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ABSTRACT

Identification of operon structure is critical to under-
standing gene regulation and function, and patho-
genesis, and for identifying targets towards the
development of new antibiotics in bacteria. Rec
ently, the complete genome sequences of a large
number of important human bacterial pathogens
have become available for computational analysis,
including the major human Gram-positive pathogen
Staphylococcus aureus. By annotating the predicted
operon structure of the S.aureus genome, we hope to
facilitate the exploration of the unique biology of this
organism as well as the comparative genomics across
a broad range of bacteria. We have integrated several
operon prediction methods and developed a consen-
sus approach to score the likelihood of each adjacent
gene pair to be co-transcribed. Gene pairs were separ-
ated into distinct operons when scores were equal to
or below an empirical threshold. Using this approach,
we have generated a S.aureus genome map with
scores annotated at the intersections of every adja-
cent gene pair. This approach predicted about 864
monocistronic transcriptsand533polycistronicoper-
ons from the protein-encoding genes in the S.aureus
strain Mu50 genome. When compared with a set of
experimentally determined S.aureus operons from
literaturesources, thismethodsuccessfullypredicted
at least 91% of gene pairs. At the transcription unit
level, this approach correctly identified at least 92%
of complete operons in this dataset. This consensus
approach has enabled us to predict operons with high
accuracy from a genome where limited experimental
evidence for operon structure is available.

INTRODUCTION

Operons are a string of one or more genes co-transcribed as a
unit. Understanding the organization of operons in a bacterial
genome provides insight into both gene function and regula-
tion. Very frequently an operon will contain a cluster of genes
in a common pathway or mediating a common biological
function. A classical example is the Escherichia coli lactose
operon in which genes in lactose metabolism are clustered

together and co-transcribed (1). Although some operons may
contain genes unrelated by function, such as the E.coli rpsU-
dnaG-rpoD operon containing three genes involved in trans-
lation, DNA replication and transcription, respectively, the
early understanding that these genes were co-transcribed led
to the hypothesis that this could allow for the cells to simul-
taneously coordinate regulation of these three macromole-
cular synthesis pathways (2). Linkage of genes in operons
is certainly at the transcriptional level but operons can also
contain signals for post-transcriptional regulation of gene
expression (3) that can result in very large differences in
the concentrations of gene products from adjacent, co-
transcribed genes. Additionally, there can be anywhere
from a single mRNA produced from one operon to extremely
complicated patterns of transcription that defy a classical
definition of an ‘operon’. Bacterial operons vary in length
from simple monocistronic transcripts—as many as 70% of
E.coli genes (4)—to very large operons encoding many ribo-
somal proteins (5). Knowledge of operon organization is
becoming increasingly important in the search for novel anti-
bacterial targets and for understanding the processes involved
in bacterial pathogenesis. Directed or random methods to
determine bacterial gene essentiality can create polar effects
on downstream genes that must be deconvoluted for full
understanding of gene function. Examples of these polar
approaches include the use of shotgun antisense to discover
essential bacterial genes (6), random transposon–promoter
out methods (7) and all other gene replacement or knockout
methods. Altogether, these facts point to the critical need to
map operons in a targeted organism.

There have been recent attempts to predict operon structure,
most of which have relied upon E.coli as the model organism.
Databases such as RegulonDB have been developed as an
exhaustive collection of operon organization and gene regula-
tion (8). These efforts have facilitated our understanding of
the gene regulatory network in E.coli; however, operon struc-
tures in most other organisms are poorly understood. With
increasing genomic sequences becoming available, research-
ers ask the questions: how can we predict operons in less
well characterized organisms from their genome sequences
in the relative absence of extensive experimental data; how
can we utilize the predicted information to guide future
research and discovery in these organisms; how well will
the predictions fit in with the existing and future experimental
evidence? The Gram-positive bacterium, Staphylococcus aur-
eus, a major human pathogen causing both community- and

*To whom correspondence should be addressed at current address: Merck & Co., Inc., MRLSDB1, 3535 General Atomics Court, San Diego, CA 92121, USA.
Tel: +1 858 202 5000; Fax: +1 858 202 5813; Email: liangsu_wang@merck.com

Nucleic Acids Research, Vol. 32 No. 12 ª Oxford University Press 2004; all rights reserved

Nucleic Acids Research, 2004, Vol. 32, No. 12 3689–3702
doi:10.1093/nar/gkh694

 Published online July 13, 2004



hospital-acquired infections, serves a good example of what
we can learn about predicting operon organization from the
genome sequence. In S.aureus there is limited experimental
evidence to determine operons. Prediction of operon structures
in S.aureus would also aid in drug target identification and
antibiotic development.

Operon structure is typically not conserved during evolution
(9), making operon prediction a non-trivial task. Several com-
putational methods have been developed to predict operons
and can be grouped into a few general categories. The first
method is to predict operons by detecting promoters and tran-
scription terminators. Although several programs have been
developed to predict rho-independent transcription termin-
ators (10–13), no efficient prokaryotic promoter-searching
algorithm is available, even for the model organism E.coli
(14). One approach to overcome this limit was to construct
hidden Markov models (HMMs) based on known promoters
and terminators, which enabled the prediction of operon struc-
tures. This method was reported to predict 60% of known
operons in E.coli (15). However, this method is difficult to
apply in organisms where promoters and terminators are not
as well characterized. The second method is to use a prob-
abilistic machine-learning approach to induce operon predic-
tion models using a variety of data types including sequence
data, gene expression data and functional annotation data. This
method estimates the probability of any consecutive sequence
of genes on the same strand to be an operon and yielded 67%
accuracy in E.coli (16). With the generation of a large amount
of microarray gene expression data, co-expression pattern has
recently been used as a tool to improve operon prediction (17).
Recently, Bockhorst et al. (18) developed a Bayesian network
approach to operon prediction and showed the method was
able to predict 78% of E.coli operons with 10% false positives.
However, these methods again are only applicable to organ-
isms in which vast amounts of experimental data are available.
A third method is to predict operon organization by intergenic
distances and functional relationships between adjacent genes
based on the observation that genes within operons tend to
have much shorter intergenic distances than genes at the bor-
ders of transcription units in E.coli (19). This method was
reported to have a maximum of 88% accuracy in identification
of adjacent gene pairs to be in an operon and found 75% of
known transcription units in E.coli. This method has opened
the possibility of operon predictions in bacterial genomes
other than E.coli. A fourth method is to predict operons by
conserved gene cluster analysis using a comparative genomics
approach. Although this method has the advantage of high
specificity (>98%) in identifying co-transcribed gene pairs,
it often fails to predict the whole operons and has low sensi-
tivity (20–22). Increased understanding of the metabolic path-
way networks contained in microbial genomes has allowed for
novel computational algorithms. Zheng et al. (23) developed a
computational pipeline to predict metabolism-related operons
based on the fact that the genes in operons are sometimes
involved in successive reactions in metabolic pathways.
This algorithm has provided a method to putatively annotate
unknown enzymes in microbial genomes in addition to pre-
diction of operon structure. Despite its high prediction sensi-
tivity (89%) and specificity (87%), the method is highly
dependent on biochemical pathway knowledge and,
thus, operons from genes involved in complex pathways or

less-well known pathways are more difficult to be predicted.
Furthermore, real operons may contain exceptions to this rule
leading to incorrect exclusion.

