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In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids
leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions
are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the
saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation
may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of
the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory
proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders
such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it
is important to gain an understanding of the regulatory process and the conditions under which it
can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the
growth of clusters to encompass surface shielding. We use this formulation to study the regulation of
sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear
shielding of nascent mineral particles by binding proteins. We develop a mathematical description
of this phenomenon using a countable system of hyperbolic partial differential equations. A critical
concentration of regulatory protein is identified as a function of the physical parameters that describe
the system. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4946002]

I. INTRODUCTION

In biology, ionic calcium (Ca2+) plays many diverse roles
including acting as a secondary messenger in biochemical
cascades and modulating neuronal excitability.1 Structurally,
Ca2+ and inorganic phosphate ions (PO−4) are also the main
constituents of bones in vertebrates. For these reasons, it
is important for organisms to obtain adequate amounts of
calcium from the environment.

In normal circumstances, Ca2+ is plentiful throughout
extracellular spaces and in the circulatory system, stably
existing at concentrations exceeding the saturation point,
whereby sedimentation is favored.2 Even under the dangerous
condition of hypocalcemia, Ca2+ may still be supersaturated
relative to the most thermodynamically stable phase of calcium
phosphate, hydroxyapatite (HAP), which is the building block
of teeth and bones.

Yet, while the deposition of calcium into bones is
desirable, ectopic calcification into soft tissues is pathological
and either causes or exacerbates a variety of inflammatory
disorders including arteriosclerosis, heart disease, and
arthritis.3–5 So, the regulation of ectopic calcium sedimen-
tation is important in maintaining the health of soft tissues.

When calcium-phosphate solutions are supersaturated,
HAP is formed in a multi-step process traversing through
several intermediate crystalline or pseudo-crystalline states.
The first step in this process is thought to be formation of
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pre-nucleation clusters,6–8 which are small calcium-phosphate
complexes.9 Although some debate exists,7,8,10 these small
complexes are thought to be Posner’s clusters (PCs), with
composition Ca9(PO4)6.11 A combination of experimental and
theoretical analyses have confirmed the stability of PCs,12,13

their presence in physiological solutions,11 and their consis-
tency with the unit-cell structure of calcium-phosphate precip-
itates.6,14 For the purposes of this manuscript, we will assume
that PCs are the fundamental building blocks of larger-scale
calcium-phosphate clusters and refer to them as monomers.

These monomers aggregate whereby they nucleate into
amorphous spherical post-nucleation clusters composed of
amorphous calcium phosphate (ACP),15–18 having a calcium
to phosphate ratio of approximately three to two.19 As
long as supersaturation persists, and in the absence of
regulation, ACP clusters continue to grow by absorbing
additional monomers into their structure. When ACP clusters
become sufficiently large, they sediment into the tissue while
simultaneously undergoing several phase transitions before
eventually transforming into HAP.

This situation is seemingly incompatible with life as
the persistent supersaturation of calcium and phosphate in
biological fluids dictates unyielding sedimentation, at least in
the absence of regulatory inhibition. Fortunately a regulatory
mechanism does exist. The main machinery for preventing
calcium phosphate sedimentation is the plasma protein fetuin-
A (FA).5,20–23 FA is an acidic protein that is found abundantly
in blood as well as throughout all extracellular compartments.
Maintenance of adequate levels of FA protein has been shown
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to be necessary for inhibition of calcification in relation to
many disorders.24,25

FA interacts with the calcium phosphate mineralization
process in several different ways. It can directly bind calcium,
with each molecule able to weakly and reversibly bind
approximately 12–15 ions.26 Yet, this direct binding of calcium
cannot be the main regulatory mechanism of FA as it would
effectively reduce the supersaturation. There is also evidence
that FA binds to pre-nucleation clusters,22 a possibility that has
been analyzed,27 although somewhat contradictory evidence
has also shown that the presence of FA does not affect the rate
of nucleation of calcium phosphate clusters.28 Primarily, FA
binds strongly to post-nuclear calcium-rich calcium-phosphate
clusters, shielding them from further growth and imparting
upon them enhanced colloidal stability so that they do not
sediment.

In this manuscript, we adapt mean-field classical
nucleation theory (CNT) to look at the inhibition of mineral
cluster growth by FA. We provide a quantitative description
of the overall regulatory process and examine conditions
necessary for stability.

II. QUANTITATIVE METHODS

The problem of understanding the combined process of
mineralization and FA-induced inhibition is an example of a
nucleation problem. Our approach to this problem is to use
ideas from mean-field classical nucleation theory (CNT). In
particular, we utilize a continuum approximation to the kinetic
theory whereby we frame our problem using a series of serially
coupled partial differential equations (PDEs). It is notable,
however, that theoretical treatments of the inherently high-
dimensional stochastic problem of nucleation and aggregation
also exist.29–31 The mean-field theoretic CNT approach is
ultimately motivated by the behavior of such stochastic
treatments.

Our overarching goal in this section is to understand the
kinetics of the concentration profile for mineral clusters as
a function of size and interactions with FA. To this end, in
Section II A, we first solve for the nucleation rate (formation
rate of critically sized clusters), which provides a boundary
condition for our PDE problem. Then, in Section II B,
we derive an effective growth rate (vn(s)) for the mineral
portion of formed mineral and protein-mineral clusters as a
function of their fixed mineral surface area s and number
of bound FA proteins n. Then, in Section II C, for a
fixed cluster configuration, we derive the shielding rate
under the assumption that it is governed by diffusion-limited
kinetics. Finally, in Section II D, we tie together the various
components of our theory (nucleation, growth, shielding) into
an overarching continuum model.

For the reader’s convenience, we have compiled a list
of the mathematical symbols that we use throughout this
manuscript into Table I.

A. Nucleation

CNT explains the emergence and evolution of colloidal
phases in solutions through the development of a simple

TABLE I. List of mathematical symbols used in the manuscript for easy
reference.

Symbol Description

s Surface area of mineral phase of cluster
m Number of mineral monomers in a cluster, where

monomer refers to Posner’s cluster Ca9(PO4)6
r Radius
V Volume
n Number of shielding proteins attached to surface of cluster
γ Interfacial free energy per unit surface area in units kBT per

squared meter
f Geometric correction for surface free energy for non-spherical

pre-critical states
ρ∞ Concentration of mineral monomers
ρs Saturation concentration
∆µ −log(ρ∞/ρs), chemical free energy per mineral monomer

in units kBT
∆G Gibbs free energy in units kBT
cn(s, t) Concentration of mineral clusters of surface area s shielded

by n FA monomers
c∞n (s) Steady-state concentration
s′ Shielded surface area
sn Amount of surface shielded (s′) when n

FA monomers are bound
δsn sn− sn−1 for n ≥ 1
s∗,m∗ Critical cluster size at nucleation
sp,mp Critical cluster surface area and monomer number at sedimentation
D Diffusivity of mineral monomers
DFA Diffusivity of FA monomers
k− Dissociation rate per unit surface area for mineral
φ∞ Concentration of FA monomers
r̄, s̄, v̄ Mineral monomer radius, surface area, volume
ω D

√
4πρs/k−

α 8v̄Dπρ∞
β −∆µ√s∗/ f
ε Thickness of shielding layer (of FA protein)
λ

√
4πDFAφ∞

thermodynamical picture. The key element of CNT is the
assumption that the emergence of a new phase carries an
energetic cost due to the creation of an interfacial surface.

