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Summary

Scale invariance refers to the maintenance of a constant ratio of developing organ size to body 

size. Though common, its underlying mechanisms remain poorly understood. Here we examined 

scaling in engineered E. coli that can form self-organized core-ring patterns in colonies. We found 

that the ring width exhibits perfect scale invariance to the colony size. Our analysis revealed a 

collective space-sensing mechanism, which entails sequential actions of an integral feedback loop 

and an incoherent feedforward loop. The integral feedback is implemented by the accumulation of 

a diffusive chemical produced by a colony. This accumulation, combined with nutrient 

consumption, sets the timing for ring initiation. The incoherent feedforward is implemented by the 

opposing effects of the domain size on the rate and duration of ring maturation. This mechanism 

emphasizes a role of timing control in achieving robust pattern scaling and provides a new 

perspective in examining the phenomenon in natural systems.

Introduction

Scale invariance, or the maintenance of constant relative size of an organ with respect to the 

whole body during animal development, or between individuals, is a common phenomenon 

in biology (Lesne and Lagues, 2012; Weymouth et al., 1942). For example, in the 
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Drosophila embryo, the imaginal discs are segmented to scale with the embryo size 

(Bollenbach et al., 2008); in the vertebrate neural tube, the ventral neuroepithelium 

subdivides into neural progenitor domains with precise positional information (Balaskas et 

al., 2012; Dessaud et al., 2008). For natural systems, scale invariance of pattern to size is a 

major, but unsolved, problem in developmental biology. Several reviews have noted the 

difficulties of studying pattern scaling (Barkai and Ben-Zvi, 2009; Fried and Iber, 2014; 

Gisiger, 2001). A major challenge is the limited number of experimentally tractable systems 

to enable precise perturbation and quantification of pattern scaling. Less than a quarter of the 

animal models used for studying pattern formation are used to study scale invariance 

(Lander, 2011). Moreover, the networks underlying pattern formation or scaling in existing 

model organisms are often highly complicated, making it difficult to tease out generally 

applicable design principles. Most proposed mechanisms that explain pattern scaling are 

theoretically based.

When pattern formation is driven by one or more morphogen gradients, scale invariance can 

be explained by several mechanisms (Averbukh et al., 2014; Ben-Zvi et al., 2011b; Gurdon 

and Bourillot, 2001). Analogous mechanisms have been proposed to examine the scale 

invariance of system responses to varying inputs (Skataric et al., 2015). In a source-sink 

mechanism (Wolpert, 1969), a diffusible morphogen is generated from a source at the center 

of the system and degraded at the system boundary, which can establish a linear gradient 

from source to sink regardless of the system size. When two opposing gradients are 

involved, their ratio as a function of the spatial coordinate can exhibit scale invariance, 

which in turn can generate scale-invariant patterns (McHale et al., 2006). Alternatively, a 

system may adopt feedback to adjust the scaling of a morphogen gradient. In particular, the 

expansion-repression mechanism, whereby a system produces fast-diffusing chemicals that 

suppress the morphogen, can lead to a gradient that scales with the body size (Ben-Zvi and 

Barkai, 2010; Ben-Zvi et al., 2008).

Studies have indicated that pattern formation may not require morphogen gradients (Chen et 

al., 2012; Roth and Lynch, 2012). Such patterns are much less studied in comparison to 

those relying on morphogen gradients. It remains unknown whether and how scale 

invariance might emerge in such systems. Addressing this question is challenging, in part 

due to the complexity of natural systems, where many confounding factors complicate 

quantitative experiments and data interpretation. To overcome this limitation, we set out to 

examine the scaling dynamics of pattern formation in E. coli programmed by a synthetic 

gene circuit that we previously developed (Figure 1A) (Payne et al., 2013). The circuit 

consists of a mutant T7 RNA polymerase (Tan et al., 2009) (T7RNAP) that activates its own 

expression and that of LuxR and LuxI. LuxI synthesizes an acyl-homoserine lactone (AHL), 

a membrane-diffusible chemical that upon binding and activating LuxR, can induce 

expression of T7 lysozyme. Lysozyme inhibits T7RNAP by forming a stable complex with 

it. The T7-lysozyme complex inhibits the transcription of T7RNAP as well (Stano and Patel, 

2004). CFP and mCherry fluorescent proteins are co-expressed with T7RNAP and 

lysozyme, respectively, to report the circuit dynamics.

As AHL is highly diffusible, its spatial gradient is negligible over the length scale of pattern 

formation in this system. All else being equal, the time required for AHL to reach a critical 
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concentration is inversely proportional to the size of the growth environment. Therefore, the 

production and accumulation of AHL enables a growing colony to collectively sense the 

domain size and to time the pattern formation accordingly (Payne et al., 2013). This sensing 

property suggests an opportunity to quantify pattern scaling in a well-defined experimental 

platform. Indeed, by using this system, we found a simple mechanism by which scale 

invariance can emerge without the need to scale the gradient of a diffusible morphogen.

Results

Scale invariance emerges from programmed pattern formation

We adopted an inkjet-printing technique to precisely control the inoculum size and the 

location of the initial seeding cells (Figures S1A–C) (Cohen et al., 2009). Briefly, bacterial 

culture was used as “ink” and printed onto the surface of soft agar in a multi-well device. 

