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Abstract

The body surfaces of humans and other animals are colonized at birth by microorganisms. The 

majority of microbial residents on the human body exist within gastrointestinal (GI) tract 

communities, where they contribute to many aspects of host biology and pathobiology. Recent 

technological advances have expanded our ability to perceive the membership and physiologic 

traits of microbial communities along the GI tract. To translate this information into a mechanistic 

and practical understanding of host-microbe and microbe-microbe relationships, it is necessary to 

recast our conceptualization of the GI tract and its resident microbial communities in ecological 

terms. This review depicts GI microbial ecology in the context of 2 fundamental ecological 

concepts: (1) the patterns of biodiversity within the GI tract and (2) the scales of time, space, and 

environment within which we perceive those patterns. We show how this conceptual framework 

can be used to integrate our existing knowledge and identify important open questions in GI 

microbial ecology.

Animals have evolved on a planet predominated by microorganisms. To facilitate survival in 

this microbial world, animals have developed mechanisms for supporting vast communities 

of microorganisms (microbiota) on their body surfaces. The microbial cells residing on and 

within the adult human body are estimated to outnumber somatic and germ cells by an order 

of magnitude.1 Since the first documented observation of bacteria associated with the human 

body by Antonie van Leeuwenhoek in the late 1600s, human microbiota research has 

focused largely on microorganisms that could be cultured ex vivo.2 However, recent 

technological advances have helped reveal the deep biodiversity of the human microbiota 

and identified many functional contributions of the microbiota to our postnatal biology and 

pathobiology (reviewed by Bäckhed et al,3 Wostmann,4 Cheesman and Guillemin,5 and 

Kinross et al6). The collective genomes of our microbial residents (microbiome) encode 

physiologic capabilities that are absent from our own genomes. We can therefore consider 

each host and its associated microbiota as a “superorganism”—an emergent blend of host 

and microbial traits.7 The Human Microbiome Project and other interdisciplinary research 

initiatives are designed to characterize the composition and function of the human 

microbiome and to define the factors that pattern microbial life on the human body.8

Address requests for reprints to: John F. Rawls, PhD, Department of Cell and Molecular Physiology, University of North Carolina at 
Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545. jfrawls@med.unc.edu.. 

Conflicts of interest The authors disclose no conflicts.

HHS Public Access
Author manuscript
Gastroenterology. Author manuscript; available in PMC 2016 April 23.

Published in final edited form as:
Gastroenterology. 2009 May ; 136(6): 1989–2002. doi:10.1053/j.gastro.2009.02.075.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The gastrointestinal (GI) tract harbors the majority of the microbial cells that reside in the 

adult human body (10–100 trillion microbial cells) and therefore is an important setting to 

investigate the relationships between host and microbiota. The constituency of the human GI 

microbiota includes members of all 3 domains of life (Bacteria, Archaea, and Eukarya) as 

well as viruses. Although >70 candidate bacterial phyla have been discovered on our planet, 

only 10 bacterial phyla (deep bacterial lineages, also known as divisions) have been 

observed in the human intestine (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 

Fusobacteria, Verrucomicrobia, Cyanobacteria, TM7, Spirochaetes, and VadinBE97) and 

only 8 bacterial phyla have been observed in the stomach (Proteobacteria, Firmicutes, 

Bacteroidetes, Actinobacteria, Fusobacteria, TM7, Deferribacteres, and Deinococcus-

Thermus).3,9–13 Within these few deep bacterial lineages there exists an abundance of 

diversity at shallower phylogenetic resolution; there are estimated to be >15,000 species-

level bacterial phylotypes associated with the human GI tract.10 The human GI tract also 

contains abundant and diverse viral and phage communities that can serve as predators of 

microbial cells and as reservoirs of genetic material that can expand microbial diversity.14–16 

In contrast, the archaeal population in the human GI tract is dominated by a single species, 

Methanobrevibacter smithii, which contributes important metabolic activities to the 

intestinal ecosystem.11,17–19 There is also a low level of eukaryotic diversity in the GI tract, 

and the roles of these organisms within the larger microbial community remain to be 

defined.20,21

To understand the form and function of the GI microbiota, it is helpful to view this complex 

microbial community through the lens of ecology. Historically, ecological inquiry has 

focused on analysis of macroscopic organisms, yet there is considerable interest in applying 

relevant ecological concepts to the microbial world. An important challenge for future 

research is to determine whether ecological principles discovered by study of macroscopic 

organisms can be directly applied to microbial communities.22–25 There are 2 general factors 

that limit our ability to apply an ecological perspective to the human GI microbiota. First, 

ecological theories and methods of investigation have not yet successfully permeated into 

the field of GI microbiota research. Second, data and associated insights into the human 

microbiota are limited. Ongoing research initiatives are expected to expand this knowledge 

base in the coming years, providing data that will be essential for testing and adapting 

ecological concepts in human GI environments.

An important feature of the GI microbiota that distinguishes it from non–host-associated 

microbial communities is its residence within a living multicellular host organism that is 

sensitive and responsive to its microbial residents. The responses of a host to its microbial 

inhabitants can alter the selective pressures within the GI environment that act upon 

microbial traits, which can in turn alter the microbial community. This reciprocal 

relationship between host and microbial community adds a rich layer of complexity to the 

analysis of GI microbial ecology and requires that host responses to microbes be 

incorporated into the study of GI ecology.

In this review, we frame the field of GI ecology in terms of 2 fundamental ecological 

concepts: pattern and scale.26 Pattern is defined as the variation of biodiversity within an 

ecosystem, whereas scale is defined as the spatial, temporal, and environmental dimensions 
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within which that variation is perceived. Pattern and scale are inextricably linked, because 

measurement of pattern occurs only within the context of a particular range of scales. A 

comprehensive understanding of the GI ecosystem will require us to appreciate patterns and 

their underlying causes along the continuum of scales.27 This review describes the different 

kinds of patterns that can be perceived within the GI ecosystem and then discusses the range 

of scales along which researchers can perceive those patterns. We then highlight how 

concepts of pattern and scale are being combined in the study of biogeography within the GI 

tract.

Defining Patterns in GI Microbial Ecology

Variation within an ecosystem such as the GI tract results in different kinds of patterns. 