Results of in silico predictions can frequently be improved
by integration of various techniques. For example, Gelfand
and co-workers have developed and validated an integrative
approach to analyze transcription regulation sites by using
comparative analysis of genes, functions, regulatory elements,
etc., in bacterial genomes (24,25). Herein we describe a strat-
egy to integrate various operon prediction methods, especially
gene orientation analysis, intergenic distance analysis, con-
served gene cluster analysis and terminator detections, and
to score the confidence of likelihood of each adjacent gene
pairs to be in the same operon. Operons are predicted by
breaking apart low-scoring gene pairs with an empirical
threshold. By using this approach, we have developed a com-
putational pipeline to annotate operons in S.aureus genome.
We also compare our results to a set of known S.aureus oper-
ons from the literature in an attempt to validate our method.

MATERIALS AND METHODS

Sequence data

The complete genome sequence of S.aureus Mu50 strain
published by Kuroda et al. (26) was downloaded from NCBI
(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/Complete.
html) and imported into the Elitra proprietary microbial database
developed from Incyte PathoSeqTM. (The Elitra proprietary
microbial database was developed and improved from the
original Incyte PathoSeqTM database. In this database, unfin-
ished genomic nucleotide sequences are imported as FASTA
files and ORFs are annotated through Elitra’s proprietary gene
finding pipelines. Complete genome sequences from GenBank
are directly imported with original annotations. Orthologs
and paralogs from different genomes in the entire database are
cross-referenced through Elitra’s proprietary comparative
genomics analysis pipeline. For more information on Elitra
proprietary microbial database, please contact the authors.)
The sequences of other bacterial genomes used for compar-
ative genome analysis were also extracted from NCBI or TIGR
and imported to the Elitra proprietary microbial database. The
genome sequences from NCBI are: Aquifex aeolicus strain
VF5, Borrelia burgdorferi strain B31, Bacillus halodurans
C-125, Bacillus subtilis strain 168, Buchnera sp. APS,
Clostridium acetobutylicum ATCC824, Caulobacter cres-
centus CB15, Campylobacter jejuni strain NCTC 11168,
Chlamydia pneumoniae strain AR-39, Chlamydia trachomatis
strain MoPn, Escherichia coli strain K-12, Haemophilus
influenzae strain KW20, Helicobacter pylori strain 26695,
Listeria monocytogenes, Listeria innocua, Lactococcus lactis
strain IL1403, Mycoplasma genitalium isolate G37, Mycobac-
terium leprae strain TN, Mycoplasma pneumoniae strain
M129, Mycoplasma pulmonis UAB CTIP, Mycobacterium
tuberculosis CDC1551, Neisseria meningitides strain MC58,
Pseudomonas aeruginosa strain PAO1, Pasteurella multocida
Pm70, Rickettsia conorii Malish 7, Rickettsia prowazekii
strain Madrid E, Sinorhizobium meliloti 1021, Streptococcus
pneumoniae strain R6 hex, Streptococcus pyogenes strain M1
GAS, Salmonella typhi strain CT18, Salmonella typhimurium
strain SGSC1412, Synechocystis sp. strain PCC 6803,
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Thermotoga maritime strain MSB8, Treponema pallidum
strain Nichols, Ureaplasma urealyticum, Vibrio cholerae strain
N16961, Xylella fastidiosa 9a5c and Yersinia pestis strain
CO-92 Biovar Orientalis. The genome sequence of Enterococ-
cus facaelis strain V583 was downloaded from TIGR.

Besides S.aureus Mu50 strain, an additional seven S.aureus
strains were also used in the analyses. The genomic sequences
of these strains were either proprietary sequenced or down-
loaded from public sources as listed below and imported to the
Elitra proprietary microbial database: Buttle strain and MRSA
strain AS-5155 were sequenced by Incyte; MRSA strain
252 and MSSA strain 476 were downloaded from the Sanger
Center (http://www.sanger.ac.uk/Projects/Microbes/); strain
N315 was downloaded from NCBI; COL strain was down-
loaded from TIGR and strain NCTC8325 was downloaded
from Advanced Center For Genome Technology at the
University of Oklahoma (http://www.genome.ou.edu/).

Software

Rho-independent transcriptional terminators were identified
using GCG Terminator software from the Wisconsin
PackageTM (10–11). All other work was performed using
PERL scripts. The processed data were stored in an Oracle
database.

Intergenic distance analysis

Genes in S.aureus were grouped by orientation relative to
proximal 50 and 30 flanking genes. The intergenic distances
between adjacent genes in the same orientations were calcu-
lated from the corresponding coordinates in the Mu50 strain.
The intergenic distance between geneA and geneB was calcu-
lated in the following formula: distanceAB = geneB_start_
position � geneA_end_position. The orientation and the
distance of each gene pair were saved in Oracle.

Conserved gene cluster analysis

The deduced amino acid sequences from S.aureus and 39 other
bacterial genomes were analyzed against one another using
BLASTP (27,28). Paralogs of a gene in a genome were first
detected if they were more similar to each other than to any
genes from other genomes. Orthologs of a gene were identified
as the reciprocal best BLAST hits between two genomes, after
taking paralogs into account. Conserved gene clusters were
identified as orthologs when gene orders between two gen-
omes were conserved. Due to the combined requirement of
reciprocal best hits and conservation of gene order, orthologs
were not identified using clusters of orthologous groups
(COGs) although we used COG functional categories to eval-
uate gene functions in predicted operons (see below). This
allowed us to use conserved neighborhood as an additional
criterion for orthology prediction and also to include ortholo-
gous groups that occur only in two genomes. The following is
the procedure for identifying conserved gene clusters between
S.aureus and 39 other genomes:

Step 1: conserved gene pairs between S.aureus and one of
the 39 genomes were identified if two S.aureus genes (geneA,
geneB) were adjacent and in the same orientation, and if their
homologs (geneA0, geneB0) in the other genome were also adja-
cent and in the same orientation.

Step 2: all of the conserved gene pairs between S.aureus and
the other organism were captured in a table with each row
containing the gene IDs of one gene pair (geneA and geneB).

