
Retinitis pigmentosa (RP) is a clinically and genetically 
heterogeneous group of inherited retinal degenerations char-
acterized by dysfunction of the rod and cone photoreceptor 
cells and the RPE leading to night blindness and peripheral 
visual field loss, followed by variable changes in central 
vision. Progressive loss of vision can eventually lead to 
complete blindness in some cases [1]. The age of onset varies 
among patients with RP from early childhood to the fifth 
or sixth decade of life [2]. The worldwide prevalence of RP 
ranges from 1 in 3,500 to 1 in 5,000 [1]. RP can be inherited 
in autosomal dominant (adRP), autosomal recessive (arRP), 
or X-linked recessive (xlRP) modes. To date, mutations in 
79 genes distributed among all modes of inheritance, i.e., 27 

genes in adRP, 55 genes in arRP, and three genes in xlRP, 
have been reported (RetNet, accessed on January 3, 2016). 
Among these 79 genes, six have been shown to be involved 
in both adRP and arRP.

RPE cells have several functions in the vertebrate retina. 
Daily phagocytosis of shed photoreceptor outer segments 
(POS) by the RPE is essential for visual function and photo-
receptor survival. Abnormal phagocytic function causes 
an excessive accumulation of POS debris in the subretinal 
space resulting in less efficient oxygen molecule and 
nutrient transport to the photoreceptor cells [3]. Mutations 
in the MER-proto-oncogene, tyrosine kinase (MERTK) gene 
(Gene ID: 10461; OMIM 604705) are responsible for defects 
in phagocytosis, resulting in autosomal recessive retinal 
degeneration. The MERTK gene is composed of 19 exons and 
encodes the MerTK protein, consisting of 999 amino acids. 
The MerTK protein is a member of the Tyro3, Axl, and Mertk 
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Purpose: Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of inherited retinal degenerations 
characterized by progressive loss of photoreceptor cells and RPE functions. More than 70 causative genes are known to 
be responsible for RP. This study aimed to identify the causative gene in a patient from a consanguineous family with 
childhood-onset severe retinal dystrophy.
Methods: To identify the defective gene, whole exome sequencing was performed. Candidate causative variants were 
selected and validated using Sanger sequencing. Segregation analysis of the causative gene was performed in additional 
family members. To verify that the mutation has an effect on protein synthesis, an expression vector containing the first 
ten amino acids of the mutant protein fused with the DsRed2 fluorescent protein was constructed and transfected into 
HEK293T cells. Expression of the fusion protein in the transfected cells was measured using fluorescence microscopy.
Results: By filtering against public variant databases, a novel homozygous missense mutation (c.3G>A) localized in 
the start codon of the MERTK gene was detected as a potentially pathogenic mutation for autosomal recessive RP. The 
c.3G>A mutation cosegregated with the disease phenotype in the family. No expression of the first ten amino acids of 
the MerTK mutant fused with the DsRed2 fluorescent protein was detected in HEK293T cells, indicating that the muta-
tion affects the translation initiation site of the gene that may lead to loss of function of the MerTK signaling pathway.
Conclusions: We report a novel missense mutation (c.3G>A, p.0?) in the MERTK gene that causes severe vision impair-
ment in a patient. Taken together with previous reports, our results expand the spectrum of MERTK mutations and extend 
our understanding of the role of the MerTK protein in the pathogenesis of retinitis pigmentosa.
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(TAM) family of receptor tyrosine kinases and is highly 
expressed in the RPE, macrophages, ovary, prostate, testis, 
lung, and kidney [4]. MERTK-associated retinal disease was 
first reported in rodents with loss of MERTK gene function 
[5] and was subsequently described in three patients with RP 
who carried different mutations [6]. The MERTK gene has 
also been shown to be upregulated in canines with retinal 
degeneration [7].

In humans, mutations in the MERTK gene are relatively 
rare, accounting for approximately 1% of autosomal recessive 
retinal dystrophy cases [8]. Patients with MERTK mutations 
commonly display childhood-onset severe retinal dystrophy 
with defects in the macula [6,9-11]. Among the missense 
mutations of the MERTK gene [9,10,12,13], p.Arg844Cys has 
been shown to cause loss of protein function by making the 
MerTK signaling pathway malfunction due to an increase in 
protein degradation in HEK293T cells [9].

