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Abstract 

Background:  Measures of the expected genetic variability among full-sibs are of practical relevance, such as in the 
context of mating decisions. An important application field in animal and plant breeding is the selection and alloca-
tion of mates when large or small amounts of genetic variability among offspring are desired, depending on user-
specific goals. Estimates of the Mendelian sampling variance can be obtained by simulating gametes from parents 
with known diplotypes. Knowledge of recombination rates and additive marker effects is also required. In this study, 
we aimed at developing an exact method that can account for both additive and dominance effects.

Results:  We derived parent-specific covariance matrices that exactly quantify the within-family (co-)variability of 
additive and dominance marker effects. These matrices incorporate prior knowledge of the parental diplotypes and 
recombination rates. When combined with additive marker effects, they allow the exact derivation of the Mendelian 
sampling (co-)variances of (estimated) breeding values for several traits, as well for the aggregate genotype. A com-
parative analysis demonstrated good average agreement between the exact values and the simulation results for a 
practical dataset (74,353 German Holstein cattle).

Conclusions:  The newly derived method is suitable for calculating the exact amount of intra-family variation of the 
estimated breeding values and genetic values (comprising additive and dominance effects).

© 2016 Bonk et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The degree of genetic variability among full-sibs is known 
as Mendelian sampling variance. This variability is due to 
the inheritance of random samples of alleles from both 
parents. For a quantitative trait, the amount of this vari-
ability depends on the parental degree of heterozygo-
sity, 1− F♂, where F♂ (F♀) is the inbreeding coefficient 
of an individual’s sire (dam), which is derived from the 
pedigree. Under additivity and with unlinked loci, the 
Mendelian sampling variance is the sum of two parental 
contributions, 14σ

2
a (1− F♂)+ 1

4σ
2
a (1− F♀), where σ 2

a  is 
the additive genetic variance  [1]. The latter expression 
is of general importance in quantitative genetics, espe-
cially in the context of estimating genetic parameters and 
in genetic evaluations. In certain models (e.g. [2, 3]), it is 
used explicitly for the relative weighting of observations 

from progeny of inbred versus non-inbred parents. 
Moreover, the inverse Mendelian sampling variance plays 
a pivotal role in direct inversion of the numerator rela-
tionship matrix [4].

New methods to track Mendelian sampling vari-
ance are based on the availability of phased genotypes 
(diplotypes) at genetic markers across the genome as a 
byproduct of genomic selection (e.g. [5, 6]). Single nucle-
otide polymorphism (SNP) diplotypes of parents differ 
in terms of three features: the degree of heterozygosity, 
the genotypes at homozygous loci, and the linkage phase 
between loci. All of these features have consequences for 
the variability of gametes that are generated by a particu-
lar individual, and thus for the variance among the prog-
eny in a family. A small within-family genetic variation 
contributes to phenotypic uniformity, which is desired 
e.g. for birth-weight of piglets (e.g. [7]), while a large 
Mendelian sampling variability may increase selection 
opportunity between sibs  [6]. When phased genotypes 
are available, it is possible to simulate a large sample of 
the population of gametes of a selection candidate by 
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considering recombination within chromosomes, as was 
demonstrated in a study on 58,035 Holsteins [5]. How-
ever, to the best of our knowledge, exact formulae for cal-
culating the Mendelian sampling variance from phased 
genotypes have not been reported previously.

In this study, we provide the requisite formulae for the 
exact calculation of within-family genetic variation. The 
within-family covariance matrix between the additive and 
dominance effects of all markers can be derived exactly 
from phased SNP-genotypes and the known genetic dis-
tances between markers. Conversion to the within-family 
variance of (estimated) additive and dominance values 
for a trait is then achieved via the (estimated) additive 
and dominance marker effects. We provide a compari-
son between the results obtained by simulations and the 
exact method, as well as a brief discussion of the applica-
tion of this method to the allocation of mates.

Methods
In the following, a breeding population is assumed, where 
phased SNP-genotypes are available for all potential mat-
ing partners, as well as estimates of the SNP-effects for 
all traits. Furthermore, it is assumed that the genetic dis-
tances between all markers are known in terms of their 
recombination rates, which are summarized in a compre-
hensive genetic map for all SNPs.