Step 3: repeat Step 1 and Step 2 to identify conserved gene
pairs between S.aureus and every other organism.

Step 4: use hashing function to cluster conserved gene pairs
into conserved gene arrays. For every row from the above gene
pair table, look up geneA and geneB in the cluster table (i.e. hash
table):

(i) If the hash table entries for both genes are 0, these two
genes belong to a new cluster together and they get as-
signed a new cluster number. The hash table entry is an
offset into a cluster array that has the actual cluster value.

(ii) If only one of the entries is 0, the gene corresponding to
that entry gets a hash table entry equal to that of the other
member.

(iii) If both entries are non-zero and identical, it means the
same gene pairs have been identified before by compar-
ison with another organism. Skip this row.

(iv) If both entries are non-zero and not identical, then replace
all occurrences of the larger cluster value with the smaller
one in the cluster array.

(v) Genes that have the same value in the hash table belong to
the same conserved gene clusters. Order them by their
relative coordinates in the S.aureus genome.

Searching for transcriptional terminators

The region encompassed by �20 to +200 nt around the stop
codon of each gene was extracted from the S.aureus Mu50
genome. GCG Terminator software was used to search for rho-
independent transcriptional terminators. Predicted terminators
with S-value > 0 were extracted.

Scoring gene pairs and determination of
operon boundaries

To determine whether two adjacent genes are likely to be in the
same operon, we have established an empirical scoring scheme
which assigns a numeric weight to the contribution of the
individual analysis described above. We chose a scoring
system that assigns a weight from 0 to 3, depending on the
influence of each of these analyses. The exact weights and
thresholds (e.g. intergenic distance) used to establish our scor-
ing system were empirically derived based on our analysis of
known operons in S.aureus and other organisms. The scoring
system is described below:

(i) Score = 0 if any of the following three criteria are met: the
two adjacent genes are in different orientations; or the
intergenic distance is >300 bp [in E.coli, the intergenic
distance of genes in the same operons usually do not
exceed 300 bp (15)]; or the intergenic distance is
>100 bp and the number of conserved organisms = 0.

(ii) Score = 1 if a gene pair has an intergenic distance >60 bp,
is conserved in less than 5 organisms analyzed and a
predicted terminator exists in between.

(iii) Score = 3 if any of the following criteria are met: the gene
pairs are conserved in at least 10 organisms; or the inter-
genic distance <30 bp; or if at least two of the following
requirements were met: intergenic distance <50 bp; no
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predicted terminators; the number of organisms con-
served greater than or equal to 5 but less than 10.

(iv) Score = 2 if a gene pair does not meet any of the above
requirements.

To define operon boundaries, gene pairs were broken apart
into two different operons if their scores were equal or below
a user-defined threshold. We used empirical thresholds with
scores of 0 or 1.

RESULTS AND DISCUSSION

Evaluation of individual operon prediction methods
on S.aureus genome

A transcription unit containing one gene is defined as a mono-
cistronic operon and a transcription unit containing multiple
genes as a polycistronic operon. The ability to predict the
operon structure of S.aureus could aid in better understanding
pathogenesis and in identifying and understanding the role of
novel antibiotic targets. Few operons in S.aureus have been
experimentally determined and, therefore, are insufficient to
build global operon prediction models. The currently available
methods that may be still applicable to operon predictions in

this organism are gene distance analysis, conserved gene
cluster analysis and detection of promoters and terminators
for transcription unit identifications. We evaluated each
individual method in S.aureus before integrating them.

Binning genes by orientation. As the first step, genes in the
S.aureus Mu50 genome were segregated into bins based on
orientation relative to flanking genes. Consecutive genes in the
same orientation were grouped into the same bin. A total of
670 bins from 2790 genes (including tRNA and rRNA genes)
were collected. Among them, 273 bins contained a single
gene, i.e. both 50 and 30 flanking genes were in opposite orien-
tations. These 273 genes were simply assumed to be mono-
cistronic operons and were not included in the downstream
distance analysis or conserved gene cluster analyses. The
remaining 397 bins had bin-sizes ranging from 2 to 63
genes with an average of 6.34 genes.

After the genes were binned by orientation, multi-gene bins
were subjected to further analysis (Figure 1). Binning greatly
simplified the operon annotation process because each bin
could be taken as an entity and methods developed for an
individual bin could be applied to other bins. The probability
of each gene pair in each multi-gene bin to be in an operon was

Figure 1. A flow chart of operon annotations in S.aureus by integrating various algorithms.
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individually evaluated by intergenic distance analysis, conser-
vation analysis and transcriptional terminator analysis.

Intergenic distance analysis. Intergenic distances between
genes within operons tend to be much shorter than distances
for genes not within operons (15,19). Analysis of experimen-
tally determined operons in E.coli revealed that the intergenic
distances were mostly within 100 bp and generally not >300 bp
(15). For the evaluation of intergenic distance analysis in
operon prediction in S.aureus, a simple prediction scheme
was used: gene pairs in the same bin were considered to be
in the same putative operon provided their intergenic distance
was below a predefined threshold. The optimal threshold for
this determination was not obvious in view of the lack of
experimental data on operon structure in S.aureus.

The overall intergenic distance distribution across all adja-
cent gene pairs was examined and compared to the overall
intergenic distance distribution in E.coli to confirm whether
the genome organizations in the two organisms were obviously
different in terms of gene spacing. As shown in Figure 2,
similar to E.coli, the intergenic distances of most of the adja-
cent gene pairs in the same orientation in S.aureus were
between �20 and 60 bp around stop codons of the first

genes with a clear peak at around 20 bp. Therefore, it is
reasonable to conclude that the distribution of intergenic
distances for co-transcribed genes in S.aureus might be similar
to that of E.coli. In fact, most of the genomes analyzed had
similar patterns (Figure 2), indicating that it may be feasible to
use generic intergenic distance thresholds for operon predic-
tion in a broad number of bacteria. This notion is confirmed by
a recent study by Moreno-Hagelsieb and Collado-Vides (29).
The only two genomes analyzed that had slightly different
gene spacing distributions were B.subtilis and P.aeruginosa,
both of which had a minor second peak around the 50 to 120 bp
region. The role or significance of this minor second peak was
not explored further.

Next, different distance thresholds for operon prediction in
S.aureus were evaluated. Table 1 shows the operon prediction
results from thresholds of 30, 50, 75, 100, 150 and 200 bp. By
comparing the COG functional categories (30) and the operon
information of other genomes from literature (if available), we
inspected some of the putative operons especially focusing on
those different operons between every two thresholds. While
30 or 50 bp thresholds appeared to be too stringent and 150
or 200 bp thresholds were too loose, in general thresholds of
75 or 100 bp seemed to balance false positives and false

Figure 2. Comparisons of frequency distance distributions of adjacent gene pairs in the same orientations in various bacterial genomes.