Consider a mineral particle consisting of an integer
number m mineral subunits, hereby termed an “m-cluster.”
We say that this particle has volume V = mv̄ , where v̄ is the
effective volume of each subunit “monomer.” Assuming that
this particle is spherical, it has surface area s = (36v̄2π)1/3m2/3,
and radius r =

√
s/4π. In this manuscript, we use both m and

s to parameterize the size of mineral clusters (see Fig. 1).
We also will refer to the conversion between these two
parameterizations as m(s) and s(m).

For an m-cluster, CNT assigns as per the capillary
approximation the free energy,

∆G =

∆Gγ
γ f s +

∆Gµ
m∆µ =

spherical                              
γ f s +

∆µ

6v̄
√
π

s3/2, (1)

where ∆µ is the molecular free energy per monomer in the
cluster relative to in the solution (in units kBT), v̄ is the
volume per monomer, γ > 0 is the interfacial surface energy
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FIG. 1. Cluster size parameterizations. Surface area (s) and monomer count
(m) parameterizations are used interchangeably for expressing the size of
mineral clusters. Clusters are assumed to be spherical and composed of an
integer number m of monomers (Posner’s clusters). The cluster as a whole has
surface area s. To denote the conversion between these two parameterizations,
we use functions m(s) : s→ m and s(m) : m→ s.

per unit area (in units kBT per square meter), and f is a
geometric factor than can be adjusted to account for non-
spherical growth in the pre-nucleation stage as well as size-
dependent variations in the surface free energy.39 For constant
supersaturation, ∆µ < 0 so that ∆G → −∞ as s → ∞, thereby
thermodynamically favoring the existence of large clusters.
Yet, as shown in Fig. 2(a), the state of pure-monomers (s = 0)
is also a local minimum of this free energy. The emergence
of clusters is governed by kinetic rather than thermodynamic
considerations as an energy barrier of ∆Gcrit corresponding
to the free energy of a critical cluster with size s∗ must be
overcome. This barrier is overcome when a cluster reaches a
size m = m∗, s = s∗. The steady-state mean-field rate at which
clusters reach this size is exponential in the magnitude of the
energy gap and is known as the Zeldovich rate,

j∗ = κ exp (−∆Gcrit) , (2)

where κ is a constant with units of concentration per time.32

While the presence of pre-nucleation clusters in the calcium
phosphate system violates the assumptions of CNT, Habraken

et al.8 showed that CNT is still applicable with the use of
some minor modifications that result in the reduction of the
effective energy gap. Hence, we will assume for the purposes
of this manuscript that critically sized clusters of size s∗ are
forming spontaneously at some rate in the form of Eq. (2).

In the blood and extracellular compartments, fluid is
under constant exchange. For this reason, we will also assume
that the supersaturation is constant, and hence that j∗ and s∗ are
fixed, and study the growth of clusters after their nucleation.

B. Growth of the mineral phase

An m-cluster (of surface area s(m)) may find itself caked
by a number of proteins, which effectively shield a surface
area s′ ≤ s(m). Our immediate goal is to compute an effective
growth rate for this particle assuming that its shielding is
fixed. We will assume that each successive protein shields a
maximal surface area δsn = sn − sn−1. In other words, if n
proteins are attached, then a total surface area of size s′ = sn
is shielded from further free monomer adsorption.

Due to surface reactions, this particle experiences an
instantaneous net flux of monomers into its structure,

J = k+(s, s′)ρr            
absorption

− k− × (s − s′)                  
dissociation

, (3)

where ρr is the concentration of free monomers at the surface,
k− is the dissociation rate per unit surface area, and k+(s, s′)
is the absorption rate which is dependent on m as well as the
free surface area.

To begin, we will eliminate the unknown physical param-
eter function k+(s, s′) by using equilibrium considerations to
relate it to the other physical parameter k−. There exists a
critical monomer concentration ρm at which an m-cluster is
at equilibrium with its surroundings so that

k+ρm − k−(s − s′) = 0. (4)

FIG. 2. Nucleation, growth, and shielding. (a) Classical nucleation of an initial critically sized spherical mineral cluster of surface area s∗ (≈3 nm2). The
activation energy ∆Gcrit (units of kBT ) corresponds to the energy of the cluster of critical size (of units surface area). A flux j∗ of nucleating particles is
generated by the system under the condition of supersaturation. (b) Unregulated growth. Upon nucleation, particles grow uncontrollably at a size dependent
rate v0(s) as defined in Eq. (22). (c) The attachment of proteins (shielding) alters the growth rate. The growth rate of the mineral vn(s) depends on the size s
of the mineral phase as well as the number of attached FA monomers n. The attachment of an additional protein to a cluster shielded by n proteins shields an
additional surface area of size sn+1− sn. Completely shielded particles, where the surface area s is less than the shielding capacity sn, do not grow.
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At the equilibrium concentration, the free energy gap between
clusters of size m and m + 1 also disappears so that

δG = ∆µ + (36v̄2π)1/3γ((m + 1)2/3 − m2/3) = 0, (5)

where ∆µ = log(ρs/ρm) is the chemical potential, and ρs
is the free monomer concentration at saturation (where the
solution is in equilibrium with an infinitely large cluster).
Eq. (5) implies that

ρm = ρs exp
�(36v̄2π)1/3γ((m + 1)2/3 − m2/3)�

= ρs exp

−∆µ

f

(m∗
m

)1/3
(
1 − 1

6m
+ O(m−2)

)

= ρ∞ exp

∆µ


1 − 1

f

(m∗
m

)1/3


× exp

∆µ

f

(m∗
m

)1/3


1
6m
+ O(m−2)


. (6)

Substitution of ρm from Eq. (6) into Eq. (4) yields the
expression for k+,

k+ =
k−(s − s′)

ρs exp[−∆µ(s∗/s)/ f ]
�
1 + O(m−4/3)� . (7)

Eq. (7), substituted into Eq. (3), allows us to write the flux of
monomers into the mineral cluster,

J ≈ k−(s − s′)