These include patterns in the membership, function, and localization of the GI microbial 

community, as well as patterns of microbe-microbe and host-microbe relationships. 

Detection and description of patterns in the GI ecosystem are important prerequisites for 

understanding how patterns are established, how they change in response to different factors, 

and the consequences of pattern on microbial and host biology. In the following text we 

review the different types of patterns that have been described in the GI ecosystem.

Patterns in Microbial Community Membership

Variation in the membership of microbial lineages within a community is the most common 

pattern used to describe and compare microbial communities. Traditional methods for 

analyzing microbial community membership relied largely on cultivation of 

microorganisms. The principal limitation of cultivation-based approaches is that 

approximately 80% of all microbial members of the GI microbiota currently cannot be 

cultivated outside the GI tract.11 However, advances in microbial culture methods are 

increasing the fraction of the community that can be cultivated,28 and novel high-throughput 

culture-based phenotyping methods can help rapidly identify microbial community members 

with specific functional traits.29 Although culture-based methods remain indispensable for 

isolating individual microorganisms for physiologic and molecular analyses, rapid advances 

in DNA sequence-based methods have dramatically expanded our ability to survey 

biodiversity in a microbial community. Gene sequences derived from small subunit 

ribosomal RNA (SSU rRNA; 16S rRNA in Bacteria and Archaea, and 18S rRNA in 

Eukarya) have been used extensively for phylogenetic analysis.30 SSU rRNA genes are 

encoded in the genomes of all cellular organisms and are highly conserved but contain 

regions of sequence variability sufficient to distinguish between specific microbial groups. 

SSU rRNA sequences can be clustered based on selected levels of sequence identity into 

operational taxonomy units to provide an operational measure of microbial phylogeny and 

diversity without culture bias.31 An important consideration in any taxonomic analysis is the 

definition of a species, because such criteria often serve as the basis for sorting organisms 

into genetic lineages. There is surprisingly little consensus regarding the definition of 

prokaryotic species, and current methods have not kept pace with the discovery rate of new 

prokaryotic diversity.32 DNA-DNA hybridization methods and multilocus sequence analysis 

are often used for defining species in culturable isolates; however, the relative ease and 

culture independence of SSU rRNA sequence analysis has caused this method to emerge as 

Camp et al. Page 3

Gastroenterology. Author manuscript; available in PMC 2016 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the predominant taxonomic metric. Species-level phylotypes are defined as operational 

taxonomy units sharing ≥97% or ≥99% identity, depending on the study. Although broadly 

utilized, this definition is debated due to genomic variation between members of a species-

level phylotype. Comparison of 32 Escherichia coli and Shigella strain genomes33 and 6 

Streptococcus agalactiae strain genomes34 revealed that many genes are found in only a 

subset of strains (the “dispensable genome”) while other genes are found in all tested strains 

(the “core genome”).35 One potential cause of this genetic variation is the high rate of lateral 

gene transfer observed in genomic analysis of enteric prokaryotes.36,37 This genetic 

exchange between community members serves as a potential source of genetic diversity and 

is believed to be a result of phage, mobile elements, and conjugal transfer.15,36,37 Despite 

these caveats, analysis of SSU rRNA sequences can provide important insights into the 

structure of a microbial community beyond the classification of observed phylotypes. 

Because most SSU rRNA sequence-based analyses of microbial communities do not reach 

saturation (ie, relatively rare community members are not detected), observed SSU rRNA 

sequences can be binned into operational taxonomy units to permit estimation of “true” 

biodiversity within that community using statistics such as richness (the number of 

phylotypes in an area), diversity (the number of phylotypes in an area weighted for relative 

abundance), and evenness (the relative abundance with which species are observed in an 

area).38,39 DNA sequences derived from SSU rRNA genes (or other genes) in different 

microbial communities can also be used to directly compare the phylogenetic structures of 

those microbial communities (reviewed by Lozupone and Knight39).

Genomic DNA extracted from a microbial community can be used for a spectrum of SSU 

rRNA sequence-based phylogenetic approaches to define microbial community composition 

(reviewed by Dethlefsen et al40 and Zoetendal et al41). These include rapid and cost-

effective methods that provide a “fingerprint” of the microbial diversity within a community 

(eg, T-RFLP,42 ARISA,43 and DGGE/TGGE44), sensitive methods for detecting specific 

community members (eg, quantitative polymerase chain reaction45,46 and high-density SSU 

rRNA microarrays47–49), and SSU rRNA sequencing methods that provide maximum 

phylogenetic information (eg, Sanger sequencing of SSU rRNA clone libraries and 

pyrosequencing of amplified pools of SSU rRNA genes50,51). While culture-independent 

sequence-based methods for defining community composition have revolutionized our 

understanding of microbial diversity in the GI tract, there are caveats to these methods. 

Different microbial species can display distinct susceptibilities to specific cell lysis and 

DNA extraction methods,52 and the selection of polymerase chain reaction primers to 

amplify SSU rRNA genes can also impact on the observed diversity within a sample.53 

Furthermore, it is important to recognize that different microbial genomes encode variable 

numbers of SSU rRNA genes, potentially leading to apparent phylotype abundances that do 

not accurately represent cellular abundance.54

Sequence-based phylogenetic surveys have revealed major patterns in the membership of the 

GI microbiota. The human intestinal microbiota at homeostasis is numerically dominated by 

members of just 2 bacterial phyla: Firmicutes and Bacteroidetes.9–11,51 The prevalence of 

Firmicutes and Bacteroidetes is not absolute along the length of the GI tract, because the 

stomach is instead predominated by members of the Proteobacteria phylum.12 Moreover, 

distinct alterations in the membership of the intestinal microbiota have been associated with 
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a growing spectrum of human diseases (reviewed by Kinross et al6), including inflammatory 

bowel disease (reviewed by Sartor55 and Sokol et al56) and obesity (reviewed in the 

following text and by DiBaise et al57).