Table 1. Comparison of the putative operons in S.aureus at different intergenic distance thresholds using only the intergenic distance analysis method

Threshold (bp) No. of total Single-gene bins Muti-gene bins No. of genes in
putative operons No. of monocistrons No. of monocistrons No. of polycistrons largest putative operon

30 1820 273 757 517 14
50 1718 273 632 540 25
75 1610 273 502 562 25

100 1541 273 428 567 25
150 1385 273 265 574 29
200 1237 273 113 578 46
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negatives better than the other thresholds (data not shown).
Considering that multiple methods would be integrated for
final operon predictions, these thresholds were not further
refined.

Conserved gene cluster analysis. Several studies have found
that clusters with conserved gene order across bacterial gen-
omes have a high probability to be in the same operon (20–22).
Taking advantage of the availability of the complete sequence
for many bacterial genomes, conserved gene clusters in
S.aureus were analyzed relative to every other available gen-
ome by comparing their sequences and genome locations. To
reduce the rate of false positives, only gene pairs with <300 bp
intergenic distances within the same multi-gene bins were
analyzed. The numbers of conserved gene clusters between
S.aureus and other genomes are shown in Table 2. A total of 39
bacterial genomes were used for this analysis: 11 Gram-
positive, 23 Gram-negative and 5 other species. When only
one genome was used, the number of conserved gene clusters
predicted by this method was small, ranging from 27 to
245 clusters and the number of genes in the conserved gene
clusters ranging from 2.8 to 27% of all the genes in the
S.aureus Mu50 genome. The average cluster sizes range

from 2.3 to 3 genes. These numbers are smaller than what
would be expected for operons; however, when multiple gen-
omes were used for comparison, these numbers increased with
addition of each genome (Table 3), consistent with earlier
studies (20,21). The increase in these numbers, however,
was very slow and reached a plateau (Table 3). Thus, even
if more genomes are added, the number of operons predicted is
probably low (low coverage) and many of the predicted oper-
ons are probably still partial. This suggested that conserved
gene cluster analysis alone is not sufficient for whole genome
operon prediction and other methods should be combined for
higher coverage and whole operon prediction.

Detection of transcriptional terminators. The third method
evaluated was the detection of signals at transcription unit
boundaries. We extracted the first 70 bp of DNA sequence
upstream of the start codons from the 273 S.aureus monocis-
tronic operons determined by orientation as described earlier.
The MEME program from Wisconsin PackageTM was used in
an effort to find conserved motifs in the promoter regions of
these genes (31), followed by a MotifSearch program to search
motifs from a 70 bp upstream region of each gene in the
multi-gene bins using the profiles generated by MEME

Table 2. The number of conserved gene clusters in S.aureus when compared to other bacterial genomes

Organism compared Type No. of conserved gene
clusters

No. of genes % of S.aureus genes Average cluster size Largest cluster size

Aquifex aeolicus G� 27 76 2.8 2.8 10
Bacillus halodurans G+ 245 714 26.3 2.9 23
Bacillus subtilis G+ 244 722 26.6 3.0 23
Borrelia burgdorferi Spirochete 39 114 4.2 2.9 22
Buchnera sp. G� 40 119 4.4 3.0 14
Campylobacter jejuni G� 42 121 4.5 2.9 19
Caulobacter crescentus G� 75 190 7.0 2.5 14
Chlamydia pneumoniae G� 40 101 3.7 2.5 8
Chlamydia trachomatis G� 42 105 3.9 2.5 8
Clostridium acetobutylicum G+ 138 384 14.1 2.8 23
Enterococcus faecalis G+ 200 545 20.1 2.7 23
Escherichia coli G� 98 249 9.2 2.5 14
Haemophilus influenzae G� 74 191 7.0 2.6 11
Helicobacter pylori G� 29 85 3.1 2.9 15
Lactococcus lactis G+ 151 382 14.1 2.5 15
Listeria innocua G+ 238 718 26.5 3.0 23
Listeria monocytogenes G+ 243 732 27.0 3.0 23
Mycobacterium leprae G+ 72 181 6.7 2.5 11
Mycobacterium tuberculosis G+ 84 209 7.7 2.5 10
Mycoplasma genitalium Acid Fast 49 139 5.1 2.8 19
Mycoplasma pneumoniae Acid Fast 51 143 5.3 2.8 19
Mycoplasma pulmonis Acid Fast 51 133 4.9 2.6 12
Neisseria meningitidis G� 46 126 4.6 2.7 13
Pasteurella multocida G� 73 185 6.8 2.5 14
Pseudomonas aeruginosa G� 86 222 8.2 2.6 14
Rickettsia conorii G� 35 97 3.6 2.8 14
Rickettsia prowazekii G� 36 99 3.6 2.8 14
Salmonella typhi G� 89 230 8.5 2.6 14
Salmonella typhimurium G� 91 233 8.6 2.6 14
Sinorhizobium meliloti G� 69 179 6.6 2.6 14
Streptococcus pneumoniae G+ 155 369 13.6 2.6 14
Streptococcus pyogenes G+ 137 396 14.6 2.7 28
Synechocystis sp. G� 28 84 3.1 3.0 13
Thermotoga maritima G� 70 192 7.1 2.7 23
Treponema pallidum Spirochete 32 94 3.5 2.9 19
Ureaplasma urealyticum G� 48 143 5.3 3.0 19
Vibrio cholerae G� 80 203 7.5 2.6 14
Xylella fastidiosa G� 60 163 6.0 2.7 14
Yersinia pestis G� 89 230 8.5 2.6 14
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(32). Canonical �10 and �35 promoter elements were not
detected (data not shown), probably due to the inherently
high A + T content of the S.aureus genome. Instead, we
focused on detection of transcription terminators only.