Figure 1. Fundus photographs, FAF, 
and OCT results of the patient. 
Color montage fundus photographs 
of the right eye (A) and the left eye 
(B) of the patient at age 35 years. 
Fundus examination demonstrated 
changes typical of retinitis pigmen-
tosa (RP) in both eyes, including 
pale optic discs with attenu-
ated retinal vessels, generalized 
pigmentary granularity, moderate 
bone-like spicules in four quad-
rants, and macular atrophy with 
pigment accumulation. Fundus 
autof luorescence (FAF) imaging 
of the right eye (C) and the left 
eye (D) showed bilateral decreased 
autofluorescence corresponding to 
the areas of pigment accumulation 
in the center of the macula. These 
areas were encircled by spotty 
autofluorescence along the temporal 
vascular arcades. The optical coher-
ence tomography (OCT) scans of 
the right eye (E) and the left eye 
(F) revealed decreased macular 
thickness.
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Figure 2. Pedigree and DNA sequence chromatogram of the family. A: Pedigree of the consanguineous family who participated in this study. 
Genotype data are presented below the patient and members, where applicable, of his family. The filled symbol with an arrow indicates the 
index case. Squares: males. Circles: females. Normal alleles are indicated by “+.” The potentially pathogenic mutation, p.0?, is indicated 
by “M.” B: Sequence analysis of the MERTK gene revealed a missense variant, c.3G>A, located in the start codon of the MerTK protein, 
homozygous in the patient and heterozygous in other family members. The gray and black letters indicate the 5′ untranslated region (UTR) 
and exon 1 of the MERTK gene, respectively.
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In this study, we report a novel homozygous missense 
mutation (c.3G>A, p.0?) in the MERTK gene detected with 
whole exome sequencing in a patient with isolated RP. To the 
best of our knowledge, this is the first report of an initiation 
codon mutation in the MERTK gene. We also show that the 
start codon mutation affects the translation start site of the 
gene, which could lead to the disease.

METHODS

Subject: The proband, a 35-year-old male, was evaluated at the 
Department of Ophthalmology, Siriraj Hospital, in Bangkok, 
Thailand. The patient underwent a complete ophthalmological 
examination, including best-corrected visual acuity (BCVA), 
fundus examination, visual-evoked potential (VEP), full-field 

flash electroretinography (ERG), optical coherence tomog-
raphy (OCT), and fundus autofluorescence (FAF). This study 
was approved by the Institutional Review Board of Siriraj 
Hospital Mahidol University and adhered to the tenets of the 
Declaration of Helsinki and the ARVO statement on human 
subjects. Peripheral blood was collected from the patient, 
his parents, and unaffected siblings after written informed 
consent was obtained. Genomic DNA was extracted using 
the salting-out method [14].

Whole exome sequencing (WES): Exome capture was 
performed using solution hybrid selection with the Sure-
SelectXT Human All Exon Automated Target Enrichment 
Kit (Agilent Technologies, Santa Clara, CA) for Illumina 
paired-end multiplexed sequencing. Exome capture libraries 

Figure 3. Schematic diagram depicting the cloning strategy for construction of the vectors employed in this study. A: pcDNA3-IRES-
EYFPnuc. B: pcDNA3–10 aa MerTK Wt_DsRed2-IRES-EYFPnuc. C: pcDNA3–10 aa MerTK Mut_DsRed2-IRES-EYFPnuc. Blue boxes 
indicate the cytomegalovirus (CMV) promoter (PCMV) sequence, pink boxes indicate the internal ribosome entry site (IRES) sequence, 
yellow boxes indicate the enhanced yellow fluorescent protein with nuclear localization signal (EYFPnuc) sequence, red boxes indicate the 
DsRed2 sequence, and the black arrow indicates the 30 bp MERTK sequence that is a different nucleotide at position +3: (B) G in the Wt 
vector causing codon 1 to encode Met, and (C) A in the Mut vector causing codon 1 to encode Ile.
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of 2×100 bp paired-end reads were sequenced on the Illumina 
HiSeq 2000 at the Department of Medical Genome Sciences, 
The University of Tokyo.