This technique ensured precise control over the initial spatial arrangement of colonies and 

the initial cell number (~20) in each colony. By changing the configuration of initial cell 

placements, we were able to modulate the effective domain size of the growth environment 

available for each colony (Figure S1D).

Figure 1B shows a typical self-organized pattern in a microcolony at 24 h after incubation. 

The pattern consists of a core of high CFP and mCherry expression, as well as a wide 

peripheral ring of mCherry expression (see Figure S1E). This patterning process was 

reproducible (Figure S1F). In contrast, E. coli MG1655 cells not carrying the circuit did not 

generate these patterns under the same experimental conditions (Figure S1G).

The domain size plays a critical role in the observed patterning dynamics. No mCherry ring 

formed when the domain size was too small (<500 μm) or too large (>9000 μm). For 

intermediate domain sizes (between 1500 and 7500 μm), however, the ring width exhibited 

scale invariance with respect to the colony radius. Both were proportional to the domain 

radius (Figure 1C), leading to a constant ratio between them (Figure 1D).

Modeling reveals the essential requirements for scale invariance

The observed scale invariance is surprising, considering all of the diverse factors 

contributing to the patterning dynamics. Its simplicity suggests two possibilities. One is that 

the system parameters are extremely fine-tuned to generate such a simple outcome. 

Alternatively, beneath the apparent complexity of the circuit dynamics may be a simple 

regulatory core motif that ensures the observed outcome. If the latter is true, such a motif 

may define a generally applicable mechanism to generate robust scale invariance.

To address these issues, we formulated a set of partial differential equations (PDEs) to 

account for the circuit dynamics (see Supplemental Information), including intracellular 

gene expression and protein-protein interactions, bacterial growth and colony expansion 

(Figure S1H), and transport of intracellular components by cell movement (Edelstein-

Keshet, 1988). Due to their fast diffusion and the geometry of device, AHL and nutrient 

were assumed to have uniform concentrations across space (Figure S2B). In our model, the 

term nutrient is used to refer to one or more factors that limit the overall colony growth. Our 

model also accounted for the spatial variation in gene expression capacity across the colony: 
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this capacity was highest near the colony edge (defined as the location where cell density is 

95% of the carrying capacity) and decreased toward the interior of the colony. This empirical 

function lumps potential contribution of multiple factors, such as mechanical stress 

(Jozefczuk et al., 2010), cell-cell contact inhibition (Morse et al., 2012), and oxygen 

concentrations (Prindle et al., 2015; Salmon et al., 2003).

The model has 22 parameters; we chose their initial values based on the literature data or 

biologically realistic estimates. Given the high dimensional parameter space, however, we 

did not attempt to determine one parameter set that best fits the experimental data - it would 

likely represent an overfit. Instead, we sought to determine the likelihood of finding some 

parameter sets able to generate the observed scale invariance, and then identify the 

commonalities among these parameter sets. To address these questions, we developed a 

search algorithm (see Supplemental Information) to explore the parameter space. We 

examined 18,231 parameter sets, in which we fixed all parameters that had been measured 

experimentally (Table S1) and varied the remaining nine parameters randomly in a pre-

defined range of biologically meaningful values. For each parameter set, we simulated the 

patterning dynamics for varying domain sizes. We identified 409 parameter sets that 

produced mCherry core-ring patterns for varying domain sizes (Figure 2A, blue polygons). 

Of these 409 sets, 55 supported scale invariance (Figure S2C). This result underscores the 

notion that conditions underlying scale invariance are much more stringent than those 

underlying pattern formation (Lander, 2011; Rogers and Schier, 2011; Tomlin and Axelrod, 

2007). To determine the conditions underlying scale invariance, for each of the 409 

parameter sets, we performed a local optimization to generate a parameter set that produced 

scale invariance (see Supplemental Information, and Figure S2D for further details on the 

optimization).

Altogether, our parameter search and further optimization identified 409 parameter sets that 

generated scale invariance (Figure 2A). These parameter sets differed drastically from each 

other in terms of the range of the values we have searched for. This diversity suggests that 

scale invariance is a robust property that can be achieved by many combinations of 

parameters. We inspected the change of the parameter range during the optimization from 

pattern-forming sets to scale-invariance sets. Five parameters shifted in a consistent manner 

(Figure 2B). The final distributions of these parameters reveal three conditions for scale 

invariance. First, T7RNAP and lysozyme had minimal metabolic burden on cell growth, as 

indicated by reduced α and β values. Second, the gene expression capacity decreased slowly 

as a function of distance to the colony edge, as indicated by an optimal Hill coefficient (n) of 

around 1.0 and moderate width Kφ, which approximately matches the half-width of the 

colony wavefront. Third, the T7RNAP positive feedback needed to be sufficiently strong, as 

indicated by increased αT values. When these conditions were satisfied, the search algorithm 

identified a much greater fraction of parameter sets able to generate scale invariance, without 

further local optimization (Figure S2E).

The first two conditions distinguish the patterns reported here from those described 

previously (Payne et al., 2013). This distinction is indeed consistent with the differences 

between the two experimental conditions, in terms of cell strains and experimental platforms 

(see the Supplemental Information for a detailed comparison). In particular, we measured 
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growth of MC4100Z1 (the strain used in the previous study) and MG1655 (current study) 

cells carrying the pattern-formation circuit and its variants. These variants include the 

positive-feedback module, the pattern-formation circuit with the luxI gene knocked out, and 

the pattern-formation circuit with an effector gene co-expressed with the T7 lysozyme. 