Rho-independent transcription terminators are distinct sec-
ondary structures in nascent RNAs. Putative terminators from
all available bacterial genomes have been grouped by structure
into five classes: L-shaped, I-shaped, V-shaped, U-shaped
and X-shaped (13). About 85.1% of transcription terminators
detected in S.aureus are L-shaped (13), a stem–loop followed
by a U-trail. Taking advantage of this knowledge, the GCG
Terminator software in the Wisconsin PackageTM that
searches for GC-rich dyad symmetry near a U-rich region
(10–11), may be suitable to detect S.aureus transcription ter-
minators. Nucleotide sequences �20 to 200 bp downstream of
each gene’s stop codon were extracted and imported into the
software to identify putative transcriptional terminators. As a
result, the software was able to detect 995 genes containing
terminator-like secondary structures. About 36% of S.aureus
genes have secondary structures predicted by GCG Terminator
to be rho-independent transcription terminators, only slightly
lower than what was reported by using GeSTer software (41%)
(13), suggesting GCG Terminator software was comparable
with GeSTer software for S.aureus transcription terminator
detection. Most of the putative terminators were near stop
codons, while a significant number of them were further
than 50 bp downstream of stop codons (Figure 3). Although
the GCG Terminator program might not detect all putative
rho-independent transcription terminators, it is also likely that
the majority of genes that lack detectable terminators are
probably part of operons or use rho-factor-dependent tran-
scriptional terminators. However, one would expect few
rho-dependent terminators in S.aureus because deletion of
its rho gene has no apparent effect on growth or virulence (33).

Scoring gene pairs and prediction of operons
using a consensus approach

Each operon prediction method evaluated above has advantages
and disadvantages. The intergenic distance analysis approach
provides the best coverage on genome-wide operon prediction.
It has high specificity when the distance cut-off length is short.
With the increase of distance threshold, operon prediction sen-
sitivity increases but its specificity decreases. The intergenic
distance analysis approach, however, is dependent on the qual-
ity of genome annotation. Missed open reading frames (ORFs)
in apparently long intergenic regions would result in false
prediction of operons. Additionally, accurate prediction of the
ORF start position continues to be a challenge in computational

biology; this may significantly impact operon prediction. The
conserved gene cluster analysis approach, on the other hand,
has high specificity with low sensitivity, even if more bacterial
genomes are used for analysis. Transcriptional promoters/
terminators are natural signals of operon boundaries. Termina-
tors can be used as flags for potential operon boundaries at the 30

end despite the fact that we were not successful in detecting
promoter sequences computationally in S.aureus and the exis-
tence of internal promoters/terminators within operons. To
maximize the use of these methods, one could seed the process
with the intergenic distance analysis by choosing an empirical
distance threshold, extend truncated operons by conserved gene
clusters, and break down chimerical operons by transcriptional
terminators and promoters, if available. Another slightly differ-
ent approach is to score the confidence of each adjacent gene
pairs to be in the same operon by their orientation, intergenic
distance, conservation across genomes and existence of termi-
nators, and then determine operon boundaries by separating
gene pairs with a score equal or lower than a user-defined
threshold. We chose to use the latter strategy for operon
prediction.

Scoring gene pairs. The confidence of a gene pair to be present
in the same operon was scored using an empirical 0–3 scale. A
score of 0 indicates that the two genes of a pair are very likely
to be in two separate operons. A gene pair with a score of

Table 3. Dependence of the number of conserved gene clusters in S.aureus on the number of genomes to which S.aureus was compared

No. of genomes clustered No. of conserved gene clusters No. of genes % of S.aureus genes Average cluster size Largest cluster size

5 285 860 32 3 23
10 306 919 34 3 23
15 328 1047 39 3.2 29
20 332 1067 39 3.2 29
25 336 1079 40 3.2 29
30 344 1108 41 3.2 29
35 345 1112 41 3.2 29
39 345 1113 41 3.2 29

Figure 3. Distance distribution of S.aureus Rho-independent transcription
terminators predicted by GCG Terminator software from Wisconsin
PackageTM.
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1 indicates that these two genes might be in the same operon,
but with low confidence. The intersections of such gene pairs
are also potential operon boundaries. A gene pair with a score
of 2 indicates that the two genes are probably in the same
operon. A gene pair with a score of 3 indicates that the two
genes are most likely in the same operon. The 0–3 scoring
scheme can be translated to be ‘no confidence’, ‘little confid-
ence’, ‘some confidence’ and ‘high confidence’ for two adjac-
ent genes to be in the same operon. A score of 0 can also be
considered to be ‘high confidence’ that two adjacent genes are
in distinct operons. Empirical criteria (see Materials and
Methods) for each score were derived based on our earlier
analysis of individual operon prediction algorithms and the
features of each algorithm reported in literature. The criteria
were set based on the following principle: stringent on score
0 (operon boundaries) and score 3 (operon interior), less
stringent on score 1 (potential operon boundaries) and score
2 (probable operon). Gene pairs with different orientations
were given a score of 0. Gene pairs with the same orientation
were also given a score of 0 provided they were >100 bp apart
and not conserved in any of the 39 genomes to which S.aureus
was compared. Though there may be certain exceptions, very
few co-transcribed gene pairs that meet a 0 score criteria were
expected.

An S.aureus genome map with scores annotated to the inter-
sections of every adjacent gene pair was built. S.aureus strain
Mu50 has 2790 genes including tRNA and rRNA genes and
thus 2790 gene pairs. Based on the above scheme, the dis-
tribution of gene-pair scores in our genome map is shown in
Table 4. A total of 51% of gene pairs scored 0 and 40% scored
3. This means that �91% of gene pairs had scores assigned
under stringent criteria with high confidence to be in distinct
operons or in the same operons. The predicted operons were
validated in the next section.

Operon prediction. With assignment of gene-pair scores to the
S.aureus whole genome, operon boundaries were determined
by breaking apart gene pairs whose scores were equal to or
below a user-defined threshold. Based on the definitions of
these scores, scores of 0 or 1 were determined to be reasonable
thresholds. Table 5 displays the operon prediction results using
0 or 1 as the maximum threshold. The criteria for predicting
rRNA or tRNA transcription units might be different from
protein-encoding genes so those were not included in the
results. When a score of 0 was used as the threshold to
break apart gene pairs, a total of 864 monocistrons and

533 polycistrons were generated, of which 80% of gene
pairs in the 533 polycistrons have a score of 3. The complete
list of predicted operons is available in the supplementary
material. About 60% of the polycistrons have an average
score of 3, indicating that all of the gene pairs in these poly-
cistrons are of high confidence. Only 53 polycistrons had one
or more gene pairs with a score of 1. Thus these 53 operons
were split into two or more operons when a score of 1 was used
as the threshold. This resulted in additional 62 operons.

Given the lack of sufficient published experimental evid-
ence in S.aureus, we preferred to err on the inclusive side for
operon predictions, thus using a score of 0 as the threshold.
Gene pairs with scores of 1 to 3, however, were flagged to
indicate their confidence levels and to assist with experimental
design. In this way, the largest transcription unit within a
specified region may be predicted as well as other potential
smaller transcription units in the same region.