ρr − ρs exp
(

β√
s

)
ρs exp

(
β√
s

) 
, (8)

as a function of the physical dissociation constant k−, the free
monomer saturation concentration at saturation ρs, the free
monomer concentration at the surface of the mineral ρr , and

β = −
∆µ
√

s∗
f

. (9)

The concentration ρr is found through conservation of
monomer mass by flux matching as in Fig. 3 in the quasi-
steady diffusive limit, where the FA protein forms a shielding
layer around the mineral of thickness ε. At a distance x
from the center of the mineral, outside of the shielding layer
(x > r + ε), the free monomer flux obeys Fick’s law

J = 4πx2D∂xρ = 4πD
(r + δ)(r + ε)

δ − ε
(ρ∞ − ρε)

= 4πD(r + ε)(ρ∞ − ρε) + O
( r + ε
δ − ε

)
, (10)

where the second equality is obtained by integration of the
concentration from x = r + ε to x = r + δ, where δ ≫ r is the
thickness of the diffusion layer. At the surface, the flux is given
by Eq. (8). Invoking free monomer conservation, by equating
Eq. (8) with Eq. (10), while also assuming that ε is small rela-
tive to the characteristic diffusion length (ρr ≈ ρε), allows us
to solve for the monomer concentration at the mineral surface,

ρr ≈ ρs
4πD(r + ε)ρ∞ + k−(s − s′)

4πD(r + ε)ρs exp
(

β√
s

)
+ k−(s − s′)

exp
(
β
√

s

)
.

(11)

In Eq. (11), one sees that as D → ∞, the concentration at
r goes to ρ∞, as expected. Plugging the concentration from

FIG. 3. Shielded diffusion-limited growth. FA protein forms a diffusion bar-
rier of height ε and surface area s′= sn, where n is the number of associated
proteins, around the mineral cluster. The absorption rate k+ρr per unit surface
area of the growth units depends on the local concentration ρr of growth
units at the surface of the particle. Dissociation also occurs at rate k− per
unit surface area. Neither absorption nor dissociation occurs in the shielded
region (red). For ε sufficiently small, ρr ≈ ρε. The concentration ρr is then
determined through conservation of flux. Outside of the diffusion layer (of
thickness δ ≫ r ), the concentration of growth units approaches ρ∞.

Eq. (11) into Eq. (8) yields the growth rate

V̇ = v̄ J ≈ k−(s − s′)


4πv̄D(r + ε)(ρ∞ − ρseβ/
√
s)

4πD(r + ε)ρseβ/
√
s + k−(s − s′)


.

(12)

While clusters of any size can be shielded, entirely shielded
clusters below the size s = s1 are not of our concern because
they are inert (recall that the first protein shields a maximal
surface area of size s1). Hence, we only wish to find the
shielded growth rate when s > s1. Making the assumption
that ε is small relative to r , for r =

√
s/4π >

√
s1/4π, yields

the volume growth rate in terms of s,

V̇ ≈ 1
√

16π

αs1/2(s − s′)(1 − ρseβ/
√
s/ρ∞)

ωs1/2eβ/
√
s + (s − s′) ,

with constants

ω = D
√

4πρs/k− (13)

and

α = 8v̄Dπρ∞. (14)

Note that in the limit as s − s′≪ ωs1/2eβ/
√
s, this growth

rate is surface-limited, whereas in the limit as s − s′≫
ωs1/2eβ/

√
s, growth is diffusion limited. The parameters ω

and β define the length-scale under which surface-limited
effects are significant. Typically, in nucleation problems,
the surface-limited regime is ignored as it is usually only
important when the particle is small. For the purposes of our
system, we take a cue from the study of Treboux et al.,13

which showed that aggregation of PCs is highly favorable
energetically and assume that aggregation of post-nuclear
PCs is diffusion limited. However, the surface-limited effects
can become significant at larger particle sizes for clusters that
are nearly completely shielded. In this regime, we note that
eβ/
√
s ≈ 1, allowing us to use the simplified growth rate,
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V̇ ≈ 1
√

16π

αs1/2(s − s′)
ωs1/2 + (s − s′) . (15)

The surface area growth rate is related to the volume growth
rate through the chain rule,

vn(s) =


16π
s

V̇ ≈ α(s − sn)
ωs1/2 + (s − sn) . (16)

C. Shielding by the protein phase

In this section, we compute the FA shielding rate for
a fixed cluster configuration. The shielding of the mineral
phase by FA can be understood in a manner similar to the
growth of the mineral phase. The overall adsorption rate of
FA monomers onto the surface results from a balance between
the diffusive supply and the surface reactions. Assuming first
that mineral clusters have less mobility than FA, and denoting
the diffusivity of FA by DFA, one may use similar reasoning
as in Sec. II B to find the overall attachment rate of FA. As
before, we may express the flux into the surface as a balance
between two competing reactions through a conservation law

JFA = konφr(s − s′) − koffs′, (17)

where kon is the binding rate of FA to the mineral per unit free
surface area per unit concentration, koff is the dissociation rate
of FA, φ∞ is the far-field heat bath concentration of FA, and
φr is the concentration of FA at the surface. By Eq. (10), we
may also write the diffusive flux

JFA ≈ DFA
√

4πs(φ∞ − φr), (18)

which, through conservation, matches the reaction flux of
Eq. (17). Equating Eq. (17) and Eq. (18) allows us to solve
for the surface concentration of FA,

φr ≈
DFA
√

4πsφ∞ + koffs′

kon(s − s′) + DFA
√

4πs
. (19)

Back-substituting Eq. (19) into Eq. (17) yields the overall rate,

JFA ≈ kon(s − s′) DFAφ∞
√

4πs + koffs′

kon(s − s′) + DFA
√

4πs
− koffs′. (20)

At this stage we make a few simplifying assumptions—
namely, that the overall shielding process is diffusion-limited
in the regime of most interest (where 0 ≤ s′ < s < sp). First
we remind the reader that our continuous formulation is an
approximation of an underlying discrete system. For this
reason, we note that the unshielded area s − s′ cannot become
infinitesimal. This fact allows us to make the assumption
that the binding reaction is always sufficiently fast such that
kon(s − s′) ≫ DFA

√
4πs, for s ≤ sp.

Finally, we will assume that the rate of detachments is
negligible (irreversible binding of FA to mineral clusters).
Altogether, these assumptions allow us to write the simpler
diffusion-limited shielding rate rule,

JFA ≈ DFA
√

4πsφ∞. (21)

Strictly speaking, the parameters φ∞ and ρ∞ contained in
these expressions are themselves dynamical variables. Their
evolution can be determined through mass conservation,

as all changes are due to the balance between supply and
consumption. We are interested however in the biologically
relevant situation where calcification is a local phenomenon
coupled to global auto-regulatory processes that maintain
supersaturation. For instance, fluid present in a knee joint is
continually replenished through interstitial flow. That is to
say, we set φ∞ and ρ∞ constant and examine the conditions
for the regulation of sedimentation in this regime.