Patterns in Microbial Community Function

Microbial community membership continues to serve as the predominant basis for analyzing 

and comparing microbial communities; however, several new complementary approaches 

are extending our ability to perceive patterns of microbial community function in the GI 

tract. Whereas phylogenetic methods utilize microbial lineages as a measure of community 

membership, metagenomic methodologies utilize the microbiome and its encoded products 

as a culture-independent measure of the potential activities of a microbial community 

(reviewed by Zoetendal et al,41 Medini et al,58 and Turnbaugh and Gordon59). Most 

metagenomic analyses of the GI microbiota to date have focused on shotgun sequencing of 

genomic DNA isolated directly from the intestinal microbial community in humans and 

mice.51,60–62 These data are providing early insights into the gene content and physiologic 

potential of the intestinal microbiome, including enrichment of genes involved in 

metabolism of carbohydrates, amino acids, and xenobiotics, synthesis of vitamins, and 

methanogenesis.51,60 Patterns of in vivo microbial transcription and translation can also be 

analyzed by isolating and quantifying RNAs (metatranscriptomics63–67) and proteins 

(metaproteomics68). These methods provide important complementary perspectives to 

genomic DNA sequence analysis, because the patterns of bacterial gene expression can be 

strongly influenced by multiple factors in vivo, including host developmental stage,67 

nutrient availability,63,66,67 and the presence of other microbial species.17,64

The in vivo biological activity of the human microbiota can also be monitored by isolating 

metabolites from specific anatomic compartments within the host and analyzing them using 

mass spectrometry and nuclear magnetic resonance methodologies.69 This strategy is based 

on the observation that the GI microbiome encodes enzymatic capabilities that are not 

encoded in our own genome51,60 and that identifiable microbial metabolites and 

cometabolites (proxies for microbial enzymatic activities) can be detected in multiple host 

compartments in correlation to the activities of the microbiome.70–72 For example, a genetic 

predisposition to impaired glucose homeostasis and nonalcoholic fatty liver disease in mice 

is associated with defects in choline metabolism, including low plasma phosphatidylcholine 

levels and microbiota-mediated urinary excretion of methylamines.70 The role of the 

microbiota on metabolite profiles in diverse host compartments was directly tested by 

comparing germ-free mice with those colonized with a normal microbiota. The microbiota 

was found to produce numerous metabolic changes in the intestine as well as extraintestinal 

compartments, including alterations in choline and bile acid metabolism.71 As our 

understanding of microbial metabolic diversity catches up with our new grasp of microbial 

phylogenetic and metagenomic diversity, the known microbial contribution to the host 

metabolome can be expected to expand.59

Patterns of Microbial Localization and Behavior

The spatial localization and dynamic behaviors of microorganisms in the GI tract can 

determine microbial community functions. In vitro studies have shown that spatial 
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organization of simple microbial communities can promote beneficial interspecies 

relationships and adaptive responses.73–75 It is likely that spatial organization serves a 

similar role in the complex microbial communities along the GI tract. Traditional approaches 

of light and electron microscopy allow estimation of spatial organization as well as 

microbial abundance; however, it can be difficult to distinguish between microbial species 

with similar physical properties using these methods. Fluorescence in situ hybridization 

using probes targeting SSU rRNA or other microbial genes has emerged as a common 

technique to provide highly quantitative information on the number and spatial localization 

of microbial lineages within the GI tract.76 Fluorescence in situ hybridization has also been 

coupled with stable isotope labeling and mass spectrometry to assay metabolic properties of 

individual microbial cells within a community.77

Many in vitro analyses have shown that microbial cells are capable of a diversity of 

behaviors, including different forms of motility, chemotaxis, adhesion, quorum sensing, and 

formation of spores and multicellular biofilms.78–80 These microbial behaviors are likely to 

have strong effects on microbial proliferation, dispersal, and persistence in the GI tract, as 

they do in other environments.81 Despite this acknowledged behavioral diversity in 

microorganisms, our understanding of how microbial behavior impacts GI microbial ecology 

and host biology is remarkably limited. This can be largely attributed to the difficulties 

associated with in vivo monitoring of microbial localization and behavior in the GI tracts of 

humans and mammalian models. In vivo bioluminescence assays can reveal localization of 

specific microbial lineages within mammalian hosts, but their spatial resolution is not 

sufficient to view individual cells.82 The optical transparency of the zebrafish model system 

presents new opportunities to view microbial behavior in a living vertebrate intestine. This 

model was recently used to reveal that individual microbial cells within the intestine can 

display a diversity of behaviors in vivo, ranging from rapid motility to formation of biofilms 

to physical interaction with the intestinal mucosa.83 A comprehensive understanding of the 

GI ecosystem must incorporate the contribution of distinct microbial behaviors to 

community membership and function.

Patterns of Microbe-Microbe and Host-Microbe Relationship

Understanding relationships between individual microbial cells, between groups of 

microbes, and between microbes and their host is fundamental to our understanding of the 

GI ecosystem. These relationships can be considered as emergent patterns generated by the 

membership, activity, and localization of the microbial community. Host-microbe and 

microbe-microbe relationships have traditionally been defined along a continuum ranging 

from pathogenic to commensal to mutualistic (see definitions in Table 1).23,25 The intricate 

relationship between a host and its GI microbiota is generally considered to be mutualistic 

because the microbiota gains a relatively stable nutrient-rich environment while the host 

gains extended digestive capabilities and exclusion of potential pathogens. This 2-

dimensional concept of a pathogen-mutualist range can be operationally useful; however, the 

potential complexity of relationships and the physiologic/genomic flexibility of individual 

species demand a more sophisticated perspective. Any 2 organisms within an ecosystem are 

likely to interact in multiple ways via their spatial relationship within a habitat and also via 

their metabolic relationships within a niche. A relationship between 2 organisms (or groups 
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of organisms) that is defined as pathogenic by one set of criteria might be defined as 

mutualistic by another. For example, the parasitic protozoan Toxoplasma gondii and the 

bacterium Helicobacter pylori can be classified as human pathogens using a specific set of 

criteria. However, recent evidence suggests that each of these organisms may have evolved 

as mutualists by providing protection from other pathogens and gastroesophageal reflux 

disease, respectively (personal communication, Laura Knoll, December 2008).12 How we 

define a relationship therefore depends on how we measure benefit and detriment as well as 

the breadth and accuracy of our perceptual abilities.