Exome sequence data analysis: Reads were mapped and 
aligned to the human reference genome (hg19 build GRCh37), 
obtained from UCSC, using the Burrows-Wheeler Aligner 
(BWA) program. SAMtools was used to remove duplicate 
PCR reads. Single nucleotide polymorphism (SNP) and indel 
calling were performed according to the Genome Analysis 
Toolkit (GATK) software package. Due to the extreme 
heterogeneity, both clinically and genetically, of RP, all 
genes listed in RetNet associated with non-syndromic retinal 
disease were examined to determine the causative gene. 
Sequence variations were classified as deleterious based on 
filtering strategies similar to those previously described [15]. 
Variant annotation and filtering were performed using the 
wANNOVAR web server [16]. This server provides several 
functional prediction programs, such as PolyPhen-2, Sorting 
Intolerant From Tolerant (SIFT), MutationTaster, likelihood 
ratio test (LRT), and PhyloP for non-synonymous variants. 
Visual inspection of the coverage and base calls of the target 
variants was performed using the Integrative Genomics 
Viewer (IGV, Broad Institute, Cambridge, MA). ATGpr, a 
web-based program, was used to determine the presence of 
all possible translational initiation sites (TISs) present in the 
cDNA sequence of the MERTK gene [17].

Data validation: Sanger sequencing was performed to 
confirm the variants identified in the candidate gene. 
Sequencing primers were designed using Primer3 to span at 
least 60 bp upstream and downstream of the putative patho-
genic variant in the MERTK gene (RefSeq accession number 
NM_006343.2). To verify the pathogenicity of the novel vari-
ants, denaturing high-performance liquid chromatography 
(DHPLC) screening of 130 DNA samples from unrelated 
control subjects was performed on the WAVE DNA Fragment 
Analysis System (Transgenomic, Inc., San Jose, CA).

Construction of the pcDNA3-IRES-EYFPnuc vector: The 
internal ribosome entry site–enhanced yellow fluorescent 
protein with nuclear localization signal IRES-EYFPnuc 
sequence was amplified from original plasmid DNA (a gift 
from Dr.Kazuhiro Oka, Baylor College of Medicine) by using 
the primers IRES-EYFPnuc-F: 5′-AAT TGC GGC CGC 
GGC CGC AAT TGA TCC GCC-3′ and IRES-EYFPnuc-R: 
5′-AAT TAG ATC TAT CCG GTG GAG CCT ACC TT-3′, 
which contain NotI and XbaI sites, respectively (restriction 
sites are shown in italics). This fragment contains 1,448 bp 
of the IRES-EYFPnuc sequence and was ligated into the NotI 
and XbaI sites of the pcDNA3 vector (Invitrogen, Carlsbad, 
CA), generating the pcDNA3-IRES-EYFPnuc vector.

Construction of the fusion ten amino acid MerTK (wild-type 
or mutant) and DsRed2 vectors: The fusion ten amino acid 
MerTK and red f luorescent protein (DsRed2) sequence 

Figure 4. Schematic representations of the pcDNA3–10 aa MerTK Wt and Mut-DsRed2-IRES-EYFPnuc vectors and their expected protein 
expression patterns. The drawings illustrate the pcDNA3–10 aa MerTK Wt-DsRed2-IRES-EYFPnuc vector (A) and the pcDNA3–10 aa 
MerTK Mut-DsRed2-IRES-EYFPnuc vector (B). Blue arrows indicate the cytomegalovirus (CMV) promoter, which efficiently drives 
the expression of the bicistronic RNA. The pink dashed lines indicate the first ten amino acid (aa) sequence of the MerTK protein that is 
a different amino acid at codon 1: Met (M) in 10 aa MerTK Wt (A) and Ile (I) in 10 aa MerTK Mut (B). The red boxes correspond to the 
DsRed2 sequence, and the pink and yellow boxes indicate the IRES-EYFPnuc sequence. Proteins produced from the wild-type construct 
vector are predicted to be expressed in the nucleus and the cytoplasm, while protein expression from the mutant construct vector is predicted 
to be found only in the nucleus.
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was generated by replacement of the first three base pairs, 
ATG, of the DsRed2 cDNA with 30 bp (encoding ten amino 
acids, MGPAPLPLLL) upstream of the MERTK gene. The 
fusion sequence of the wild-type was amplified using the 
primer EcoRI_10 aa MerTK Wt_DsRed2_F 5′-AAT TGA 
ATT CGC CAC CAT GGG GCC GGC CCC GCT GCC 
GCT GCT GCT GGC CTC CTC CGA GGA CGT CAT-3′, 
which contains an EcoRI site (italics) followed by the Kozak 
sequence (underlined), 30 bp of the MERTK cDNA (bold), 
and 20 bp upstream (without the start codon) of the DsRed2 
cDNA, respectively. The reverse primer, DsRed2-NotI 
5′-AAT TGC GGC CGC CTA CAG GAA CAG GTG GTG 
G 3′, contains a NotI site (italics) followed by a stop codon 
(bold) after the last amino acid of the DsRed2 cDNA. The 