Compared with MG1655 cells, MC4100Z1 cells experienced a higher metabolic burden 

when different circuits were induced. Furthermore, the pattern-formation circuit carrying an 

effector gene caused a higher metabolic burden than did the pattern-formation circuit by 

itself (Figure S2F). According to our simulation results, a high metabolic burden and a sharp 

gene expression profile would generate a narrow mCherry ring whose width does not show 

scale invariance with the colony size (Figure S2G, green boxed figure on left panel). These 

predictions are consistent with the experimental observation in the previous study (Payne et 

al., 2013).

Figure 2C shows simulated patterning dynamics from an optimal parameter set, which 

recapitulated the experimentally observed temporal dynamics of the CFP and mCherry 

pattern formation from 8 to 43 h (Figure 2D, also see Movie S1). Before the colony stopped 

expanding at ~12 h, CFP had accumulated to form a core at the center of the microcolony 

and a weak ring close to the colony edge. Its intensity continued to increase until ~26 h, 

when it began to decrease. Eventually, CFP decayed into a low and relatively flat profile (43 

h). Because mCherry is controlled by T7RNAP via the LuxR/LuxI module, its dynamics 

lagged behind that of CFP. The mCherry core and ring emerged at ~16 h and kept increasing 

in intensity until the end of measurement. As a result, the mCherry pattern was much more 

sustained than that of CFP.

Scale invariance is mediated by a collective sensing mechanism

Inspection of the simulations reveals a collective space-sensing mechanism that underlies the 

patterning process and the resulting scale invariance. The growth environment acts both as a 

nutrient reservoir for colony growth and as a sink for AHL produced by the colony (Figure 

3A). Everything else being equal, the rate of AHL accumulation decreases with the domain 

size. Therefore, the production and accumulation of AHL enables a colony to sense the 

domain size and to coordinate patterning. In other words, the domain size controls the pace 

and extent of colony expansion by determining nutrient availability. It also controls the 

timing of ring initiation by determining the accumulation of AHL produced by the colony. 

Meanwhile, the spatially dependent gene expression capacity provides the spatial cue to 

drive pattern formation. Scale invariance requires a proper coordination between the spatial 

and temporal cues, which are modulated by the domain size and circuit parameters. We now 

illustrate this notion by examining the key events during the mCherry patterning process, 

which can be divided into two phases: core formation and ring formation (Figures 2C, 2D, 

3B).

At the beginning stage of colony expansion, the T7RNAP positive feedback is active in all 

cells, leading to global CFP expression. AHL is building up to activate moderate mCherry 

expression. The gene expression capacity is uniformly high due to the small colony size. 

Due to the dilution from cell growth at the colony edge, CFP and mCherry are higher in the 

core at the single cell level. When the colony becomes sufficiently large, such that the 
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colony width is greater than Kφ, it manifests effects of the spatial dependence of the gene 

expression capacity. This spatial dependence combined with a strong T7RNAP positive 

feedback leads to formation of a CFP ring near the colony edge. However, because the 

expression of mCherry is weaker than that of CFP and insufficient to overcome the dilution 

due to fast cell growth at the colony edge, there is no mCherry ring formed yet. This phase 

defines the mCherry core formation. Near the colony edge, the advection of T7RNAP by 

colony growth and expansion negates effects of the high gene expression capacity, 

preventing accumulation of T7RNAP or the lysozyme near the edge. The T7 lysozyme 

profile is thus mainly determined by circuit logic and growth dilution. This phase is 

reminiscent of the expansion-repression mechanism (Averbukh et al., 2014; Ben-Zvi and 

Barkai, 2010). In our system, cell growth establishes a gradient by contributing to transport 

and dilution of a target molecule. The T7RNAP can be considered the expander that drives 

morphogen (AHL) synthesis, whereas the T7 lysozyme serves as the repressor. As a result of 

this feedback, the mCherry profile scales with colony radius at the end of first stage (Figure 

3C).

As AHL keeps increasing, the metabolic burden and nutrient depletion together slows down 

colony growth and expansion. Due to the interplay between the T7RNAP positive feedback 

and the AHL-mediated negative feedback (via lysozyme), T7RNAP has also become 

approximately uniform across space (Figures S3A–C). Therefore, the spatial dependence of 

mCherry is primarily determined by the gene expression capacity, which triggers initiation 

of the mCherry ring near the colony edge. This process is facilitated by the slowdown in 

overall cell growth. Conversely, the accumulation of mCherry (and thus the lysozyme) 

further enhances repression of T7RNAP, which contributes to the down regulation of AHL. 

Afterwards, the mCherry continues to be expressed across the colony, at rates constrained by 

the gene expression capacity. The maturation of the mCherry ring is characterized by its 

widening toward the colony center (Figure 3D).

The collective space-sensing mechanism provides a simple interpretation of the three critical 

requirements for scale invariance identified by our search algorithm. A low metabolic 
burden by the circuit components ensures that the colony expansion is limited not by the 

accumulation of a circuit species but rather by nutrient availability, which in turn is limited 

by the domain size. This coupling allows a perfect coordination between the stop of colony 

expansion and initiation of the ring at the colony edge.