An important step toward elucidating relationships between organisms is to understand the 

different strategies used in those relationships. Ecological theory and in vitro models have 

been developed to describe social strategies used by microbes in competition, cooperation, 

cheating, and food web interactions,25,75,81,84 but these theories remain largely untested in 

the context of the GI tract. Analysis of gnotobiotic animal hosts colonized with simple 

microbial communities is providing early insights into the utilization of these social 

strategies by enteric microbes. Colonization of germ-free mice with a simple microbial 

community consisting of the bacterium Bacteroides thetaiotaomicron and the archaeon 

Methanobrevibacter smithii resulted in elevated colonization density and production of 

short-chain fatty acids compared with animals colonized with either microbial species 

alone.17 This cooperative microbe-microbe interaction also conferred an apparent benefit to 

the host by enhancing energy storage. Relationships between microbial species will be 

influenced by the degree of modularity and functional redundancy within the ecosystem. A 

recent analysis of glycoside hydrolases and glycosyltransferases in the genomes of gut-

derived microbial species and non-gut microbes revealed a significant convergence of these 

genes in gut-derived species, indicating a high degree of functional redundancy among gut 

microbes for those enzymatic activities.36

As described previously, patterns of biodiversity in the GI tract can be perceived in multiple 

ways, and these patterns need to be integrated to fully understand the structure and function 

of the GI microbiota. For example, measurements of community membership combined 

with metagenomic analysis of the same community can build associations between dominant 

community members and specific gene content.51,61,62 Paired assessment of GI microbiota 

membership and host metabolomic profiles can also reveal novel associations between 

specific community members and specific metabolic activities.72 These integrated patterns 

of biodiversity in the GI tract will become increasingly important as we attempt to gain a 

mechanistic understanding of how patterns change between diverse host environments, 

between different spatial locations within a host, and over time.

Defining Scales in GI Microbial Ecology

Any ecosystem, including the GI tract, exists along temporal, spatial, and environmental 

scales; these scales define 3 conceptual dimensions within which the GI ecosystem exists 

(Figure). However, any single analysis of an ecosystem is performed using a limited range of 

scales: “a low-dimensional slice through a high-dimensional cake.”26 This restricted range 

of scale is imposed by our experimental design as well as limitations in our perceptual 

capabilities. This is important because different scales might be subject to different selective 
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processes. Fine temporal and spatial scales can generally provide greater detail yet be more 

susceptible to stochastic events, whereas coarser scales can be more regular and predictable. 

We must therefore recognize the biases associated with each scale and develop an 

understanding of the interaction among phenomena on different scales. It is helpful to first 

consider how temporal, spatial, and environmental scales apply to the GI ecosystem.

Temporal Scales

Patterns within the GI ecosystem and their underlying selective forces can change over the 

course of seconds, minutes, hours, days, and years (Figure 1). Moreover, different 

communities may display varied levels of stability and resilience. The temporal distance 

between sampling time points in an experiment can therefore impact the resulting 

observations and interpretations. Many of the recent analyses of the GI microbiota have 

focused on either a single time point in individual hosts10,11,60,71,72,85 or multiple time 

points taken from the same individual host over the course of days or weeks.9,50,51 Some of 

these recent studies have provided insights into the temporal scales over which the GI 

microbiota changes in response to different types of perturbation. When obese people were 

switched to a low-calorie diet, their fecal microbiotas displayed a gradual phylum-wide 

decrease in the ratio of Firmicutes to Bacteroidetes over the course of 1 year.9 In contrast, 

treatment of healthy people with ciprofloxacin for only 3–5 days resulted in rapid and 

marked individualized reductions in diversity across all predominant bacterial phyla. 

Remarkably, the pretreatment pattern of bacterial diversity was largely restored by 4 weeks 

after the end of ciprofloxacin treatment, indicating that the GI microbiota is highly 

resilient.50 These results show the wide range of temporal scales over which patterns of 

community membership can change and highlight the need to extend analysis of the GI 

ecosystem to finer temporal scales (ie, hours, minutes, and seconds). It will be instructive to 

correlate patterns of microbial community membership with patterns of microbial activity 

and localization at these finer temporal scales.

Spatial Scales

Beginning at the “top” of the spatial scale, we can perceive patterns of variation between 

individual hosts (Figure 1). Recent analysis of the GI ecosystem has been biased toward this 

spatial scale, in which individual hosts are compared using samples obtained from a 

common anatomic site such as biopsy of the intestinal mucosa,10,11 feces,9,11,50,51,60 

intestinal contents,61,62,85–87 or whole intestinal segments.71,87 The selection of analytic 

method can have a profound impact on our ability to perceive patterns in GI microbial 

ecology at the scale of individual hosts. 16S rRNA sequence-based comparisons of human 

fecal microbiota have revealed high levels of interindividual variation9,11,50,88 and have 

indicated that the number of species-level phylotypes shared across individuals is 

exceedingly rare or nonexistent.51 In contrast, metagenomic analyses of gene content in the 

fecal microbiome of different human hosts revealed a wide array of microbial gene families 

that are shared between individuals. These data indicate that a “core microbiome” shared 

between human hosts exists at the level of gene content but not at the level of microbial 

lineages. This implies the existence of significant functional redundancy between dominant 

members of the GI microbiota and suggests that each host environment exerts selective 

pressures on microbial traits rather than on microbial taxonomy.51
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The proximal-distal axis of the alimentary tract provides microbes with a range of physical 

habitats and metabolic niches determined by salient differences in anatomy, physiology, and 

nutrient availability. Selective pressures that act on the microorganisms at different 

proximal-distal locations along the alimentary tract can result in compositionally distinct 

microbial communities. This is evident in the increasing density of microbial cells 

proceeding from the proximal small intestine (103 cells/g contents) to the colon (1011 cells/g 

contents),1 the significant compositional differences between the bacterial communities in 

the stomach (usually predominated by Proteobacteria12) and intestine (usually predominated 

by Firmicutes10), as well as relatively minor differences in microbial community 

composition between different regions of the large intestine.11 To understand the 

mechanisms that underlie community structure and function at any point along the proximal-

distal axis of the GI tract, we must also consider the radial axis that spans the lumen, mucus 

layer, and epithelium of the GI tract. A prominent feature of the radial axis is the mucus 

layer covering the epithelium. The mucus layer provides a dynamic physical barrier that 

separates enteric microbes from the host epithelium76,89 while simultaneously serving as a 

diffusion barrier for antimicrobial peptides and other factors released by host cells.90 O- and 