The distribution of predicted operon size is shown in Table 6.
For polycistronic operons, �97% have less than 10 genes or
88% have no more than 5 genes. The average size of poly-
cistronic clusters was 3.47 genes. Using a score of 0 as the
threshold, the largest predicted operon was the ribosomal
superoperon containing 29 genes: rpsJ, rplC, rplD, rplW,

Table 4. Distribution of gene-pair scores in S.aureus Mu50 genome. A score of

0 indicates that the two genes of a pair are very likely to be in two distinct

operons

Gene-pair score No. of gene pairs % of gene pairs

0 1410 51
1 62 2
2 210 8
3 1108 40
Total 2790

A score of 1 indicates that the two genes might be in the same operon, but with
low confidence. A score of 2 indicates that the two genes are probably in the
same operon. A score of 3 indicates that the two genes are most likely in the
same operon.

Table 5. S.aureus operons generated at different thresholds using gene-pair

scoring scheme

Threshold = 0 Threshold <1

No. of total predicted operons 1397 1459
No. of monocistronic operons 864 921
No. of polycistronic operons 533 538
No. of polycistronic operons

with minimum gene-pair
score = 1

53 0

No. of polycistronic operons
with minimum gene-pair
score = 2

160 162

No. of polycistronic operons
with every gene-pair
score = 3

320 376

Transcription units for rRNA and tRNA genes were not included.

Table 6. Size of S.aureus predicted operons at threshold of score 0. The average

operon size of polycistrons was 3.47 genes

Predicted operon size Number of predicted operons

1 864
2 253
3 117
4 63
5 34
6 20
7 17
8 4
9 8

10 4
11 2
12 3
13 4
16 2
17 1
29 1
Total 1397
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rplB, rpsS, rplV, rpsC, rplP, rpmC, rpsQ, rplN, rplX, rplE,
rpsN, rpsH, rplF, rplR, rpsE, rpmD, rplO, secY, adk, infA,
rpmJ, rpsM, rpsK, rpoA, rplQ. A similar gene order exists
in many bacterial genomes with minor differences. Experi-
mental evidence exists in B.subtilis for the corresponding
ribosomal superoperon containing 30 genes (34). The
B.subtilis genome has an additional map gene encoding
methionine aminopeptidase located between the adk and
infA genes. In S.aureus, the map gene has been shuffled out
of the operon to another location in the genome and forms
a predicted monocistronic operon. According to our scoring
scheme, gene pairs in the ribosomal superoperon in S.aureus
are all scored 3 except the adk–infA pair. This pair was scored
1 due to a large intergenic distance (193 bp), existence of
transcriptional terminators and conservation in only a small
number of genomes.

By integrating the various methods, operons that otherwise
would be missed by using only one method should be pre-
dicted. For an example, dnaA–dnaN has 278 bp intergenic
distance, much further than most of the gene pairs of
known operons. In E.coli, these two genes are 5 bp apart
and are in the same operon (35,36). We predicted dnaA and
dnaN to be in the same operon in S.aureus with high confid-
ence despite the large intergenic distance because this gene
pair was conserved in 24 (out of 39) genomes to which
S.aureus was compared. The fact that dnaA and dnaN were
found to be in the same operon experimentally in B.subtilis
despite an intergenic distance of 189 bp (37) suggests that our
S.aureus prediction is likely accurate and highlights the dif-
ferences between these two Gram-positive bacteria and the
better-characterized E.coli. As another example, the genes
SAV1419, murG and SAV1417 are predicted to be in the
same operon with high confidence because of their short inter-
genic distance (12 and 17 bp, respectively) and lack of termi-
nators even though the order of these genes is not conserved in
any of the 39 other genomes examined (data not shown). The
three-gene order, however, is conserved in all eight S.aureus
strains examined (as listed in Materials and Methods). This
operon would not be predicted by a comparative genomics
or grouping by functions method alone.

Evaluation of operon prediction results from
the consensus approach

Validation of operon prediction. To validate the method,
S.aureus experimentally determined operons were collected
from publications by searching PubMed for ‘Staphylococcus
aureus [AND] operons’ and related logical search terms, and
then compared the published operon structures with our pre-
dictions. A sample totaling 40 unique operon results was col-
lected from the literature. Due to strain variations, however,
genes from 4 of the 40 operons were not found in strain Mu50
or were dispersed in various locations of the Mu50 chromo-
some. These four operons were thus excluded in our validation
process. The remaining 36 operons were used to validate
both the gene pair scoring scheme and the operon prediction
(Table 7).

As shown in Table 8, the gene pairs from these 36 known
operons including the pairs at the operon boundaries were
compiled and compared to the gene pair scores. If a boundary
was shared by two known operons adjacent to each other, this

boundary pair was only counted once. A total of 156 gene pairs
were collected, of which, 91% (142/156) pairs were success-
fully predicted. Breaking down the numbers into two cate-
gories, operon boundary and operon interior, 89% (62/70)
of operon boundaries and 93% (80/86) of gene pairs inside
known operons matched the prediction. If assigned gene pair
scores, the ratio of the number of gene pairs with confidence
scores 3, 2 and 1 was 70:9:1 when these gene pairs matched the
prediction. About 97% of gene pairs with a score 3 were in the
same operon when compared to known operons.

When each individual operon was considered as a whole, 33
of the 36 operons (92%) were predicted and only 3 operons
(8%) were split. Also, among these 33 predicted operons, 27
operons (82%) were identical to the prediction including both
boundaries, while 6 operons had additional gene(s) in the
prediction (Table 7, see below).

Among the 26 operons identical to the prediction, the largest
was the 16-gene operon capABCDEFGHIJKLMNOP, whose
products are involved in capsular polysaccharide biosynthesis
(38,39). A more complicated situation was seen with the
agrBDCA operon (40). The genes agrD and agrC were origin-
ally not predicted to be in the same operon based on ORFs in
the Mu50 genome. The intergenic distance between these two
genes is 198 bp and the gene order is not conserved in the 39
genomes examined. However, when we applied our operon
prediction method to the genome sequence of the RN4220
strain in which operon experimental data were derived (40),
the agrBDCA gene cluster was predicted to be a single operon.
The distance between agrD and agrC in RN4220 is 25 bp. In
Mu50, the agrC gene encodes a protein of 371 amino acids
while it encodes a protein of 430 amino acids in RN4220. A
similar analysis was performed on six more S.aureus genomes:
Buttle strain, MRSA strain AS-5155, COL strain, MRSA
strain 252, MSSA strain 476 and strain N315. Similar to strain
Mu50, the agrC gene from strain N315 encodes a 371 amino-
acid protein and is 198 bp away from agrD. However, agrC
encodes a 430 amino-acid protein and is <30 bp away from
agrD in the remaining strains. The observed differences
in operon predictions between RN4220 and Mu50 strains
could be due to either agrC ORF mis-annotation in strain
Mu50 or strain-dependent genetic polymorphisms. Inspection
of the 50 region sequence upstream of the agrC gene of strain
Mu50 has identified an additional 168 bp nucleotide region in
frame with the original agrC ORF. The newly predicted agrC
ORF encodes a 427 amino-acid protein, extended 56 amino
acids at the N-terminus from the original 371 amino acids.
Although both the newly extended ORF and the original ORF
lack canonical Shine-Dalgarno sequences, the additional 56
amino acids share some sequence similarity to the N-termini of
the agrC protein from the other S.aureus strains and is initiated
with an ATG codon.