To generate scale invariance, AHL and T7RNAP both need to be sufficiently uniform across 

space. The uniform distribution of AHL results from its fast diffusion. The uniform 

distribution of T7RNAP results from the interplay between the T7RNAP positive feedback 

and AHL-mediated negative feedback. Strong T7 positive feedback is critical for buffering 

against the varying gene expression capacity, ensuring a flat T7RNAP profile along the 

domain.

Finally, scale invariance requires a moderate gene expression capacity gradient, which has to 

decrease significantly toward the colony center. If the gene expression did not decrease, 

mCherry would be uniform across the entire colony. If the gene expression decreased too 
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sharply, only a narrow mCherry ring would emerge and its width would not scale with the 

colony width (Figure S2G).

These insights provide an intuitive interpretation for the emergence of scale invariance. 

When the ring initiates, the mCherry profile scales with the domain size. Thanks to the flat 

T7RNAP and AHL profiles, maturation of the mCherry ring is driven by gene expression 

capacity, which has a constant half-width Kφ. When Kφ matches the half-width of the colony 

wavefront and when the duration of maturation time window scales with the domain size, 

the change in mCherry during maturation will also scale with the domain size. As a result, 

the final mCherry profile scales with the domain size (See Supplemental Information and 

Figure 3D, Figures S3D–G for detailed reasoning).

The scale invariance is disrupted by perturbing temporal or spatial cues

Using the base parameter set (Table S2), simulations (Figure 4A) recapitulate the 

experimentally observed scaling properties (Figures 1C, D), where perfect scale invariance 

emerged for an intermediate range of domain sizes. According to this mechanism, the 

pattern formation or scale invariance can be disrupted by perturbing the temporal or spatial 

cues. When the domain size is too small, the colony size is too small for a distinct ring to 

emerge. In other words, the ring merges with the core to manifest no distinguishable pattern 

(Figure 4A, purple region). If the domain size is too large, AHL cannot accumulate to a high 

enough concentration to trigger ring initiation (Figure 4A, yellow region), again leading to 

the loss of scale invariance. Both aspects are consistent with experimental data (purple and 

yellow shaded regions in Figures 1C, D).

The timing cue can be modulated by adding exogenous AHL, which accelerates ring 

initiation (Figure 4B, Figure S4E). Our model predicts that the ring width remains a linear 

function of an intermediate domain size. In comparison with the base case, however, this 

range of domain sizes conferring the linear dependence is narrower and shifts toward large 

domain sizes with increasing AHL concentrations. In addition, the linear function has a 

positive intercept, leading to loss of scale invariance. Both predictions were validated by our 

observed patterning dynamics in the presence of 10–50 nM exogenously added AHL. The 

loss of scale invariance is due to two consequences of exogenous AHL (Supplemental 

Information, Figures S4A–D). First, the maturation time window no longer scales with the 

domain size, as the ring initiation time is decoupled with the domain size, unlike the base 

case. Second, the half-width of the colony wavefront becomes wider due to a slight increase 

in metabolic burden, resulting from accelerated expression of lysozyme and mCherry. This 

causes a mismatch with the half-width of the gene expression capacity profile. The 

combination of these effects cause loss of scaling of the mCherry accumulation with respect 

to the domain size during the maturation phase.

Another key condition for generating scale invariance is the low metabolic burden from gene 

expression on growth. The metabolic burden controls the pace of cell growth and gene 

expression. With a higher metabolic burden, the AHL synthesis rate is smaller because of the 

slower growth rate, so it takes a longer time to reach the peak concentration. This provides a 

shorter time window for ring maturation (Figure 4C, Figure S4F). Thus, we would expect 

the ring width to become smaller than the base case. Furthermore, a high metabolic burden 
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cannot maintain a flat T7RNAP profile when the ring initiates. Our model predicts that the 

combination of these effects would lead to loss of scale invariance. We tested this prediction 

using an extended circuit containing a cysteine desulfhydrase gene co-expressed with the T7 

lysozyme, which caused a greater metabolic burden than did the pattern-formation circuit 

itself (Figure S2F). When induced, cells carrying the extended circuit indeed exhibited 

dynamics predicted by modeling (Figure 4C). Compared with the base case, the ring width 

became smaller. It remained a linear function of the domain size over a narrower range of 

domain sizes, and this range shifted toward larger domain sizes. These changes in dynamics 

led to loss of scale invariance.

The strength of the T7RNAP positive feedback controls both temporal and spatial cues. With 

a weak positive feedback, the AHL synthesis rate is smaller, and it takes a longer time to 

reach the peak concentration. This provides a shorter time window for ring maturation 

(Figure 4D, Figure S5E). Thus, we would expect the ring width to become smaller than the 

base case. In addition, the model predicts that, in comparison to the base case, the range of 

the domain sizes that allow pattern formation will shrink and shift toward small domain 

sizes. Furthermore, a weak positive feedback cannot maintain a flat T7RNAP profile when 

the ring initiates, as T7RNAP expression itself will be primarily determined by the profile of 

the gene expression capacity (Supplemental Information, Figure S5A–D). Our model 

predicts that the combination of these effects would lead to loss of scale invariance. 

Experimentally, the strength of the positive feedback can be controlled by the strength of the 

promoter driving T7RNAP, which is induced by isopropyl β-D-1-thiogalactopyranoside 

(IPTG). The T7RNAP feedback weakens when IPTG concentration is low. Under these 

conditions (100 μM, 10 μM, 1 μM and 0 μM IPTG), the circuit generated a corering pattern 

that was substantially weakened in fluorescent intensity (Figure S2A) compared with that 

resulting from a strong positive feedback. The ring width remained a linear function of the 

domain size over a narrow range of domain sizes. As predicted by modeling, however, this 

range was narrower and shifted toward smaller domain sizes in comparison with the base 

case when the IPTG concentration was reduced (Figure 4D).