N-linked glycans associated with mucins also provide a nutrient source for enteric 

microbes,67 which can serve as an important determinant of persistence within the GI tract 

habitat.66 Selective pressures that act at distinct locations along the radial axis are therefore 

likely to influence the organization, composition, and activity of the local microbial 

community. For example, the fecal microbiota and colonic mucosal-adherent microbiota 

from the same individual contain distinct microbial lineages.11 Moreover, liquid and 

particulate fractions of human feces contain distinct patterns of microbial diversity.91 Further 

culture-independent analysis is required to describe the distribution of microbial lineages 

along the proximal-distal and radial axes of the GI tract and the consequences of these 

microbial localization patterns to GI ecology.

The emergent properties of the microbiota and its contribution to host biology are a result of 

the interactions between microbial cells and host cells. By perceiving the GI ecosystem on 

the spatial scale of cellular interactions, we can begin to discern the mechanisms that 

underlie the functional relationships between different microbial and host cells. Microbe-

microbe interactions can be perceived at several levels, including interactions between 

operational groups of microbes, between different microbial species, and between members 

of the same microbial species. As described previously, microbial cells can utilize a variety 

of behaviors and communication mechanisms to establish relationships with other microbes 

in their habitat.79–81 Elucidating relationships between microbial cells in the context of the 

complex normal GI microbiota poses daunting challenges. It can therefore be useful to 

experimentally reduce the complexity of the microbial community. Gnotobiotic animal 

models, in which all microbial life can be defined or excluded, provide opportunities to 

control the complexity of the GI microbial community and thereby study specific 

relationships between microbial cells. Analysis of simple communities consisting of only a 

few defined microbial lineages in gnotobiotic hosts is beginning to reveal the nature of 

microbial relationships in heterogeneous ecosystems.17,64,66 In vitro culture systems that 

mimic conditions within the GI tract can also be used to study interactions between normal 

members of the GI microbiota,92 although microbes can display important phenotypic 
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differences between in vitro and in vivo environments.63,66 An often-overlooked factor in 

microbial relationships is the issue of phenotypic heterogeneity. Even within a community 

consisting of only a single bacterial species, there is marked phenotypic heterogeneity 

because of stochastic changes in transcription and translation in individual microbial cells.93 

The contribution of this phenotypic heterogeneity to the form and function of complex 

microbial communities like the GI microbiota remains unclear.

At the “bottom” of the spatial scale, we can analyze the molecules that comprise the 

microbial cells, host cells, and interstitial spaces within the GI ecosystem. Microbial genome 

sequencing projects have revealed patterns of genome organization and the evolutionary 

history of microbes adapted to the GI tract18,37,62,94 while providing valuable references for 

interpreting metagenomic data sets.8,51 Metagenomic and metabolomic approaches 

described previously are providing unprecedented insights into the gene content and 

physiologic capabilities of GI microbiomes.59 A long-term goal for microbiome research is 

to empirically define the functions of identified microbial genes as well as the processes and 

metabolic networks in which they participate. It will be equally important to understand how 

the molecular biology of different host cell types is altered as a function of microbial 

community composition and activity. Tools and concepts cultivated in the field of systems 

biology will be especially useful for modeling and analyzing genetic and metabolic 

networks in the GI ecosystem.27 Successful implementation of these systems biological 

approaches will require an understanding of the activity of genes and gene products encoded 

in the microbiome and the host genome as well as the transcriptional and translational 

mechanisms that regulate their expression. Genetic and molecular analysis in representative 

cultivatable members of the GI microbial community are beginning to reveal the function of 

specific gene products,66,95–97 but many additional microbial genes remain to be 

functionally characterized in the context of the GI ecosystem.

Environmental Scales

To understand the principles that govern the ecosystem within the GI tract, it can be helpful 

to observe how the ecosystem changes as the host environment changes in different ways. 

Here we define “environment” from the perspective of the GI microbial community: all 

features of the habitat within the host as well as the features of the host's biosphere together 

comprise the environment in which the GI microbial community exists. This environment 

can be modified in different ways, including variation in the local biosphere in which hosts 

reside,85,87 host phylogeny,87,98 host genotype,99 host physiology (eg, age, metabolism, 

immunology, pathobiology),100 and host lifestyle (eg, diet, exposure to antibiotics and 

pathogens) (Figure 1).50,62,101,102 As described in the following text, variation along these 

environmental scales can alter the selective pressures within the GI ecosystem and can 

impact on microbe-microbe and host-microbe relationships.

Patterns Within Scales: Biogeography of the GI Ecosystem

The field of biogeography was founded more than 250 years ago by Carl Linnaeus and his 

colleagues, who studied the patterns of plant and animal biodiversity in diverse terrestrial 

environments. Recent advances in molecular phylogenetics, metagenomics, and 
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metabolomics have permitted the application of biogeography to the biodiversity of the 

microbial world.27,103 Because biodiversity can be defined by taxonomy as well as 

functional traits, the modern definition of biogeography could be broadened to the study of 

biological patterns within a range of scales. A comprehensive understanding of GI 

biogeography will therefore require knowledge of the many patterns within the GI 

ecosystem along the full range of spatial, temporal, and environmental scales. This 

integrated perspective must account not only for the microbiota and its component members, 

but also for the biology of the host and the reciprocal relationship between host and 

microbiota.