D. Overall continuum model

Classical work by Landau and Lifshitz33 defined an
advection problem to quantitatively describe the evolution
of the cluster concentrations as clusters grow due to monomer
absorption. This work has been extended throughout the
years,34 and recently united with nucleation,35,36 which was
introduced as an effective boundary condition. We further
extend this prior work by incorporating the effects of shielding.
In this continuum approach, one may describe the evolution in
size of the concentration profile of clusters using an advection
equation, where the cluster growth rate provides an effective
“velocity” or drift. Overall, the dynamic concentration cn(s, t)
of clusters of mineral surface area s associated with n FA
monomers is described for all non-negative integers n ≥ 0 for
s > sn by the partial differential equations indexed by n,

∂cn(s, t)
∂t

+
∂

∂s


vn(s)                              

α(s − sn)
ωs1/2 + (s − sn) cn(s, t)



= −λs1/2 (cn(s, t) − cn−1(s, t))                                                          
diffusion limited

, (22)

where vn(s) is surface growth rate dependent on the number of
bound FA monomers, s′ = sn for n ≥ 1 and s′ = 0 for n = 0,

λ =
√

4πDFAφ∞, (23)

and for notational convenience we set c−1(s, t) ≡ 0. The right-
hand-side describes diffusion-limited shielding of the mineral
particles by FA protein, which is assumed to have high affinity
for the mineral phase. The solution domain for Eq. (22) is
shown in Fig. 2(c). For our purposes, we will assume that the
system starts at a reference time t = t0 at the initial state

cn(s, t0) =



0 s > s∗
c∞0 (s∗) s = s∗

, (24)

where c∞0 (s∗) is an equilibrium concentration set by the
nucleation process.

Critically sized clusters (of size s∗) are assumed to be
created at the Zeldovich rate j∗ of Eq. (2). This creation rate is
balanced with consumption due to growth and shielding. As in
the work of Farjoun and Neu,35 this growth flux is expressed
in terms of the non-dimensional rate of number-growth, V̇/v̄
of Eq. (15). Invoking their balance argument leads to the
constraint

j∗ = lim
s↘s∗

(
DFAφ∞

√
4πs +

√
4πDρ∞s3/2

ωs1/2 + s

)
c0(s, t)


. (25)
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Hence, the combined effects of nucleation and shielding
impose an effective Dirichlet boundary condition

c∞0 (s∗) ≡ c0(s∗, t)

= j∗

λ
√

s∗ +

√
4πDρ∞s3/2

∗

ωs1/2
∗ + s∗



−1

. (26)

III. RESULTS

In this section we construct a solution to the system
of partial differential equations defined in Eq. (22) and the
boundary conditions defined in Eqs. (24)–(26). We proceed
first by non-dimensionalization of the problem formulation.
Then, using the method of characteristics, we derive a
sequential relationship between the solutions of the system.
Approximating the solution of the system of equations,
we analyze the steady-state behavior of the system in the
limit where inhibition is sufficiently strong, from which we
compute the overall rate of protein consumption and propose
a criterion for effective inhibition of calcification. Finally, we
parameterize our equations using experimentally measured
values found in the literature.

A. Nondimensionalization

We seek a convenient non-dimensionalization of our serial
system of PDEs describing the shielded growth problem.
We begin by normalizing the surface area s, which ranges

between the critical nucleation surface area s∗ and another
critical surface area sp which represents the surface area
at sedimentation. Using these constants, we write the non-
dimensionalized size variable,

ŝ =
s − s∗
sp − s∗

, (27)

critical cluster size s∗,

ŝ∗ =
s∗

sp − s∗
, (28)

shielded surface area,

ŝ′ =
s′

sp − s∗
, (29)

shielding levels s′ = sn,

ŝn =
sn

sp − s∗
, (30)

and surface-limiting parameter ω,

ω̂ =
ω

√
sp − s∗

. (31)

Rescaling time

t̂ =
α(t − t0)
sp − s∗

(32)

results in the series of non-dimensional advection equations
of asymptotically unit speed,

∂ĉn
∂t̂
+

∂

∂ ŝ

 (ŝ + ŝ∗ − ŝn)ĉn(ŝ, t̂)
ω̂(ŝ + ŝ∗)1/2 + (ŝ + ŝ∗ − ŝn)


= −λ̂


ŝ + ŝ∗

�
ĉn(ŝ, t̂) − ĉn−1(ŝ, t̂)� (33)

with non-dimensional shielding constant

λ̂ =
λ(sp − s∗)3/2

α
, (34)

where the concentrations have been scaled by the nucleation
boundary condition

ĉn(ŝ, t̂) = cn(s(ŝ), t(t̂))
c∞0 (s∗)

, (35)

so that the concentration of critical clusters is fixed

ĉ0(0, t̂) = 1. (36)

B. Characteristics of the PDE system

The non-dimensionalized partial differential equations
of Eq. (33) can be solved by invoking the method of
characteristics sequentially for each PDE. The solutions to
the PDEs contain the characteristic curves described by the
equations,

dŝ
dt̂
=

(ŝ + ŝ∗ − ŝ′)
ω̂(ŝ + ŝ∗)1/2 + (ŝ + ŝ∗ − ŝ′) . (37)

The ŝ − t̂ characteristics, as shown in Fig. 4, originate from
points (t̂0, ŝ(t̂0)). They follow the relationship

t̂ − t̂0 = ŝ − ŝ(t̂0) + 2ω̂


ŝ + ŝ∗ −


ŝ(t̂0) + ŝ∗



+ ω̂ ŝ′ log *
,

√
ŝ + ŝ∗ −

√
ŝ′

√
ŝ + ŝ∗ +

√
ŝ′


ŝ(t̂0) + ŝ∗ +

√
ŝ′

ŝ(t̂0) + ŝ∗ −
√

ŝ′
+
-
. (38)

Particularly, for unshielded clusters (where ŝ′ = 0), the last
line of Eq. (38) is zero.