Discussion

In comparison with pattern formation, pattern scaling is more challenging to study due to its 

intrinsically more stringent requirements, in terms of both the underlying regulatory network 

architecture and the associated reaction mechanisms and parameters. This greater challenge 

is reflected in the scarcity of well-established, generally applicable mechanisms to explain 

pattern scaling, in comparison with other aspects of biological patterning (Lander, 2011; 

Stathopoulos and Iber, 2013). Most mechanisms proposed to explain scale invariance rely on 

the scaling of morphogen gradients. Our results reveal a collective space sensing mechanism 

to coordinate colony growth and patterning dynamics to generate scale invariance. Our 

circuit logic resembles that of the expansion-repression model (Ben-Zvi and Barkai, 2010; 

Ben-Zvi et al., 2011a). However, the dynamic constraints underlying the scale invariance are 

different from the expansion-repression model. Our mechanism does not require a gradient 

of the morphogen, but instead relies on the morphogen as a timing cue to trigger pattern 

initiation.
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From a control perspective, our mechanism entails sequential actions of an integral feedback 

loop and an incoherent feedforward loop (Figure 5). The integral feedback is implemented 

through the simultaneous sensing of the domain size using two species, AHL and nutrient. 

The combined effects of AHL accumulation and nutrient consumption set the timing for the 

core formation and the ring initiation. As a result, the integral feedback plays a critical role 

in generating the mCherry distribution at ring initiation time that scales with the colony size.

The incoherent feedforward loop is implemented through the opposing effects of the domain 

size on two aspects of mCherry accumulation across space. A larger domain size leads to a 

larger colony, thus reducing the rate of mCherry gene expression at the same relative 

position on a scaled axis. However, this reduction is compensated by an extended maturation 

time, leading to an increment of mCherry that is equivalent at the same relative position 

within the colony (Figure 3D, 5). The combination of the mCherry profiles at the ring 

initiation and after ring maturation leads to the final pattern that scales with the colony size. 

This last step resembles the opposing gradient model (McHale et al., 2006), which relies on 

the combination (Houchmandzadeh et al., 2005) or annihilation (Howard and Wolde, 2005) 

of two gradients to generate scaling patterns. However, in our system, the two opposing 

profiles are not due to molecular diffusion. In addition, the two gradients are sequentially 

super-imposed.

It is increasingly appreciated that synthetic gene circuits can serve as well-defined model 

systems to elucidate “design principles” of biological networks (Brophy and Voigt, 2014; 

Slusarczyk et al., 2012; Tanouchi et al., 2012). The simplicity of the reduced systems 

enables a high degree of experimental control, which facilitates the deduction of definitive 

conclusions (Jessup et al., 2004). Therefore, studies based on synthetic systems can advance 

the understanding of the underlying mechanisms or processes that are too complicated to 

study in natural systems (Elowitz and Lim, 2010). To this end, studies have demonstrated 

engineering of gene circuits to examine formation of diverse patterns in response to 

autonomously generated or externally imposed morphogen gradients (Basu et al., 2005; Liu 

et al., 2011; Schaerli et al., 2014; Tabor et al., 2009). In contrast, our study focuses on 

deducing a mechanism underlying the scaling properties of self-organized patterns. Our 

mechanism underscores the role of temporal control in both generating and scaling patterns.

Geometrically, the patterning process in our system resembles that during the embryonic 

development in birds and reptiles that occurs in a hard-shell egg. The egg is a self-contained 

life-supporting system (Sinervo, 1992), where the shell defines the domain size. Among 

same species, the vitelline (yolk) weight before embryotic development and hatchling sizes 

increase isometrically with the egg size (Brawand et al., 2008; Dzialowski and Sotherland, 

2004). Mechanisms analogous to what we present here could be responsible for generating 

the scaling property in these systems.

The overall simplicity of our mechanism in terms of the underlying dynamic constraints 

suggests its applicability to the interpretation of scaling properties of natural biological 

systems. For example, in the vertebrate neuron tubes, Sonic Hedgehog (Shh) is a morphogen 

that controls the pattern of neuronal subtype formation (Briscoe and Ericson, 2001; Dessaud 

et al., 2008). Interestingly, the Shh concentration in the neural tube is found to be much 
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higher than that required to trigger pattern formation (Chen et al., 2012), and, the duration of 

Shh plays a critical role in controlling the pattern size (Ahn and Joyner, 2004; Pages and 

Kerridge, 2000). Since cells are known to become insensitive to Shh after prolonged 

exposure (Dessaud et al., 2007), it is conceivable that the duration of elevated Shh 

concentration may serve as a timing cue to initiate patterning and to time pattern maturation. 

Also, both the nutrient and AHL are critical in driving pattern formation and scaling in our 

system. In general, their roles can be fulfilled by other factors controlling tissue growth and 

gene expression, such as those proposed in the chalone hypothesis (Bullough, 1962; Gamer 

et al., 2003).