PCR product (724 bp) was cloned into the EcoRI and NotI 
sites of the pcDNA3-IRES-EYFPnuc vector to generate the 
pcDNA3–10 aa MerTK Wt-DsRed2-IRES-EYFPnuc vector. 
For construction of the MERTK mutant (Mut) vector, the 
fragment was amplified from the pcDNA3–10 aa MerTK 
Wt-DsRed2-IRES-EYFPnuc vector using the primers 
EcoRI_10 aa MerTK Mut_DsRed2_F 5′-AAT TGA ATT CGC 
CAC CAT AGG GCC GGC CCC GCT G-3′, which contains 
an EcoRI site (italics) followed by the Kozak sequence 
(underlined), 30 bp of the MERTK cDNA where the third 
base was changed from G to A (bold), respectively, and the 
reverse primer DsRed2-NotI. The amplified fragment was 
ligated into the EcoRI and NotI sites of the pcDNA3-IRES-
EYFPnuc vector to generate the pcDNA3–10 aa MerTK 

Figure 5. Identification of fluorescence proteins in HEK293T cells. Protein expression of the Wt or Mut vectors was examined 48 h after 
transfection. Images were captured using a 40X objective lens. A–C: Images of HEK293T cells transfected with the Wt construct encoding 
an enhanced green fluorescent protein that localizes to the nucleus (A), the fusion protein of 10 aa MerTK Wt-DsRed2 is present in the 
cytoplasm (B). Merged images (A and B) confirm the fusion protein of the Wt construct is expressed only in the cytoplasm (C). D–F: Images 
of HEK293T cells transfected with the Mut construct encoding an enhanced green fluorescent protein that localizes to the nucleus (D). E: No 
fluorescence fusion protein from the Mut construct was detectable in the cytoplasm. The merged images (D and E) indicate no fluorescence 
fusion protein expressed, except the enhanced green fluorescent protein that was observed in the nucleus (F).
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Mut-DsRed2-IRES-EYFPnuc vector. All constructs were 
verified with Sanger sequencing.

Cell culture and transient transfection: Human embryonic 
kidney cell line HEK293T (originally from ATCC; no. 
CRL-3216, Manassas, VA; kindly provided by Prof. Dr. 
Pa-thai Yenchitsomanus), were maintained in Dulbecco’s 
modified Eagle’s medium (Invitrogen), supplemented with 
10% fetal bovine serum (Biochrom, Berlin, Germany). Cells 
were grown at 37 °C in a humidified incubator containing 5% 
CO2. Transient transfection was performed using the calcium 
phosphate precipitation method. Six hours post-transfection, 
the medium was changed and replaced with fresh medium. 
Protein expression of the Wt and Mut vectors was measured 
48 h after transfection. The expression of fluorescent proteins 
was visualized under an inverted Olympus IX70 fluorescence 
microscope (Olympus America Inc., Center Valley, PA) 
equipped with filters for fluorescein isothiocyanate (FITC) 
or Red.

RESULTS

Clinical description: A 35-year-old male patient, with consan-
guineous parents, was diagnosed with isolated RP at the age 
of 27. There was no family history of retinal dystrophy. The 
patient reported difficulty seeing at night since age 7 and 
blurred distant vision after age 16. At the age of 35, his BCVA 
was reduced to light perception in the right eye and hand 
motion in the left eye. Ophthalmological examination results 
are shown in Figure 1. Fundus examination demonstrated 
typical RP changes in both eyes with pale optic discs and 
attenuated retinal vessels, generalized pigmentary granu-
larity, moderate bone-like spicules, and clumps of pigment 
accumulation in the macula. FAF imaging of the RPE layer 
showed bilateral decreased autofluorescence corresponding 

to the areas of pigment accumulation in the center of the 
macula. No evidence of cystoid macular edema was detected 
with OCT. ERG response was non-recordable in both eyes. 
VEP showed markedly decreased amplitudes in both eyes.