The biogeography of the GI tract is an important frontier of medical research because 

microbial dysbioses have been associated with a growing number of human diseases, 

including inflammatory bowel disease and obesity (reviewed by Kinross et al,6 Sartor,55 

Sokol et al,56 and DiBaise et al57). When a disease is associated with an alteration in GI 

microbiota composition or activity, a fundamental challenge is to determine whether the 

observed changes are causes and/or consequences of the respective disease. If microbial 

dysbiosis is found to be a consequence of host disease, it could be possible to develop new 

diagnostic and predictive tools for monitoring human health. If microbial dysbiosis is found 

to contribute to the etiology of disease, specific antibiotic/prebiotic/probiotic/postbiotic 

approaches could be used to control abundance or activity of the implicated community 

members.104,105

Host Habitat Effects on the Microbial Community

A fundamental goal in biogeography research is to understand how the local environment 

influences biodiversity. The Baas-Becking hypothesis proposes that all microbial life is 

distributed worldwide but that the local environment selects upon, and is therefore in part 

responsible for, the variation in microbial biodiversity between different 

environments.106,107 Initial tests of the Baas-Becking hypothesis within the context of the GI 

tract have focused on the relative contribution of the local biosphere (eg, differences in the 

local microbial community available to colonize the host or the composition of the 

parentally transmitted microbial community) to GI microbiota composition. The 

composition of the fecal microbiota in babies delivered by cesarean section is often 

compositionally distinct from babies delivered vaginally,108–110 although the infant fecal 

community is also susceptible to significant stochastic effects.88 Phylogenetic comparisons 

of the cecal microbiota from mouse pups and their mothers revealed that the pups' microbial 

community resembled that of their mother.85 These results show that the microbial 

community within the local biosphere can influence the composition of the GI microbiota. 

However, specific selective pressures might act within the habitat of the host GI tract (host 

habitat effects; eg, host immunity, physiology, and diet) to further shape the diversity of the 

GI microbiota. A role for host habitat effects in GI microbial diversity was tested by 

colonizing germ-free mice and zebrafish recipients with intestinal microbiotas obtained from 

conventionally raised zebrafish and mouse donors, respectively. Phylogenetic analysis 

revealed that when a microbial community is transferred to a new host, the relative 

abundance of the bacterial lineages in the transplanted microbial community change to 

resemble the normal intestinal microbial community composition of the recipient host.87 For 
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example, colonization of germ-free mice with a zebrafish intestinal microbiota predominated 

by Proteobacteria resulted in an output community with an amplification of the Firmicutes 

phylum that dominates the conventional mouse intestinal microbiota. The GI habitat within 

different hosts therefore helps shape microbial community composition in distinctive ways.

It is not clear which factors within a host habitat are responsible for selecting a specific 

microbial community; however, experiments in animal models are beginning to elucidate the 

contribution of host genotype and diet to GI microbial diversity. For example, mice with a 

homozygous knockout of Myd88, which encodes an adaptor protein for almost all Toll-like 

receptors (TLRs), consistently displayed reduced ratios of Firmicutes to Bacteroidetes and 

increased representation of specific families within these phyla (ie, Lactobacillaceae, 

Rikenellaceae, and Porphyromonadaceae) in their cecal microbiota compared with wild-type 

mice.111 It remains unknown how loss of Myd88 function causes this shift in community 

composition, but it is possible that selective pressures caused by Myd88-dependent 

production of antimicrobial proteins by Paneth cells help to shape microbial community 

structure.112 Phylogenetic analysis of the cecal microbiota in mice with a homozygous 

mutation in the gene encoding leptin receptor (ob/ob) and their wild-type siblings revealed 

that the obesity phenotype linked to the ob/ob genotype was associated with a phylum-wide 

increase in the ratio of Firmicutes to Bacteroidetes.85 Intriguingly, human obesity is also 

associated with a phylum-wide increase in the Firmicutes/Bacteroidetes ratio within the 

fecal microbiota, indicating that obesity might similarly alter selective pressures on GI 

ecology in both humans and mice.9 In contrast, a mouse model of diet-induced obesity 

showed an increased Firmicutes/Bacteroidetes ratio in the cecal microbiota that was caused 

by a marked amplification of the Mollicutes class within the Firmicutes phylum together 

with a phylum-wide suppression of Bacteroidetes.62 Metagenomic analysis of cecal 

microbiomes from these obese mouse models revealed that their increased Firmicutes/

Bacteroidetes ratios were associated with increased abundance of gene categories involved 

in metabolism of complex polysaccharides and other carbohydrates.61,62 The amplification 

of specific enteric bacterial taxa in the context of obesity could therefore be due to their 

enhanced capacity for nutrient harvest and/or their ability to thrive under other physiologic 

or immunologic conditions associated with the respective host obesity phenotype.

Taken together, these studies support the Baas-Becking hypothesis within the context of the 

GI environment and identify host genotype and diet as 2 important factors that govern the 

membership and physiologic potential of the GI microbial community. This notion is further 

supported by a recent comparison of fecal microbiotas from humans and 59 other 

mammalian species that identified diet and host phylogeny as key determinants of 

mammalian intestinal microbiota composition.98 The mechanistic bases for these distinct 

effects of host diet, genotype, and phylogeny on GI microbiota composition and activity 

have yet to be empirically determined. Importantly, previous studies have been focused on 

the spatial scale of individual hosts (Figure 1), and additional analysis will be required to 

measure these host habitat effects at finer spatial and temporal scales.
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Microbial Effects on the Host

In the analysis of GI biogeography, it is important to identify the mechanisms by which 

microbes communicate with their hosts and how host cells perceive and respond to these 

microbial cues. Alterations in the GI microbial community have been associated with a 

spectrum of disease states, although empirical effects of compositionally distinct microbial 

communities on host biology have only been defined in a few cases. The transcription factor 

T-bet is encoded by one of a group of genes implicated in the control of intestinal 

inflammation.55 Mice that lack functional T-bet are immunocompromised and display 

increased susceptibility to colitis. Interestingly, the colitis associated with T-bet deficiency 

was found to be communicable to T-bet-sufficient hosts, indicating that the absence of T-bet 

resulted in formation of a colitigenic microbial community.99 As described previously, an 

increased ratio of Firmicutes to Bacteroidetes is observed in mice that become obese due to 

deletion of the leptin receptor gene85 or consumption of a high-fat diet.62 Remarkably, 

introduction of intestinal microbial communities isolated from the obese mice into wild-type 

mice or mice fed a control diet, respectively, resulted in increased fat deposition.61,62 These 

studies illustrate the reciprocal relationship between microbiota and host: an alteration in the 

host habitat (ie, host genotype or diet) alters microbial community, which in turn alters host 

physiology. Although we have a working knowledge of the many host biological processes 

that are affected by enteric microbes (reviewed by Bäckhed et al,3 Wostmann,4 Cheesman 

and Guillemin,5 and Blaut and Clavel113), we understand relatively little about the microbial 

signals and host signal transduction mechanisms that mediate these effects. As summarized 

in the following text, significant advances have recently been made toward elucidating the 

host molecules and cells that facilitate microbial effects on host immunity and nutrient 

metabolism.