Of the 6 known operons predicted by our method to contain
additional gene(s), some of the extra gene pairs were flagged
with a score 1 or 2. For example, two additional genes,
SAV1307 and SAV1308, in front of glnR–glnA operon, are
predicted to be part of that operon. The confidence score
between SAV1308 and glnR was 1, indicating that the like-
lihood of these two genes to be in the glnR–glnA operon was
low. In other cases, the extra genes were predicted to be in the
same operons with higher confidence. For an example, an
additional gene, SAV0931, was predicted to be in the same
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operon as dltABCD. SAV0931 is 16 bp upstream of dltABCD.
This gene is only found in S.aureus. We have realized that
many of the cited studies from the literature did not exclude the
possibility of additional genes in the same operon as those they
investigated. Thus it is possible that we have correctly pre-
dicted the entire operons in these cases. On the other hand,
genetic variations of different S.aureus strains could also be a
source of the differences between the prediction and the pub-
lished experimental data.

Comparison of the consensus approach to other individual
methods. The consensus approach described herein has inte-
grated an intergenic distance analysis method, a conserved
gene cluster analysis method and a terminator prediction
method for gene-pair scoring and operon prediction. Is this
consensus method an improvement over the individual meth-
ods? Operon prediction by intergenic distances and functional
relationships between adjacent genes was reported to have a
maximum of 88% accuracy in identification of adjacent gene
pairs to be in an operon and 75% of known transcription units
in E.coli (19) while the promoter and terminator signal pre-
diction method could predict 60% of known transcription units
in E.coli (15). Ermolaeva et al. (20) performed conserved gene
cluster analysis on 34 complete bacterial and archaeal gen-
omes and predicted co-transcribed gene pairs with 30–50%
sensitivity and 98% specificity in E.coli genome. The inte-
grated consensus method has significantly increased the pre-
diction accuracy to 91% for gene pair prediction and 92% for
complete operon prediction.

To further analyze whether the difference of the prediction
accuracy was an artifact of different validation datasets, the
individual operon prediction methods were evaluated using the
same set of 36 S.aureus known operons and the corresponding

Table 8. Summary of the validation of the gene-pair scoring scheme in S.aureus

Predicted gene Predicted Not predicted Total
pair score No. of

pairs
% of
pairs

No. of
pairs % of pairs

0 62 89 8 11 70
1 1 50 1 50 2
2 9 75 3 25 12
3 70 97 2 3 72
Total 142 91 14 9 156

Gene pairs from the 36 known operons (in Table 7) were compiled including
the pairs at the operon boundaries and compared to the predicted gene-pair
scores.

Table 7. S.aureus operon prediction validation results

No. Operon name Operon structure From experiments Reference Validation results

1 agr agrBDCA (40) Predicted, exact
2 alr orf1,orf2,orf3,dpj,alr,orf6,pemK (47) Predicted, exact
3 cap capABCDEFGHIJKLMNOP (38,39) Predicted, exact
4 clp2161 clp2161 (48) Predicted, exact
5 odh csb22 (odh),csb22-1(nhaC S carnosus) (48) Predicted, exact
6 csb csb28 (yhxD) (48) Predicted, exact
7 csb csb29 (bmrU cotranscribed with bmr) (48) Predicted, exact
8 ctsR ctsR, yacH, yacI,clp2392 (48) Predicted, exact
9 czr czrAB (49) Predicted, exact

10 ddh ddh (50) Predicted, exact
11 femAB femA,femB (51) Predicted, exact
12 fhu fhuC, fhuB, fhuD (52) Predicted, exact
13 glmM orf1,orf2,glmM (53) Predicted, exact
14 hld hld (40) Predicted, exact
15 hsp60 hsp10(groES), hsp60(groEL) (54,55) Predicted, exact
16 lac lacABCDFEG (56) Predicted, exact
17 mnh mnhABCDEFG (41) Predicted, exact
18 nrd nrdI,nrdE,nrdF (46) Predicted, exact
19 nrd nrdD,nrdG (46) Predicted, exact
20 pheT pheS, pheT (57) Predicted, exact
21 sar sar (58) Predicted, exact
22 sigB rsbU,rsbV,rsbW, sigB (59–61) Predicted, exact
23 sir sirABC (62) Predicted, exact
24 spa spa (63) Predicted, exact
25 ssp sspA,sspB,sspC (64) Predicted, exact
26 sst sstABCD (65) Predicted, exact
27 yurI csb10(yurI),csb10-1(yurX),csb10-2 (yurW),csb10-3 (yurV),csb10-4(yurU) (48) Predicted, exact
28 dlt dltABCD (66,67) Predicted, inclusive
29 gln pr,glnR,glnA (68,69) Predicted, inclusive
30 hsp70 hrc37, hsp20, hsp70, hsp40, orf35 (54) Predicted, inclusive
31 lrg lrgA,lrgB (70) Predicted, inclusive
32 lyt lytS,lytR (70) Predicted, inclusive
33 yckG csb4 (yckG), csb4-1(yckF) (48) Predicted, inclusive
34 egc seo,sem,sei,Cent1,Cent2,sen,seg (71) split
35 spl splA, splB, splC, splD, splE, splF (72) split
36 tca tcaR,tcaA,tcaB (73) split

The meanings of the validation results are as follow. ‘Predicted, exact’: the published operon is exactly the same as predicted by the consensus method described in
this paper. ‘Predicted, inclusive’: the published operon is predicted by the consensus method, but there are additional genes in the predicted operon. ‘split’: The
published operon is divided into two or more predicted operons by the consensus method.
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156 gene pairs. Due to the difficulty in predicting promoters in
S.aureus as described earlier, only the intergenic distance
method and the conserved gene cluster method were compared
to the consensus approach. As shown in Table 9, the intergenic
distance method predicted 75% of the 36 known operons and
88% of the 156 gene pairs in S.aureus while the conserved
gene cluster analysis method predicted 58% of the 36 operons
and 64% of the 156 gene pairs. These results are consistent
with those reported for these individual methods in E.coli and
have provided additional evidence for the improvement in
operon predictions made by the consensus approach.

