during AKI may provide a critical therapeutic window 

that ultimately will enable prevention of this widespread disease.
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Fig. 1. 
Injury, repair, and resolution during ischemic acute kidney injury (AKI). Following 

ischemia, there is substantial microvascular injury, leading to increased coagulation, reduced 

nitric oxide release, macrophage recruitment, and increased hypoxia. These events in turn 

lead to significant tubular injury and death, ultimately causing a decrease in glomerular 

filtration rate (GFR). Following reperfusion, the kidney enters adaptive repair in which 

inflammation and debris begins to resolve through a switch from M1 macrophages to M2 

macrophages. Both endothelial repair and epithelial tubular proliferation begin, leading to 

resolution. Adapted from Fernenback and Bonventre [121] with permission from Macmillan 

Publishers Ltd
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Fig. 2. 
Hypoxic markers are present following ischemic reperfusion injury. a, b Hypoxyprobe- (red) 

and endomucin- (green) stained kidneys 1 day following 20 min of unilateral ischemic 

reperfusion injury (IR) (b), and the contralateral controls (a). One day following injury, 

ischemic kidneys (b) display markedly more hypoxic tubules (arrows) when compared with 

the contralateral control (a). Scale bars:100 μm
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Table 1

Important findings implicating renal endothelium in acute kidney injury

Major findings Implications Authors

During AKI, peritubular capillary blood flow is 
reduced, and morphology is distorted, as well as loss 
of endothelial cell function

The vasculature of the kidney plays a 
role in injury and progression to chronic 
disease. The endothelium may be a 
potential target for therapeutics

Andreoli et al. (2009) [7]; Sutton et al. 
(2002) [22]; Basile et al. (2007) [23]

TSP1 is found to bind to CD47 and acts to suppress 
the NO pathway following IRI

Supplementation of NO mitigates IRI Isenburg et al. (2007) [21]; Martinez-Mier 
et al. (2000) [24]; Rodriguez-Pena et al. 
(2004) [25]; Liu et al. (2007) [26]; Lang et 
al. (2007) [27]

Limiting CD47 activation prevents TSP1 binding in 
mice.

Mitigates the complications of IRI 
providing a potential therapeutic

Rogers et al. (2012) [18]

A subset of the renal endothelium derived from the 
renal stroma (marked by Foxd1) gives rise to 
peritubular capillaries

Foxd1 gives rise to vasculogenic 
endothelium and contributes to a fibrotic 
response following AKI

Sims-Lucas et al. (2013) [28]; Hum et al. 
(2014) [29]; Sequeira-Lopez et al. (2015) 
[30]; Levinson et al. (2005) [31]; Hatini et 
al. (1996) [32]

Renal endothelial functions contributes to a 
reduction in renal blood flow following AKI. NOS3 
has positive effects on renal endothelial function

Enhanced endothelial function may have 
protective effects on AKI

Brodsky et al. (2002) [33]; Basile et al. 
(2014) [34]; Arriero et al. (2004) [35]

Following AKI, hypoxic areas remain after normal 
function is restored.
Furthermore, HIF-2α is critical for protection in 
AKI

HIFs are implicated as taking part in the 
pathogenesis of AKI

Ergin et al. (2015) [36]; Kapitisinou et al. 
(2015) [37]

A fluorescence microangiography technique is 
established for visualization if the microvasculature

An invaluable technique to understand 
microvasculature alterations

Advani et al. (2011) [38]; Kramann et al. 
(2014) [11]

Inflammatory processes mediated by the immune 
system are crucial in mediating renal injury

Targeting inflammation may be a 
potential therapeutic for AKI

Basile et al. (2012) [39]; Bonventre et al. 
(2004) [40]; Gonclaves et al. (2010) [41]; 
Jang et al. (2015) [42]

Using retinoic acid, M1 macrophages can be 
suppressed, indirectly inducing M2 macrophages to 
enhance repair following AKI

Administration of retinoic acid 
following AKI enhances repair

Chiba et al. (2015) [43]

Endothelial cell dysfunction may contribute to the 
failure of blood to reperfuse an ischemic area

Further implicates endothelial cells as a 
possible target for therapeutic 
intervention

Brodsky et al. (2002) [33]; Sutton et al. 
(2003) [44]; Jang et al. (2015) [42]

CDK4/6 is activated early during AKI, and displays 
protective effects of CDK4/6 inhibitors in animal 
models of AKI

Rational for the clinical development of 
CDK4/6 inhibitors for the prevention 
and treatment of AKI

Flipski et al. (2009) [45]; Ciarimboli et al. 
(2010) [46]; Sprowl et al. (2014) [47]

AKI, Acute kidney injury; IRI, ischemia–reperfusion injury; NO, nitric oxide; NOS3, nitric oxide synthase 3; HIF-2α, hypoxia inducible factor-2 
alpha; CDK4/6, cyclin-dependent kinase 4/6
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