Experimental procedures

Plasmids, cell strains, and growth media

The full circuit consists of two plasmids: pET15bLCFPT7 and pTuLys2CMR2 (Payne et al., 

2013). We used ptetmCherry (Payne et al., 2013) for constitutive expression of mCherry. 

Unless noted otherwise, MG1655 cells carrying the circuit or the control plasmids and 2×YT 

medium (Sambrook and Russell, 2001) (with pH adjusted to 6.5 using 1M KOH) were used 

for all experiments.

Experimental set-up

We used the Epson Stylus Photo R280 Ultra Hi-Definition Photo Printer (C11C691201), 

along with PrintPayLess Empty Refillable Ink Cartridges, for printing experiments (Cohen 

et al., 2009). To facilitate manipulation, the outer shell of the printer was disassembled and 

removed. Print heads were cleaned before and after each experiment. First, the printer head 

box was repositioned to the middle of the printer trail and absorbent paper towels were 

placed under the printer head to collect the liquid flushing through the printer heads. Second, 

the printer heads were flushed with 75% ethanol once, followed with washing with 

deionized water three times using a syringe. The paper towels were removed and the printer 

head box was then placed back in its original spot.

0.3% 2 ×YT agar was prepared in microwave. We then cooled the agar below 50°C at room 

temperature, and supplemented it with 75 μg/mL carbenicillin, 50 μg/mL chloramphenicol, 

and 1000 μM β-D-1-thiogalactopyranoside (IPTG). We next pipetted 170 μL of the agar into 

each culture well (Grace Bio-Labs; Bend, OR, USA; Item #103310), and let it solidify at 

room temperature.

An overnight culture of MG1655 cells carrying the full circuit was diluted to 0.2 absorbance 

(measured by Victor 3 plate reader) and then diluted another 50 fold into fresh LB broth. 

The diluted culture was transferred into a tone empty ink cartridge using a sterile syringe. 

The other five cartridges were filled with deionized water with a 0.2 μm filter (VWR® 

Syringe Filters, # 28145-477).

Printing templates were designed in software GIMP using 1-pixle diameter spots. Each 

template was exported to an Epson CD printer program to direct printing of bacteria onto the 

agar surface. After printing, a 24 mm×50 mm glass coverslip was placed on the top of the 

culture well. All of the inkjet-printed samples were incubated at 30 °C for 16–43 h. After 
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incubation, the samples were imaged under a Leica DM16000B fluorescence microscope 

with a mercury excitation lamp at 5X.

Mathematical modeling

The PDE model used in the current study corresponds to the hydrodynamic limit of the 

stochastic agent-based model from (Payne et al., 2013). The PDE formulation has two 

advantages. First, it is computationally less expensive to solve the PDE model numerically 

than the stochastic agent-based model. This increased computational efficiency enables 

extensive parameter. Second, the PDE formulation better facilitates development of 

mechanistic insights into the patterning dynamics. Because the air pocket between glass 

plate and dense agar is only 20 μm high (Figure S1H), we model the system in two spatial 

dimensions and neglect vertical variations in gene expression profiles. The circuit dynamics 

can be described by the following PDEs:

(1)

where C(t, x) is the cell density; N(t) is the nutrient concentration; A(t) is the AHL 

concentration; T(t, x), L(t, x), P(t, x) are cellular T7RNAP, lysozyme and the T7-lysozyme 

complex density respectively. See Table S1 for description of all model parameters.

In deriving the above equations, we made the following assumptions:

1. Cells are assumed to perform an unbiased random walk and their movement is 

modeled as diffusion (Kenkre, 2004; Maini, 2004; Murray et al., 1998). We 

considered “diffusion” as an approximation of the observed colony expansion, so 

that cell movement can be described by a single lumped parameter. Intracellular 

components are modeled with passive-tracer equations (see Supplemental 

Information for detailed derivation).

2. Cell growth is modeled with a logistic term, along with a Monod function. The 

Monod function is to account for contribution of nutrient to cell growth. The 

logistic term accounts for the limit of cell growth in a particular location. This 

carrying capacity is unlikely to be limited by nutrient availability; instead, it is 

limited by the spatial confinement imposed by our device, e.g. the colony height is 

confined to be ~20 μm between the coverslip and the agar surface.

3. Fast diffusion of AHL and nutrient.

4. Gene expression capacity:
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(2)

where Rφ is defined as the distance between colony center and the location where cell 

density is 95% of the carrying capacity (parameters are all described in Table S1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Scale invariance in self-organized pattern formation in engineered bacteria
A. Circuit logic. The circuit consists of a T7 RNA polymerase that activates its own 

expression as well as the expression of LuxR and LuxI. Upon activation by T7RNAP (T7), 

LuxI mediates synthesis of AHL (A), which can diffuse across the cell membrane. When the 

global AHL concentration surpasses a threshold, intracellular AHL binds to LuxR to activate 

the synthesis of T7 lysozyme (L). Lysozyme then binds to the T7RNAP and forms a T7-

lysozyme complex, therefore inhibiting the T7RNAP binding to the T7 promoter. This T7- 

lysozyme complex also inhibits T7RNAP transcription. In this process, the AHL 

concentration is affected by its initial concentration and the domain size. The expression 

rates of T7RNAP, lysozyme, and AHL are all controlled by the spatially dependent gene 

expression capacity.

B. Self-organized pattern formation in engineered bacteria. Left: A composite 

fluorescent image. Right: mCherry image extracted by MATLAB code from left composite 

image. Images of a 1.2mm × 1.2mm field of colony at 2500 μm domain radius after 24 h of 

incubation. The experimental platform used here was described in Figure S1A.