Along these curves, the concentration varies as

dĉn
dt̂
= − ω̂

2
√

ŝ + ŝ∗

ŝ + ŝ∗ + ŝ′
�
ω̂
√

ŝ + ŝ∗ + ŝ + ŝ∗ − ŝ′
�2 ĉn(t̂)

− λ̂


ŝ + ŝ∗
�
ĉn(t̂) − ĉn−1(ŝ, t̂)� . (39)

For the purpose of solving these equations, it is advantageous
to invoke the change-of-variables,

u ≡


ŝ + ŝ∗ (40)

ŝ′ ≡ ŝn (41)

ds = 2udu, (42)

to reparameterize the curves as

dt̂
du
= 2u


ω̂u

u2 − ŝn
+ 1


≥ 0 ∀u >


ŝn, (43)



154906-7 J. C. Chang and R. M. Miura J. Chem. Phys. 144, 154906 (2016)

FIG. 4. Characteristics for advection problem. Some sample ŝ− t̂ character-
istics for the nondimensionalized PDE problem with ŝn− ŝ∗= 0.25. For (a)
n = 0, and characteristics emerge from ŝ = ŝ∗. For (b) n ≥ 1, the characteris-
tics emerge from the curve {(ŝ, t̂c(ŝ))}, where t̂c is given in Eq. (47).

from where it is evident that the relationship between t̂ and
u is bijective. Hence, we may use u as a proxy for t̂, finding
that the concentration profiles along these curves vary with
u as

dĉn
du
= −


ω̂

u2 − ŝn

u2 + ŝn
ω̂u + u2 − ŝn

+ 2λ̂u2 u2 + ω̂u − ŝn
u2 − ŝn


ĉn

+ 2λ̂u2 u2 + ω̂u − ŝn
u2 − ŝn

ĉn−1(ŝ(u), t̂(u)). (44)

With the aid of an integrating factor, Eq. (44) can be written
in the exact differential form,

d



(u2 − ŝn)λ̂ω̂ ŝn+1

u2 + ω̂u − ŝn
exp


λ̂u2

(
ω̂ +

2
3

u
)

ĉn



= 2λ̂u2(u2 − ŝn)λ̂ω̂ ŝn exp

λ̂u2

(
ω̂ +

2
3

u
)

× ĉn−1(u, t̂(u)). (45)

The equation for the unshielded particle concentration ĉ0
corresponds to the homogeneous problem (ŝ0 ≡ 0; ĉ−1 ≡ 0).
Respecting the boundary condition invoked by nucleation, as
well as the initial Cauchy data, yields the solution

ĉ0(ŝ, t̂) = H
�
t̂ − t̂c(ŝ)� ω̂ +

√
ŝ + ŝ∗√

ŝ + ŝ∗

√
ŝ∗

ω̂ +
√

ŝ∗

×
exp


λ̂ŝ∗

�
ω̂ + 2

3

√
ŝ∗

�

exp

λ̂(ŝ + ŝ∗) �

ω̂ + 2
3

√
ŝ + ŝ∗

� , (46)

where H is the unit step function and

t̂c(ŝ) = ŝ + 2ω̂
(

ŝ + ŝ∗ −


ŝ∗
)

(47)

is analogous to a “first-passage-time” for the formation of
size-ŝ clusters.

To solve for the subsequent concentrations, we take
advantage of the Cauchy data by initializing all characteristic
curves along the curve (t̂c(ŝ), ŝ) given by Eq. (47), thereby
setting ĉn = 0 at the left endpoint. Hence, each point (ŝ, t̂)
such that ŝ ≥ ŝ′ = ŝn, and t̂ ≥ t̂c(ŝ) lies uniquely on a single
curve originating from


ŝ(t̂0) + ŝ∗ =

√
ŝ′

√
ŝ+ŝ∗+

√
ŝ′√

ŝ+ŝ∗−
√
ŝ′

exp

t̂−ŝ−2ω̂(√ ŝ+ŝ∗−√ ŝ∗)

ω̂ ŝ′


+ 1

√
ŝ+ŝ∗+

√
ŝ′√

ŝ+ŝ∗−
√
ŝ′

exp

t̂−ŝ−2ω̂(√ ŝ+ŝ∗−√ ŝ∗)

ω̂ ŝ′


− 1

.

(48)

As growth of the mineral phase occurs more quickly in
the unshielded clusters than in the shielded clusters, the ŝ − t̂
characteristics propagate quickest in the unshielded clusters.
Hence, the hierarchy supp(ĉn) ⊆ supp(ĉn−1) ⊆ · · · ⊆ supp(ĉ0)
holds. In fact, the supports of all functions ĉn are equal, as
necessitated by the coupling defined by the right-hand-side
of Eq. (33). The creation of size-ŝ clusters of shielding n is
driven more by the shielding of “n − 1 clusters” rather than
the growth of “n clusters.” We use this fact along with the
presence of an exponential term within the exact differential
of the right hand side of Eq. (45) to formulate the ansatz,

ĉn(ŝ, t̂) = H
�
t̂ − t̂c(ŝ)� gn(ŝ, t̂) exp


−λ̂(ŝ + ŝ∗)

(
ω̂ +

2
3


ŝ + ŝ∗

)
exp


λ̂ŝ∗

(
ω̂ +

2
3


ŝ∗

)
, (49)

where

gn(u) = 2λ̂
u2 + ω̂u − ŝn
(u2 − ŝn)λ̂ω̂ ŝn+1

×
 u

√
ŝ(t̂0)+ŝ∗

q2(q2 − ŝn)λ̂ω̂ ŝngn−1(q)dq. (50)

According to Eq. (46),

g0(u) = ω̂ + u
u

√
ŝ∗

ω̂ +
√

ŝ∗
. (51)

For solving gn(ŝ, t̂), the lower bound for the integral in Eq. (50)
is taken from Eq. (48). For solving the next equation gn+1(ŝ, t̂),
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all instances of ŝ, t̂ reparameterized by the variable u using
Eq. (48).

The iterated integrals of Eq. (50) can be solved
numerically through standard quadrature methods. Here we
find some properties of the solutions to these equations before
exploring their steady-state behavior, which is of the most
interest to us.

First, there is the question of whether these equations are
well-posed. For u near

√
ŝn, one can invoke L’Hospital’s rule

on Eq. (50) to find that

lim
u↘
√
ŝn

gn(u) = λ̂ω̂
√

ŝn
λ̂ω̂ ŝn + 1

= O(1).

So, the solutions are bounded on the left. Now, we seek
to find pointwise bounds for the solution away from the left
boundary (for u >

√
ŝn). We note that the lower bound of the

integral term in Eq. (50), given by Eq. (48), approaches
√

ŝn
as t → ∞. Since the integrand is non-negative, the solution is
bounded from above by the steady state solution,

gn(u) = 2λ̂
u2 + ω̂u − ŝn
(u2 − ŝn)λ̂ω̂ ŝn+1

×
 u

√
ŝ(t̂0)+ŝ∗

q2(q2 − ŝn)λ̂ω̂ ŝngn−1(q)dq

≤ 2λ̂
u2 + ω̂u − ŝn
(u2 − ŝn)λ̂ω̂ ŝn+1

 u

√
ŝn

q2(q2 − ŝn)λ̂ω̂ ŝngn−1(q)dq

≡ g∞n (u). (52)

By repeated applications of the Cauchy-Schwarz
inequality, one sees that the integral term in Eq. (52) satisfies
the inequalities,

 u

√
ŝn

q2(q2 − ŝn)λ̂ω̂ ŝngn−1(q)dq ≤
 u

√
ŝn

q4(q2 − ŝn)2λ̂ω̂ ŝndq
1/2

∥g∞n−1∥L2(√ ŝn,u)

≤


(u2 − sn)4λ̂ω̂ ŝn+1

4λ̂ω̂ ŝn + 1



1/4 
u8 − s4

n

8

1/4

∥gn−1∥L2(√ ŝn,u).