WES analysis revealed a novel start codon mutation in the 
MERTK gene: To identify the RP causative gene, WES was 
performed on genomic DNA extracted from the proband’s 
peripheral blood. The variant files from WES were subjected 
to wANNOVAR for annotation [16]. After several filtering 
steps, a novel homozygous variant, c.3G>A, located in the 
translation initiation codon ATG of the MERTK gene, was 
identified (Appendix 1). This variant was predicted to be 
deleterious and was not observed in the 1000 Genomes 
Project, dbSNP137, the Exome Variant Server (EVS), the 
Exome Aggregation Consortium (ExAC), or 260 chromo-
somes from ethnically matched control samples. Sequence 
analysis confirmed that the proband (I:1) was homozygous, 
whereas unaffected individuals (I:1, I:2, II:2, II:3, and II:7) 
were heterozygous carriers for the initiation codon variant, 
c.3G>A (Figure 2).

No expression of the mutant fusion protein in HEK293T 
cells: There is the possibility that protein synthesis occurs 
using alternative TISs, both upstream and downstream of the 
canonical initiation codon [18]. A single alternative in-frame 
TIS at codon 257 downstream of the canonical start codon 
of MERTK was predicted by ATGpr. The protein sequence 
encoded by this predicted alternative TIS results in a shorter 
polypeptide that lacks N-terminal residues. This truncated 
protein is more likely to lead to loss of MerTK function 
because the protein lacks two conserved regions, namely, 
Ig-like C2-type 1 (IgL1) and Ig-like C2-type 2 (IgL2).

Figure 6. Schematic representation of the MERTK gene at the transcript level and functional domains of the MerTK protein. The MERTK gene 
consists of 19 exons. Mutations in the MERTK gene are distributed along the entire gene. MerTK is a 999 amino acid protein that contains 
several conserved domains: Ig-like C2-type 1 (IgL1), Ig-like C2-type 2 (IgL2), fibronectin type-III 1 (FB1), fibronectin type-III 2 (FB2), 
transmembrane (TM), and protein kinase (PK). Numbers under the protein line indicate the boundaries of each domain. Nucleotide 1 is A 
of the ATG initiation codon according to RefSeq NM_006343.2. The amino acid residues are numbered according to RefSeq NP_006334.2, 
starting at the initiator methionine residue.
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Although we speculate that the start codon mutation 
may affect protein synthesis, two expression vectors that 
contain a wild-type or a mutant (c.3G>A) of the first ten 
amino acids of MerTK fused with the DsRed2 fluorescent 
protein were designed and examined to support this concept 
(Figure 3). Both vector constructs contain an IRES sequence 
and an EYFPnuc sequence. The IRES sequence leads to cap-
independent initiation of translation, so the ribosome is able 
to bind to the IRES sequence directly, resulting in translation 
initiation of the gene downstream of the IRES sequence [19]. 
Downstream of the IRES sequence is the EYFPnuc sequence 
that encodes the nuclear localizing protein. Expression of the 
EYFPnuc sequence was used as a control for confirming 
successful transfection. The DsRed2 sequence located in both 
vector constructs has no start codon; therefore, expression 
of the fusion protein depends solely on the initiation codon 
situated at the first amino acid of the MerTK fragment. The 
DsRed2 sequence encodes a red fluorescent protein that is 
localized to the cytoplasm (Figure 4). Forty-eight hours after 
transfection, expression of the wild-type fusion protein was 
detected in the cytoplasm of the transfected cells. In contrast, 
cells transfected with the mutant construct showed no expres-
sion of the fusion protein (Figure 5).

DISCUSSION

Since the first MERTK mutations related to human retinal 
degeneration were reported in 2000 [6], only 25 (including the 
present report) different mutations have been identified scat-
tered along the entire gene (Figure 6), including five missense 
mutations [9,10,12,13], seven nonsense mutations [6,9,20-24], 
five mutations resulting in defective splicing [6,11,23,25,26], 
six small deletions [6,10,12,24,26,27], and two gross deletions 
[11,28]. This suggests that mutations in the MERTK gene are 
a rare cause of retinal degeneration.