Members of the GI microbiota stimulate a program of homeostatic immune responses in 

intestinal epithelial cells as well as multiple populations of associated immune cells.105 

Microbes are detected by pattern recognition receptors that include the transmembrane TLR 

and the intracellular nucleotide-binding and oligomerization domain-like receptor families. 

TLRs and nucleotide-binding and oligomerization domain-like receptors recognize 

conserved microbe-associated molecular patterns produced by bacteria, parasites, fungi, and 

viruses.114,115 Microbe-associated molecular patterns such as lipopolysaccharide (a major 

component of the gram-negative bacterial outer membrane) and flagellin (the major 

structural subunit of the bacterial flagellar filament) are detected by specific members of the 

TLR family (TLR4 and TLR5, respectively).105,115 Upon binding to their respective 

microbe-associated molecular pattern, TLRs act together with the Myd88 adapter protein to 

induce intracellular signaling events that converge upon the nuclear factor κB (NF-κB) and 

mitogen-activated protein kinase pathways to regulate expression of genes involved in 

epithelial barrier fortification and inflammation.55,114,115 Hosts have evolved a range of 

mechanisms to mitigate their own innate immune responses to enteric microbes (reviewed 

by Neish105). For example, lipopolysaccharide produced by the microbiota stimulates 

production of intestinal alkaline phosphatase in the intestinal epithelium of both zebrafish 

and mice. Intestinal alkaline phosphatase acts at the brush border of intestinal epithelial cells 

to detoxify lipopolysaccharide and thereby reduce the proinflammatory potential of the 

microbiota.116,117
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The importance of the TLR and NF-κB pathways in host-microbe relationships has been 

determined in genetically engineered animal models. Analysis of Myd88-null mice, which 

have an increased susceptibility to colitis in the presence of the microbiota, indicates that 

microbial signals perceived by TLRs are required to prevent intestinal inflammation.118 

Mice that lack TLR5 develop spontaneous colitis, but this phenotype is rescued in animals 

that lack both TLR5 and TLR4.119 Therefore, different TLRs can have opposing roles in 

intestinal homeostasis despite having common downstream effector pathways such as NF-

κB. Experimental manipulation of the NF-κB pathway has revealed both anti-

inflammatory120 and proinflammatory121 roles for this transcriptional control pathway in the 

intestine, raising questions about the spatial and temporal patterns in which TLR and NF-κB 

pathways are activated in response to distinct microbial signals. Mice with intestinal 

epithelial-specific knockout of the genes encoding NF-κB essential modulator/Ikkγ122 or 

Ikkβ,123 which are 2 components of the IKK complex responsible for activation of NF-κB, 

were found to be susceptible to chemically induced colitis or develop spontaneous intestinal 

inflammation, respectively. Similarly, intestinal epithelial-specific deletion of RelA/p65, 

which encodes a primary subunit of the NF-κB transcription factor, caused elevated 

epithelial cell proliferation and apoptosis as well as increased susceptibility to colitis.124 

These results indicate that NF-κB activation in the intestinal epithelium promotes anti-

inflammatory responses to microbial signals. This anti-inflammatory role for NF-κB in the 

intestinal epithelium is consistent with in vivo analysis of NF-κB activation during intestinal 

inflammation. Induction of experimental colitis in mice that express the marker green 

fluorescent protein under control of NF-κB cis-elements revealed initial transient NF-κB 

activation in epithelial cells followed by induction of NF-κB in lamina propria cells.125 

Study of cell type–specific knockout animals is beginning to reveal the roles of TLR and 

NF-κB signaling pathways in specific cell types. For example, loss of Myd88 function 

specifically in dendritic cells established that TLR/Myd88-mediated MAMP recognition 

activates dendritic cells to produce proinflammatory cytokines and promote T-helper 

responses.126 Recent analysis of mice lacking Myd88 function specifically in Paneth cells 

revealed that intestinal bacteria are detected by Paneth cells through a cell-autonomous 

Myd88-dependent mechanism, resulting in production of antimicrobial proteins and 

fortification of the mucosal barrier.112 It will be important to continue to correlate specific 

TLR and NF-κB functions with the spatial and temporal patterns in which these pathways 

respond to microbial cues at intestinal and extraintestinal sites.

The GI microbiota is also an important regulator of dietary nutrient metabolism. The 

metabolic diversity encoded in the intestinal microbiome improves digestion efficiency of 

nutrients and permits the host to digest many nutrients that would be otherwise inaccessible. 

The encoded products of the human genome are insufficient for digestion of complex plant 

polysaccharides such as xylan-, pectin- and arabinose-containing carbohydrates. These 

complex polysaccharides enter the colon, where the microbiota produce various glycoside 

hydrolases, lyases, and esterases that aid the degradation of glycans into short-chain fatty 

acids and monosaccharides.60,61 Short-chain fatty acids are absorbed by the host, where they 

regulate colonocyte growth and differentiation,57 serve as an energy source for host tissues 

such as skeletal and heart muscles, and act as a substrate for lipogenesis in adipose tissue.127 