This computation gives us the pointwise bound on g∞n ,

g∞n (u) ≤ 2λ̂

(4λ̂ω̂ ŝn + 1)1/4

u2 + ω̂u − ŝn
(u2 − ŝn)3/4

×

u8 − ŝ4

n

8

1/4

∥gn−1∥L2(√ ŝn,u).

Using the fact that g∞0 (u) = O(1), it is easy to see by induction
that gn(u) is bounded and smooth (behaving locally like a
polynomial with order controlled by n) for u >

√
ŝn, where

it is of note that g∞n is bounded also in the vicinity of
√

ŝn.
Hence, by Eq. (49), each solution of cn(s, t) is Schwartz-class,
for all t ≥ 0.

C. Steady-state behavior

Our interest is in long-term behavior of the system.
Observe that the solutions of Eq. (49) contain an exponential
multiplicative factor that represents regulatory shielding
(Fig. 5). This shielding is strong provided that the term

in the exponential is large, which is the case when

λ̂(1 + ŝ∗)3/2 ≫ 1. (53)

In physical units, this criterion can be expressed succinctly in
terms of the concentration of FA protein needed,

φ∞ ≫
D

DFA

ρ∞ − ρs
mp

, (54)

where mp is critical number of Posner clusters in a pure-
mineral cluster at sedimentation. Note that if this condition
were not to hold, then a significant number of clusters of
sedimentation size would form. Sedimentation would then
occur until exhaustion of supersaturated species. In our
subsequent analysis, we will assume that this condition holds.

Since the overall solution is tapered by the exponential
term which goes as s3/2, or as the volume, we are most
interested in the behavior of g∞n (u) in the vicinity of

√
sn. In

this limit, we use the binomial theorem to approximate the
integrals of the general form, for a,b ∈ R,

 u

√
ŝn

q2(q2 − ŝn)λ̂ω̂ ŝnqa(q2 − ŝn)bdq =


ŝa+1
n

2

 u2−ŝn

0
xλ̂ω̂ ŝn+b

(
1 +

x
sn

) (a+1)/2

dx

=


ŝa+1
n

2



(u2 − ŝn)λ̂ω̂ ŝn+b+1

λ̂ω̂ ŝn + b + 1
+ O

(
(u2 − ŝn)λ̂ω̂ ŝn+b+2

)
. (55)

Eq. (55) allows us to evaluate g∞1 to the leading order,

g∞1 (u) ≈
√

ŝ∗
ω̂ +
√

ŝ∗

λ̂(√ ŝ1 + ω̂)
λ̂ω̂ ŝ1 + 1

�(u2 − ŝ1) + ω̂u
�
. (56)

Through an inductive argument, one finds that for n ≥ 1,

g∞n (u) ≈ (u2 − ŝn + ω̂u)
√

ŝ∗
ω̂ +
√

ŝ∗

× 1
ŝ1

n
j=1

λ̂((ŝ j − ŝ j−1) ŝ j + ŝ jω̂)
λ̂ω̂ ŝ j + 1

. (57)
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FIG. 5. Steady-state cluster concentration c∞n (s) and domain decomposition
for computing the protein consumption rate. Green shading (darker is more
concentrated) corresponds to increased steady-state concentration of mineral
clusters of the particular size (given by horizontal axis) with the given number
of attached FA proteins (given by the vertical axis). In the asymptotic case of
strong shielding (Eq. (54)), an exponential decay of concentration is seen
according to size. From this solution, an overall consumption rate of FA
protein can be computed by summing over the attachment rates Rn j, where
Rn j refers to the rate of protein consumption by clusters of n bound proteins
of size s j to s j+1.

We retain both u2 − sn and ω̂u in this expression because
it is unclear which term is large. As n increases however,
the ω̂u term will begin to dominate. This fact implies that
surface-limited effects arise for large clusters, contrary to the
situation for most other nucleation problems.

D. Rate of FA consumption

Since we know the rate of protein association as a function
of n (the number of bound proteins) and s (the surface area
of the mineral phase), we can compute the total rate of FA
consumption. Denote Rjk (Fig. 5) as the cumulative rate of
mineral consumption in shielding particles of j FA monomers
with size s ∈ (sk, sk+1). We derive this rate first for the shield-
ing of unshielded clusters of size at most s1, R00. Returning
back to an integer parameterization of the size, it is clear that
the total rate of consumption of FA for these clusters follows

R00 =

m(s1)
m=m(s∗)

λ


s(m)c∞0 (s(m)), (58)

where c∞0 is the steady state concentration depicted in Fig. 5.
The sum in Eq. (58) can be approximated by a left-Riemann
integral so that

m(s1)
m=m(s∗)

λ


s(m)c∞0 (s(m))

≈
 m(s1)

m(s∗)
λ


s(m)c∞0 (s(m))dm. (59)

After transformation from m back to s, one finds that

R00 ≈
λ

√
16v̄2π

 s1

s∗
sc∞0 (s)ds. (60)

Generalizing this result, it is easy to see that

Rn j ≈
λ

√
16v̄2π

 s j+1

s j

sc∞n (s)ds. (61)

The total consumption rate of FA protein follows

R ≈
at nucleation              
λ
√

s∗c∞0 (s∗)+
∞
n=0

∞
j=n

Rn j (62)

where the first term represents FA consumed in the
instantaneous shielding of critical clusters. Substituting
Eq. (49) yields

R ≈ λ
√

s∗c∞0 (s∗)


1 + exp

λs∗
α

(
ω +

2
3
√

s∗

)

×
∞
n=0

 ∞

sn

sg∞n (u(s))
16v̄2s∗π

exp

−λs
α

(
ω +

2
3
√

s
)

ds

, (63)

where u(s) = 
s/(sp − s∗). We approximate the integrals in

Eq. (63) using the change of variables

ξ =
λs
α

(
ω +

2
3
√

s
)
,

which we invert to find that

s =
(

3α
2λ

ξ

)2/3

− ω
(

3α
2λ

ξ

)1/3

+ O(ω2)

dξ =
λ

α

�
ω +
√

s
�

ds

=
λ

α



(
3α
2λ

ξ

)1/3

+
ω

2
+ O(ω2)


ds.