Using WES, we identified a novel homozygous missense 
mutation, c.3G>A, in the MERTK gene. Clinical observations 
of the retinal phenotypes in our patient, who developed severe 
progressive retinal dystrophy, are consistent with previous 
studies reporting the age at onset from early childhood to 
the age of 12 and the age at diagnosis from 3 to 45 years 
[6,9-12,20,25,28].

In this study, we found a missense mutation, c.3G>A, in 
the initiation codon of the MERTK gene. This mutation was 
predicted to abolish the TIS of the MERTK gene. Based on 
a previous report, effective mRNA translation depends on 
the nucleotide context of the Kozak sequence (gccRccAUGg; 
where R is a purine, and AUG is the start codon) [18]. To 
test the concept that a mutation in the start codon may affect 
translation, two fusion protein models, the first ten amino 

acids of the MerTK wild-type or mutant, fused with the 
DsRed2 protein were generated and transfected separately 
into HEK293T cells. The results confirm that translation of 
the first ten amino acids of the Mertk-DsRed2 fusion protein 
can occur only from the initiation codon in the MerTK 
sequence of the wild-type model. Therefore, our results indi-
cate that the start codon mutation, c.3G>A, affects the TIS of 
the MERTK gene resulting in loss of protein synthesis.

To date, more than 400 distinct single-nucleotide substi-
tutions, embedded within the TISs of human genes, have 
been reported to cause inherited human diseases [29]. These 
substitutions are predicted to abolish the Kozak consensus 
sequence, leading to loss of protein synthesis. Although 
alternative start sites located downstream of the canonical 
start codon have been predicted in some cases, translation 
initiation by alternative initiation codons are likely to yield 
N-terminal truncated proteins. Normally, secretory proteins 
and membrane proteins contain an N-terminal signal 
sequence (typically 15–30 amino acids in length), which 
plays an important role in protein targeting to the endo-
plasmic reticulum membrane [30]. Thus, the production of 
an N-terminal truncated protein lacking its N-terminal signal 
peptide is likely to result in the intracellular misrouting of the 
nonfunctional protein, subsequently leading to the develop-
ment of disease [31,32].

From our analysis, at least three findings support the 
possibility that c.3G>A tends to be a pathogenic mutation that 
affects the function of the MerTK protein. First, the homozy-
gous c.3G>A mutation in the MERTK gene identified in the 
proband is consistent with an autosomal recessive mode of 
inheritance and cosegregates in the patient’s family. Second, 
the c.3G>A mutation changes an amino acid in the start codon 
that has a deleterious effect on the TIS of the MERTK gene, 
resulting in an inability to synthesize the mature MerTK 
protein. Although translation can occur via an alternative 
TIS located downstream of the original initiation codon, an 
N-terminally truncated MerTK protein generated from this 
translation will produce a non-functional protein. Third, 
this mutation is located within the signal peptide sequence 
(amino acids 1–20), which is necessary for translocation 
of the MerTK protein across the plasma membrane. The 
N-terminally truncated protein is most likely translocated 
to the cytosol, resulting in elimination via the proteasome 
[31,32].

In conclusion, as a result of our experimental model, we 
have demonstrated that the MERTK mutation, p.0?, involved 
in translation initiation, results in no MerTK synthesis. Taken 
together, the lack of the MerTK protein may result in impaired 
phagocytosis functioning, leading to the RP phenotype.
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APPENDIX 1. IDENTIFICATION OF HOMOZYGOUS 
C.3G>A VARIANT IN THE MERTK GENE BY WHOLE 
EXOME SEQUENCING, AS VISUALIZED BY THE 
INTEGRATIVE GENOMICS VIEWER (IGV).

This IGV snapshot shows the position of the homozygous 
G to A transition at nucleotide 3 (c.3G>A) in exon 1, which 
corresponds to genomic position 112,656,315 at chromosome 
2. Vertical bars indicate read coverage. Horizontal bars repre-
sent 100 bp paired-end reads that mapped onto the human 
reference genome (hg19 build GRCh37). To access the data, 
click or select the words “Appendix 1.”
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