Conservation of operons across organisms

A portion of the predicted S.aureus operons were compared to
experimentally derived operons from other organisms in the
literature or in the databases. In some cases, the operons are
conserved across organisms. For an example, a 5.8 kb region
in S.aureus Mu50 spans seven genes (mnhA, mnhB, mnhC,
mnhD, mnhE, mnhF, mnhG) that encode the multi-subunit of
Na+/H+ antiporter (41). Our method has predicted these seven
genes to be in the same operon with high confidence. In
B.subtilis, these seven genes were also demonstrated to be
in the same operon (mrp operon) (42). In most cases, operons
are not conserved as an entity, although a few gene pairs of an
operon may be conserved across organisms. Gene loss and
shuffling during evolution have resulted in operon rearrange-
ment across organisms. One such example is the genes
involved in the cell wall biosynthesis pathway. In E.coli,
mraZ, mraW, ftsL, ftsI, murE, murF, mraY, murD, ftsW,
murG, murC, ddlB, ftsQ, ftsA and ftsZ form a large operon
(43). In S.aureus, although a similar operon structure has been
predicted (SAV1177, SAV1178, SAV1179, ftsL, pbpA, mraY,
murD, div1b, ftsA, ftsZ), several of the mur genes (murE,
murF, murG, murC) have been rearranged and are present
in different operons. These operons are located far apart in
the S.aureus genome. Other mur gene operons, such as the
murA, murB and murI operons, are also located far away from
the above mur gene operons.

Another example that demonstrates that gene shuffling and
gene loss during evolution impact operon conservation is the
nrdIEF operon (Figure 4). In E.coli and S.typhimurium,
both nrdAB and nrdIEF operons encode ribonucleoside-
diphosphate reductase: nrdA and nrdE encode ribonucleo-
side-diphosphate reductase alpha subunit while nrdB and
nrdF encode the ribonucleoside-diphosphate reductase beta
subunit (44). The nrdI gene encodes an unknown protein.
The nrdIEF operon is also conserved in S.aureus and B.subtilis
(45,46). In some organisms such as M.genitalium and
M.pneumoniae, the nrdF gene is shuffled to the beginning
of the operon while it is rearranged to the other location of

the genome in organisms such as M.leprae and M.tuberculosis
(Figure 4). Some organisms such as H.influenzae and
P.aeruginosa only have the nrdAB operon and the nrdIEF
operon is lost. S.pneumoniae, on the other hand, has a
nrdEF operon. But its nrdI gene has been shuffled to another
location of the genome (Figure 4).

CONCLUSION

Understanding the organization of operons in S.aureus will aid
in studying the complex array of S.aureus-specific pathogen-
esis determinants and in identifying and prioritizing novel
antibiotic targets in this critically important pathogen. In
this work, the complete S.aureus operon map was predicted
through an integrated consensus algorithmic approach. This
dataset will be very useful to support and interpret studies on
this pathogen throughout the research community. It may be
also used for comparative genomics studies with other bacter-
ial organisms as more operon maps become available.

Various methods and algorithms have been devised to pre-
dict operons. By integrating gene orientation analysis, distance
analysis, conserved gene cluster analysis and transcription
terminator analysis, we have tried to maximize the operon
prediction power using available algorithms. The consensus
approach described above has several advantages. First,
the overlapping and complementary strengths of each indivi-
dual operon prediction method will serve to minimize the
drawbacks from each method. For example, the impact of
‘mis-annotated’ start site of ORFs on the intergenic distance
analysis approach may be overcome by conserved gene cluster
analysis; on the other hand, the low-sensitivity of operon pre-
diction by the conserved gene cluster analysis will be greatly
enhanced by the intergenic distance approach. Second, the
gene-pair scoring scheme allows the flexibility to err on the
‘inclusive’ or ‘exclusive’ side for operon prediction and aid
with experimental designs. It should be noted that the scoring
scale 0–3 is empirical and is based on our analysis of the
S.aureus genome. We found this scale is both simple and
sufficient to describe gene pairs for operon prediction. This
scale could also be applied to other genomes and can be further
refined or modified as needed. Nevertheless, the overall pro-
cess and strategy described in this paper will still be valid even
if the scoring scale is changed. Third, the consensus approach
is simple to implement and easy to adapt. For example, addi-
tional operon prediction methods can be easily integrated into
the pipeline with some alterations of the scoring parameters
without changing the overall process. Fourth, this method does
not rely on any experimental data, making this approach
applicable to prediction of operons in genomes other than
S.aureus where experimental training data may be even

Table 9. Comparison of S.aureus operon prediction results from the integrated consensus approach to other operon prediction results on the same dataset

Methods Complete operons (total 36) Gene pairs (total 156)
No. of operons predicted % accuracy No. of gene pairs predicted % accuracy

Integrated consensus approach 33 92 142 91
By intergenic distance only 27 75 137 88
By conserved gene clusters only 21 58 100 64

The dataset includes 36 known operons from literature (Table 7) and 156 gene pairs extracted from these known operons (Table 8).
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more limited. Based on currently available published
experimental data, the method was able to successfully predict
operon boundaries and gene pairs within operons at 89 and
93% accuracy in S.aureus, respectively. Whole operons were
predicted with 92% accuracy. It is possible that this accuracy
is an underestimation due to a couple of factors including
the genetic variations of the strains used in experiments. For
instance, distance between ORFs of actual pairs of operon
members could be under selection in some strains and not
in others. Additionally, experimental determination of operon
structure is performed by several methods of varying levels of
precision and accuracy. Rather than attempt to assess each of
those, we have accepted the published conclusions of operon
structure. Although the sample size used for validation was not
very large due to limited literature information (36 operons

and 156 gene pairs), the validation results still highlight the
improvement made in operon predictions by integrating var-
ious algorithms. Additional experiments are currently under-
way to further validate the predicted operons.

A drawback of our method is the terminator detection soft-
ware employed, which probably works well only on genomes
whose rho-independent terminators are largely L-shaped
(GC-rich stem–loop structure followed by U-trail) (13).
Such genomes include S.aureus, B.subtilis, M.pulmonis,
P.multocida, S.pneumoniae, S.pyogenes, U.urealyticum, etc.
Using generic terminator prediction software such as GeSTer
may improve the method (13). Another improvement may be
to integrate promoter sequence detection in operon prediction
since predicting promoter sequences in the AT-rich S.aureus
genome was initially unsuccessful. When efficient promoter

Figure 4. Comparison of nrdIEF operon across several bacterial organisms. Arrows represent the directions of the genes. A, nrdA; B, nrdB; I, nrdI; E, nrdE; F, nrdF.
The double line represents the genome.
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motif detection software and further scientific data on S.aureus
promoters become available, the quality of the gene pair scores
and the operon prediction may be further improved.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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