(64)

For n ≥ 1, we evaluate the integrals in Eq. (63),

 ∞

sn

sg∞n (u(s))
16v̄2s∗π

exp

−λs
α

(
ω +

2
3
√

s
)

ds =
1

16v̄2s∗π

√
s∗

ω +
√

s∗

1
s1

n
j=1

λ((s j − s j−1)√s j + s jω)
λωs j + α

×
 ∞

λsn
α (ω+ 2

3
√
sn)

s(s − sn + ω
√

s)
λ

α

(� 3α
2λ ξ

�1/3
+ ω

2 + O(ω2)
) e−ξdξ. (65)
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We approximate the integral in Eq. (65) by a sum of incomplete Gamma functions Γ(a, x), ∞

λsn
α (ω+ 2

3
√
sn)

s(s − sn + ω
√

s)
λ

α

(� 3α
2λ ξ

�1/3
+ ω

2 + O(ω2)
) e−ξdξ

=
α

λ

 ∞

λsn
α (ω+ 2

3
√
sn)

 (
3α
2λ

ξ

)
+ sn

(
3α
2λ

ξ

)1/3

− ω


5
2

(
3α
2λ

ξ

)2/3

− sn
2


+ O(ω2)


e−ξdξ ∼ 3α2

2λ2 Γ

(
2,
λsn
α

(
ω +

2
3
√

sn

))

+ sn

(
3α4

2λ4

)1/3

Γ

(
4
3
,
λsn
α

(
ω +

2
3
√

sn

))
− 5snαω

2λ

(
3α
2λ

)2/3

Γ

(
5
3
,
λsn
α

(
ω +

2
3
√

sn

))
+
αsnω

2λ
Γ

(
1,
λsn
α

(
ω +

2
3
√

sn

))
,

(66)

where the remainder term is exponentially small by rationale of Watson’s Lemma. For n = 0, we have ∞

s∗

sg∞0 (u(s))
16v̄2s∗π

exp

−λs
α

(
ω +

2
3
√

s
)

ds =
1

16v̄2s∗π

√
s∗

ω +
√

s∗

 ∞

s∗

�
s + ω

√
s

�
exp


−λs
α

(
ω +

2
3
√

s
)

ds (67)

=
1

16v̄2s∗π

√
s∗

ω +
√

s∗

α

λ

 ∞

λs∗
α

(
ω+

2
√
s∗

3

) 

(
3α
2λ

ξ

)1/3

− ω

2
+ O(ω2)


e−ξdξ

∼ α

λ


16v̄2s∗π

√
s∗

ω +
√

s∗

(
3α
2λ

)1/3

Γ

(
4
3
,
λs∗
α

(
ω +

2
√

s∗
3

))

− ω

2
Γ

(
1,
λs∗
α

(
ω +

2
√

s∗
3

))
. (68)

In the regime where λ/α → ∞, no clusters of size greater
than s∗ form, and the rate of FA consumption matches the
nucleation rate for ACP. Conversely, if clusters of size greater
than s1 form, the FA consumption rate is strictly greater than
the ACP nucleation rate.

E. Parameterization

As we have mentioned, normal physiological calcium
concentrations exceed supersaturation relative to the most
thermodynamically stable phase of calcium phosphate. In
fact, as we shall see, they also exceed supersaturation relative
to ACP.

Normal serum free ionic Ca2+ concentration varies
between 1.2 mM and 1.3 mM,37 and normal total serum
phosphate concentration varies between 1.12 mM and
1.45 mM. At pH = 7.4, one finds using the Henderson-
Hasselbalch equation that the concentration of free PO3−

4 lies
between 3.7 and 4.9 nM. Various studies have explored the
solubility of ACP relative to concentrations of its constituent
ions (Ca2+, PO3−

4 ). By empirical formula, ACP has the
negative-log10-solubility pKs = 3pCa + 2pPO4 ≈ 26 at 310 K
and pH = 7.4.38 Using this calculation, one may compute the
supersaturation relative to ACP,

S(0) = *
,

[Ca2+]3[PO3−
4 ]2

10−26
+
-

1/5

. (69)

Hence, the supersaturation ratio is approximately S(0) ≈ 1.3 in
normal conditions.

Estimates for the molecular weight of FA range from
51 to 67 kDa, while the usual serum concentrations of FA
range from 0.5 to 1.0 g/L. Thus, FA ranges in concentration

between 7 µM and 19 µM in normal situations. We assume
that mp = O(102), where it notable that a single FA protein
shields approximately 102 Posner clusters.22 For context,
a cluster of size m = 100 corresponds to a diameter of
approximately 4 nm, assuming hexagonal close packing
and using v̄ = 0.3 nm3.22 A diameter of 4 nm is similar in
extent to the size of FA, which has been measured to have
a hydrodynamical radius of 4.3 nm.42 We also note here that
the radius of a PC is approximately 0.4 nm, so the ratio of
the diffusivities between a PC monomer and FA molecule
(D/DFA) is approximately 10.

To estimate the concentration of PC monomers (ρ∞),
we rely on indirect evidence as precise quantification of
these clusters does not appear to have been performed in the
literature. We note that a study by Chughtai et al.40 found that
in physiological conditions, approximately 6% of solution
Ca2+ is present in calcium-phosphate complexes. A separate
study has found that approximately 50% of calcium phosphate
complexes have size consistent with Posner’s cluster.41 An
ACP nucleation study using 2.5 mM free Ca2+ and 1 mM
K2HPO4 found spherical clusters of approximately 30–80 nm
in diameter after 1 h.6 Assuming that the 80 nm size
corresponds to a cluster that nucleated soon after t = 0, one
finds that the concentration of PCs is at least 2 nM in their
preparation. Using this value, we estimate an equilibrium
constant for the formation of PCs,

keq =
ρ∞

[Ca2+]3[PO3−
4 ]2 , (70)

finding that pkeq ≈ −16. This computation estimates
nanomolar-range concentrations for PCs in the physiological
range that we defined above.
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With these rough estimates in mind, we may approximate
an “inhibition-ratio” from Eq. (53) as

I =
mpDFAφ∞

Dρ∞
≈ O(103). (71)

The concentration of post-nuclear clusters is exponential in
this ratio, suggesting that large values for I would inhibit
calcification. We turn now to assays of calcification inhibition
in order to validate this computation.

Heiss et al.43 assessed the inhibition of sedimentation in
a highly supersaturated solution of 20 mM Ca2+ and 6 mM
Na2HPO4 in a closed system. For this system, Eq. (70) provides
an estimate of ρ∞ = 2.5 × 10−5 M. At 20 µM, corresponding
to I = O(102), FA was shown to inhibit sedimentation fully
over a time interval of days. At 1.5 µM, corresponding to
I = O(101), FA was seen to initially inhibit sedimentation, but
only for a period of 2 h. In the latter case, we expect two things
to be occurring. First, because the experiments are conducted
in closed systems, exhaustion of FA is occurring over the long
time span. Second, inhibition is exponentially weaker than it
is in physiological settings implying a proportionally quicker
rate of sedimentation.