C. Scale invariance in self-organized pattern formation. The mCherry ring width (red 

circle) and the colony radius (green circle) are plotted as a function of the domain radius. 

Measurements were done in microcolonies after 32 h incubation. The error bars represent 

the standard error from ≥5 replicates for each domain radius. The solid lines represent the 

linear regression of the data points (green: colony radius; red: ring width) for intermediate 

domain radii (between 1500 μm and 7500 μm), where scale invariance emerges (the R-

square value for ring width vs. domain radius linear regression is 0.9828; the R-square value 

for colony radius vs. domain radius linear regression is 0.9943). The purple block 

corresponds to domain radii<1500 μm; the yellow block corresponds to domain radii >7500 

μm. The insets show mCherry images for domain radii of 1500 μm, 2500 μm, and 3750 μm, 

respectively. For all of the presented figures, if unnoted, filled circles represent the data 

where ring width vs. colony radius follows a linear regression with domain radius.

D. Ratio of mCherry ring width to colony radius for different domain radii. The ratio 

was calculated from the data in Figure 1C. The dashed line shows the average ratio for data 

points within the range of domain radii where the scale invariance emerges. The standard 
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deviation of the ratio values between 1500 and 7500 μm is 0.0448 (~10% of the total 

constant ratio).
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Figure 2. Pattern formation dynamics in engineered bacteria
A. Parameter search. Each spike represents the range of a parameter, ranging from 0 to its 

maximum value (the intersect with the outer circle) (Von Dassow et al., 2000). G4 was 

explored between 0 and 10; other parameters’ search ranges are listed in Table S1. Each 

polygon represents a parameter set. We started with 18,231 parameter sets (light blue). Dark 

blue lines indicate 409 parameter sets that generated core-ring patterns for varying domain 

radii (from 1 to 3). A local search on each of these 409 sets led to an optimal parameter set 

that generated scale invariance (red curves). α and β are the inhibition factors of T7RNAP 

and T7 lysozyme on cell growth, respectively. n is the Hill coefficient for distance-dependent 

gene expression capacity. Kφ is the half activation distance for gene expression capacity. αT 

and αL are synthesis rates of T7RNAP and T7 lysozyme, respectively. KT and KP are half-

inhibition concentration of T7RNAP and T7-lyszome complex, respectively. G4 is the 

synthesis rate of AHL, after non-dimensionalized.

B. Conditions underlying scale invariance. Five parameters shifted systematically during 

the optimization step: α and β characterize circuit mediated metabolic burden; n and Kφ 

determine the shape of gene expression capacity; and αT characterize the strength of 

T7RNAP feedback. In contrast, the four other parameters, G4, αL, KT and KP did not change 

significantly during optimization. The blue histograms represent values from the 409 

pattern-forming sets in Figure 2A before optimization. The red histograms represent values 

of the 409 sets resulting from the optimization. The light red is the overlap between blue and 

red histogram.

C. Simulated spatio-temporal profiles of CFP and mCherry intensity. Left: Average 

CFP intensity over colony cross-section from 1 to 150 in arbitrary unit. Right: Average 

mCherry intensity over colony cross-section from 1 to 150 in arbitrary unit.

D. Experimentally measured spatio-temporal profiles of CFP and mCherry. Left: 
average CFP intensity of bacterial colony at different radii from 8 h to 43 h. Right: Average 

mCherry intensity of bacterial colony at different radii from 8 h to 43 h. The experiments 

were measured at domain radius of 2500 μm.
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Figure 3. A collective space sensing mechanism underlies scale invariance
A. A collective space sensing mechanism. The domain size controls the pace and extent of 

colony expansion by determining nutrient availability. The domain size also controls the 

timing of ring initiation by determining the accumulation rate of AHL. The interplay of the 

gene expression capacity (magenta curve), T7RNAP profile (blue curve), and AHL 

concentration (orange curve) leads to the scale invariance of ring width to colony size. The 

gene expression capacity and T7RNAP profiles are drawn as functions of the distance to the 

colony center at the final time point. The red arrow indicates the time window for ring 

maturation.

B. Simulated emergence of a core-ring pattern. Top: AHL (orange curve) and nutrient 

(black curve) concentrations over time. Bottom: Simulated mCherry distributions at 

different time points. The time points were labeled on x-axis. The mCherry ring initiates 

when AHL reaches its maximum concentration (t1), which coincides with a pause of colony 

expansion (t2). The ring matures during the time window, ΔT, between ring initiation and 

system stabilization (red arrow).

C. Emergence of scale invariance during core formation. When the colony is at fast 

expanding phase, the pattering process is mainly governed by an integral feedback topology 

which is similar to the expansion-repression model (Ben-Zvi and Barkai, 2010). In our 

model, the T7RNAP can be considered the expander that drives morphogen (AHL) 

synthesis, whereas the T7 lysozyme serves as the repressor. At time point t1, the mCherry 

profile scales with the colony radius.