Monosaccharides liberated through microbial fermentation are also absorbed and transported 
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to the liver, where they induce de novo hepatic lipogenesis.86 The intestinal microbiota also 

contributes to host metabolism by deconjugating bile salts,71,128,129 salvaging urea, and 

synthesizing essential amino acids as well as K and B vitamins.127,130 These contributions 

of the microbiota to processing and uptake of dietary nutrients are accompanied by 

alterations in host energy balance. In contrast to the innate immune responses described 

previously, our understanding of the host pathways and processes that are impacted by these 

different products of microbial metabolism is much more limited. Colonization of germ-free 

mice with a normal microbiota results in increased serum glucose and insulin levels as well 

as suppression of intestinal epithelial expression of a peptide hormone called fasting-induced 

adipose factor (Fiaf/Angptl4).86 Fiaf synthesized in the intestinal mucosa is secreted into 

circulation, where it directly inhibits the activity of lipoprotein lipase to prevent fat 

deposition and also promotes fatty acid oxidation in muscle.86,131 Furthermore, germ-free 

mice homozygous for a Fiaf-null allele display higher lipoprotein lipase activities than their 

germ-free wild-type littermates and body fat content equivalent to wild-type conventionally 

raised littermates.86 These results support a model in which microbial activities regulate host 

energy balance by suppressing transcription of Fiaf in the intestinal epithelium, thereby 

promoting lipoprotein lipase activity and fat storage in peripheral tissues. The microbial 

factors and host signal transduction mechanisms that regulate intestinal expression of Fiaf 
are unknown but represent attractive targets for controlling host fat storage and energy 

balance.

Future Directions

The community of microorganisms that resides in the GI tract is a potent environmental 

factor contributing to human health and disease. The composition and activity of the GI 

microbiota could be used in diagnostic and prognostic measures of human health. 

Furthermore, reagents that target specific microbial lineages, gene products, and metabolic 

networks might be developed into new therapies to promote human health. Our ability to 

design accurate predictive measurements as well as safe and effective therapeutics will 

depend on our comprehension of patterns in GI ecology along spatial, temporal, and 

environmental scales. Each microorganism experiences the GI ecosystem on a unique range 

of scales, which together comprise the adaptive landscape in which it responds and evolves. 

There is no single correct scale in which to analyze GI microbial ecology. However, this 

does not mean that all scales are equally important and does not exclude the possibility that 

selective pressures acting on organisms change at different scales. Observations of 

variability and predictability in the GI ecosystem are interpretable only if we reference the 

range of scales that are relevant to the organisms or processes being examined.

The Human Microbiome Project and other research efforts are rapidly expanding our 

knowledge of microbial biodiversity on the landscape of the human body. However, recent 

molecular analyses of the GI ecosystem have generally focused on coarse temporal and 

spatial scales and have been largely limited to comparison between individuals. Analysis of 

GI ecology along finer spatial and temporal scales is therefore an important goal for future 

research. These efforts should be coupled with an increased appreciation for the reciprocal 

interactions between members of the microbial community and the host. Understanding the 

complexity of the GI ecosystem demands an integrated multidisciplinary approach that 
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combines the fields of gastroenterology, physiology, nutrition, immunology, microbiology, 

ecology, evolutionary biology, and systems biology. This approach will not only depend on 

development and implementation of molecular analytic methods, but also on in vitro culture 

systems that accurately mimic GI tract environments as well as experimentally tractable 

mammalian and non-mammalian animal model systems that permit reductionist analyses of 

the GI ecosystem. To navigate and integrate the diverse patterns emerging from this 

multidisciplinary field, we will need a clear vision of the different spatial, temporal, and 

environmental scales within which the GI ecosystem operates.
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Figure 1. 
Scales in GI microbial ecology. (A) The GI ecosystem can be conceptualized as a 3-

dimensional space defined by variation along environmental, spatial, and temporal scales. 

Environmental scales (y-axis) are defined by different types of variation affecting the GI 

environment, including variation in biosphere, host species, host genotype, host physiology, 

and host lifestyle. Spatial scales (x-axis) are defined by the spatial resolution at which the GI 

ecosystem is perceived. The upper macroscopic level consists of the individual host and 

progresses down through the levels of organ system, tissue, cell, and molecule. Note that the 

molecular spatial scale is illustrated here by molecules within a gram-negative bacterium, 

although this same scale can be applied to molecules of any host or microbial origin. 

Temporal scales (z-axis) are defined by the time over which variation in the GI ecosystem is 

perceived, beginning with the present and progressing into seconds, minutes, days, and 

years. B–D show how this conceptual frame of reference can be used to provide context for 

3 recent studies of the GI ecosystem. B depicts a phylogenetic comparison of the microbial 

community in the feces (spatial scale: organ) of different mammalian host species 

(environmental scale: host species) at a single time point (temporal scale: present).98 C 
depicts a phylogenetic comparison of the microbial community in the feces (spatial scale: 

organ) of individual healthy humans at multiday intervals (temporal scale: days) before and 

after treatment with the antibiotic ciprofloxacin (environmental scale: host lifestyle).50 D 
depicts a comparison of bacterial cell behavior (spatial scale: cells) in zebrafish intestines at 

different stages of development (environmental scale: host physiology) using real-time in 

vivo imaging (temporal scale: seconds).83

Camp et al. Page 24

Gastroenterology. Author manuscript; available in PMC 2016 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Camp et al. Page 25

Table 1

Glossary of Key Terms in GI Microbial Ecology

Term Definition

Biogeography The study of patterns of biodiversity along spatial, temporal, and environmental scales

Commensalism Relationship in which one partner benefits without detriment to the other

Conventionalized Animals derived germ-free and later colonized with a microbiota harvested from conventionally raised donors

Conventionally raised Animals raised under standard conditions in the presence of a normal microbiota

Germ-free Animals raised in the absence of all microorganisms; also called axenic

Gnotobiotic Animal or environment in which all microorganisms are excluded or known

Habitat Physical location or “address” occupied by an organism within an ecosystem

Metabolomics Identification and quantification of host and microbial metabolites in a particular host compartment

Metagenomics Culture-independent measure of the gene content and physiologic potential of a microbial community

Microbiome Collective genomes within a microbiota

Microbiota Collective community of microorganisms within a habitat

Mutualism Relationship in which both partners benefit; also called symbiosis

Niche Function or “profession” of an organism within an ecosystem

Pathogenesis Relationship in which one partner benefits to the detriment of the other; also called parasitism

Pattern The variation of biodiversity within an ecosystem

Phylotype Group of SSU rRNA gene sequences with ≥97%–99% sequence identity

Scale The spatial, temporal, or environmental ranges within which variation in an ecosystem is perceived
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