IV. DISCUSSION

A. Protein consumption rate and implications

The quantity R sets a minimum replenishment rate for
new FA protein in order to maintain a steady concentration
of FA, and hence colloidal stability. As seen in Eq. (26),
the parameter λ is present in the denominator of c∞0 (s∗). As
a result, to the leading order, R increases as λ decreases.
Failure to maintain this replenishment rate leads to decrease
in φ∞, the concentration of FA. A drop in φ∞ further
decreases λ, thereby further exacerbating the situation (the
less FA available, the more that is needed). Effectively, in the
regime where calcium and phosphate concentrations remain
supersaturated, the number of FA molecules required to buffer
each nucleating mineral particle increases as the concentration
of FA decreases.

Thus, even a small destabilization in FA replenishment
can feed-forward to avalanche into catastrophic calcium
phosphate sedimentation. This observation explains the
experimental finding that serum FA is often significantly
depressed in systems exhibiting ectopic calcification, yet
plentiful in the sedimented plaques.44

B. Assumptions, limitations, and extensions

In our theoretical treatment of this topic, we have made
some key simplifying assumptions. Correspondingly, we have
also limited the scope of our formulation and results. We
reiterate that we are primarily interested in the earliest stages
of the mineralization process, immediately after nascent nuclei
have overcome the kinetic barrier and progression is governed
by thermodynamic considerations. For this reason, we do not
consider later phases of calcium phosphates, as well as their
nucleation through heterogeneous nucleation involving ACP
precursors.19 It is notable, however, that the transformations
of calcium phosphate from ACP to HA have been a rich topic

of research, and FA protein is known to interact with these
phases as well, just as it interacts with ACP.42

Biologically, we also assume that the specific structure
of FA is important in two ways. First, its hydrodynamical
mobility determines the rate at which it is able to interact with
mineral clusters. Second, its precise biochemical structure
determines its propensity for strong interactions with post-
nuclear clusters. We have assumed this mechanism to be
the primary mechanism for FA-based inhibition for several
reasons.

Mainly, this mechanism has been suggested in the
experimental literature.28 Alternatively, FA has been reported
to be able to bind calcium ions directly,26 and hypothesized
to bind pre-nucleation clusters (Posner’s clusters) directly.22

Yet, binding free calcium ions directly would not inhibit
nucleation without decreasing supersaturation. Binding of
pre-nucleation clusters would decrease the nucleation rate
for calcium phosphates, running counter to experimental
evidence.28

Aside from the experimental evidence, there are apparent
advantages to the solubilizing of post-nuclear particles as both
an effective and efficient strategy for controlling sedimentation
in super-saturated systems. While binding of pre-nucleation
clusters would inhibit nucleation by increasing the energy
barrier, it would require more inhibitory proteins to work
because pre-nucleation clusters form at quicker rates than post-
nucleation clusters. Experimental and theoretical evidence
has confirmed the presence and stability of Posner’s clusters
in biological solutions. In our formulation, we assume that
pre-nucleation clusters exist in quasi-steady equilibrium with
free calcium and phosphate. We also assume that FA–free
calcium and FA–pre-nucleation cluster interactions are weak
and reversible so that we may ignore them.

It is this specificity of mechanism that makes FA a potent
calcification inhibitor. Uniquely, experiments have shown that
FA is the crucial protein for in vivo mineralization inhibition.
While other macromolecules such as albumin are known to
interact with calcium phosphates, their physical attributes
make them insufficient for this task.

Albumin acts as a buffering agent for calcium in blood,
helping to maintain Ca2+ concentration in an analogous
manner to maintenance of free H+ ion concentration by
pH buffers. For purposes of this study, the main effect of
albumin is in setting the far-field equilibrium concentration
of Ca2+ and hence mineral monomers. We are ignoring
interactions between the regulatory FA protein and other
plasma proteins such as albumin. Although lacking in intrinsic
capability, albumin has been shown to enhance the inhibitory
properties of FA protein;45 however, their main effect is
in later-stage stabilization of complexes containing multiple
protein-mineral clusters.43

In this manuscript, we have also ignored other possible
contributing factors to the overall mineralization process
including interactions with other ions such as sodium,
chloride, magnesium, zinc, or H+/OH−. While these ions have
been shown to influence mineralization, their importance in
the early stages of nucleation is unclear.

We also have not considered secondary interactions
between mineral-FA hybrids, or the formation of calciprotein
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polymers. One of the goals of the present study has been to
determine the content of the individual calciprotein monomers
(the protein-mineral hybrid complexes we study in this
manuscript). Observations by Wald et al.46 have shown that the
stability and size of these secondary structures varies with the
concentration of FA present in the system. A possible cause
for this effect is the variations in the mineral to protein ratio
in the clusters that we form in our model. The understanding
of these calciprotein monomers gained from this study should
prove useful in better-understanding the kinetics behind the
formation of calciprotein polymers as well as subsequent
phase transitions.

Finally, while we have made an attempt to parameterize
our model based on quantitative results from the past
literature, our numerical estimates remain rough guides
and further experimentation is likely needed to more-
accurately parameterize our model. In particular, as the precise
mechanism for calcium phosphate nucleation becomes better
known, it will become easier to characterize the precise
nucleation barrier and nucleation rate of calcium phosphate
in order to better-understand the FA consumption rate. We
have assumed for instance that the Posner cluster is the
pre-nucleation cluster for this system, but recent literature has
been mixed with respect to this hypothesis. We would like to
emphasize, however, that our formulation is independent of
the precise nature of these clusters as the bulk of our analyses
focus on post-nucleation events.

Looking more broadly at our work, the methodology
that we have developed in this manuscript has potential
in explaining a variety of solubility problems throughout
biology. As an example, the system of stabilization, transport,
and clearance of lipid molecules by high-density lipoprotein
(HDL) and low-density lipoprotein (LDL) bears striking
resemblance to the calcium-phosphate-FA system that we
have analyzed in this manuscript. The formation of protein-
non-protein complexes or colloids is a widespread feature of
the homeostasis of solutions in biology.

V. SUMMARY

In this manuscript we have utilized classical nucleation
theory to provide a quantitative description of the growth of
calcium phosphate nanoparticles interacting with a shielding
protein. In contrast with other theoretical work on similar
systems, we have not neglected possible surface-limiting
regimes of the process. Our quantitative description of the
process provides an estimate of the critical concentration of
shielding protein necessary for stable long-term inhibition of
calcification, as well as an estimate of the total rate that the
protein is consumed.

Critically, we have found that disruptions of the ability
to maintain the concentration of FA leads to increased
overall consumption of the protein, and hence, exhaustion
and sedimentation.
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