D. Emergence of scale invariance during ring maturation. All the x-axes are normalized 

to the domain radius. The units of y-axes are all on a per cell basis. Left: At different domain 

radii, the mCherry profile (pink) at the ring initiation time (t1) approximately scales with 

domain size. RC is the colony radius, and it is a function of domain radius. Middle: 
mCherry accumulation during maturation time (ΔT) is mainly determined by the gene 

expression capacity. The x-axis represents the distance from the colony edge. D1 and D2 are 

two different domain radii, D1 < D2. RC_D1 and RC_D2 are the colony radius for domain 

radii D1 and D1, respectively. The y-axis is ΔT, the maturation time window. ΔTD1 and ΔTD2 
are the maturation time windows when the domain radii are D1 (light magenta) and D2 (dark 

magenta). The intersect of x- and y- axes represent that the mCherry accumulation rate is 0 

at the colony edge at ring initiation time, t1. The z-axis indicates the mCherry accumulation 
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during the given time window. Right: mCherry at t2 is a combination of that at t1 (pink) 

and that accumulated during ΔT (color code is the same with that in middle panel). Its 

minimum is at the same relative location on the normalized axis (red pointer), indicating 

proportionality between the inner edge position and the domain radius. The outer edge of the 

ring pattern is roughly the colony edge, which is also proportional to the domain radius. 

Combining these two aspects leads to a ring width that scales with the colony size.
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Figure 4. Modulation of scaling property by environmental factors
A. Simulated scale invariance (base case). Left: Illustration of T7RNAP and gene 

expression capacity shape in the scale invariance range. Middle: Dependence of the ring 

width (red circles) and the colony radius (green circles) on the domain radius. The solid lines 

represent the linear regression of the colony radius and the ring width with respect to the 

domain radius in the white region. Solid circles represent the linear range of the dependence 

of the ring width and colony radius on the domain radius. Right: The ratio of mCherry ring 

width to the colony radius for different domain radii. The dashed line shows the average 

ratio for the values in the white region. Top left: Illustration of gene expression capacity 

profile when the domain is too small (purple shaded regions in Top and Middle panels). Top 
right: Illustration of the AHL profile over time when the domain is too large (yellow shaded 

regions in Top and Middle panels). The thinner gray curve corresponds to the AHL profile in 

the left panel; the thicker orange curve corresponds to a larger domain. These results 

correspond to time point t2.

B. Modulating the scaling property by adding exogenous AHL. Left: T7RNAP and gene 

expression capacity profiles were the same with those in base case. Adding exogenous AHL 

changes the temporal cue. The thinner gray line indicates the AHL concentration over time 

in the base case; the thicker orange line indicates the AHL concentration over time in the 

presence of initial exogenous AHL. The ring maturation window is longer (red arrow) 

compared with the base case. Right top: Simulated scaling property when the parameter 
of initial exogenous AHL (ahl0) were set to 10 and 25 (from left to right). The two 

figures show relationships of the colony radius and of the ring width to the domain radius 

with different initial AHL concentrations. The insets represent the ratio of the ring width to 

the colony radius. The x-axes for the insets are on the same scale as the corresponding figure 

panels; the y-axes range from 0 to 1. Right bottom: Experimentally measured scaling 
property in the presence of 20 nM AHL and 50 nM AHL (from left to right). The two 

figures are plotted as in Figures 1C, D. The error bars represent the standard error or range 

of 2–5 replicates. Each data point was obtained at 32h after start of experiment.
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C. Modulating the scaling property by having a higher metabolic burden. Cell growth is 

slowed down at a high metabolic burden, so AHL reaches its peak value later than in the 

base case. At that time, T7RNAP distribution over space is not flat yet; instead, it has a 

higher distribution near the center of the colony, which will increase the mCherry core 

accumulation during the ring maturation stage. Because the maturation time is shorter, the 

ring cannot catch up with the core formation and the eventual ring width is smaller. The 

figure symbols are the same as those in Figure 4B. Simulated scaling properties with γ, the 

metabolic burden from an effector gene, at a value of 5 (γ = 0 for the base case).

D. Modulating the scaling property by using weak T7RNAP positive feedback. Due to 

the weak feedback, the T7RNAP distribution over space is no longer flat but instead reflects 

that of the gene expression profile. The weak feedback also slows down accumulation of 

AHL, thus delaying the ring initiation in comparison with the base case. Therefore, the ring 

maturation time (red arrow) is shorter than that in the base case. The figure symbols are the 

same as those in Figure 4B. The scaling property was simulated with varying positive-

feedback strength (the T7 promoter rate is 0.25 or 0.1 fold of promoter rate when circuit is 

fully induced).
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Figure 5. Sequential actions of integral feedback and incoherent feedforward underlie the scale 
invariance
The overall system input is the domain size; the output is the mCherry pattern in a colony 

scaled with respect to the domain size. The integral feedback underlies a scale-invariant 

mCherry distribution at ring initiation. In our system, the activation module represents the 

strong T7RNAP positive feedback; morphogen represents AHL; the repression module 

represents T7 lysozyme. The incoherent feedforward controls the mCherry increment during 

maturation time window of ring formation. ΔT is a proportional function of domain size; 

rate represents mCherry accumulation rate, which is dominated by gene expression capacity 

during ring maturation. At the same relative location, a larger domain results in smaller gene 

expression capacity and thus a reduced accumulation rate in mCherry. This reduction is 

compensated by the increase in ΔT, leading to the same increment in mCherry at the same 

relative position for different domain sizes. The sum of the mCherry distribution at ring 

initiation and the increment during maturation leads to the final mCherry ring (red) that 

scales with the domain size. The color code is the same as in previous figures.
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