In the first part of this section, we only consider addi-
tive marker effects that contribute to the genomic breed-
ing value of an individual:

where c′ is a row vector of genotype indicators (see Eq. 3) 
and m is a vector of marker effects. We show that the 
within-family covariance matrix � of c, with dimensions 
equal to the number of marker effects, can be expressed 
as the sum of two parent-specific covariance matrices �♂ 
and �♀. They define independent parental contributions 
to the Mendelian sampling variance of genomic breeding 
values of a trait:

Subsequently we demonstrate that this additive prop-
erty of the covariance matrix vanishes when dominance 
marker effects are included.

Definitions and the case of pure additivity
Throughout this study, we exploit the fact that correla-
tions between marker effects are equivalent to corre-
lations between genotype indicators. For the additive 
effect a (half the average phenotypic difference between 
homozygotes) at a two-allelic (A, B) locus i, the genotype 
indicator ca,i is given by:

(1)g = c
′
m,

(2)σ 2
g = m

′
�m.

and for dominance effects by:

for 1 ≤ i ≤ n, where n is the number of markers. See the 
discussion for a treatment of the coding of additive and 
dominance effects. Derivation of the covariance is based 
on the linkage disequilibrium (LD) among all the gametes 
produced by a parent with a particular diplotype.

A parent has one of the 16 possible diplotypes when 
two bi-allelic markers are involved, which are repre-
sented in Table 1. Pairs of additive and dominance geno-
type indicators are given in columns 2 to 5. The gametes 
generated by the parent (comprising one allele at the first 
locus and one allele at the second locus) follow a prob-
ability distribution that depends on the diplotype of the 
parent. Columns 6  to  9 shows the probabilities of gam-
etes, to which we apply the concept of LD. For each par-
ent, LD can be determined as:

where the lower index indicates gametes (see Table  1, 
column 10).

In Table 1 the probability of the appearance of allele A 
at the ith locus is denoted by pi. Note that this definition 
applies to the diplotypes as well as to the gametes of the 
parent. The values for pi and pj are given in columns 11 
and 12 of Table 1. All entries in Table 1 apply to both the 
sire (upper index ♂) and the dam (upper index ♀).

The joint distribution of genotypes at two bi-allelic 
marker loci among offspring is outlined in Table 2, using 
the frequencies of the parental gametes from Table 1. All 
nine two-locus genotypes are enumerated, together with 
their underlying diplotypes (the upper haplotype is pater-
nal; columns 1–3). The probability of each ordered diplo-
type is the product of the two gametic probabilities, and 
the probability of a two-locus genotype is the sum of the 
probabilities for all of its possible underlying diplotypes 
(Table  2, last column). In the next step, the sex-specific 
probabilities (indexed as ♂ or ♀) of the parental gametes 
are expressed as functions of the parent-specific LD-
parameters and allele frequencies:

(3)ca,i =






1, for genotype AA
0, for genotypesAB or BA
−1, for genotype BB

,

(4)cd,i =

{
−1, for genotypes AA or BB
1, for genotypes AB or BA

,

(5)Di,j = pA−ApB−B − pA−BpB−A,

(6)p♂A−A = D♂i,j + p♂i p♂j ,

(7)p♂A−B = − D♂i,j + p♂i

(
1− p♂j

)
,

(8)
p♂B−A = − D♂i,j +

(
1− p♂i

)
p♂j ,
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and

for a sire. Expressions for a dam are obtained in the same 
manner by replacing ♂ with ♀.

These terms also allow us to rewrite the genotype prob-
abilities of Table 2 as functions of the LD-parameters and 
allele frequencies (see Table 3). We consider that they are 
arranged in a three-by-three matrix Z = (zs,q), the rows 

(9)p♂B−B = D♂i,j +
(
1− p♂i )(1− p♂j

)
,

and columns of which pertain to the genotypes at the 
first locus and the genotypes at the second locus, respec-
tively (the order of genotypes is BB, AB / BA, and AA for 
both loci); for example, the probability of BB, BB is:

(10)

z1,1 = p♂B−Bp
♀
B−B

=

[
D♂i,j +

(
1− p♂i

)(
1− p♂j

)]

·

[
D
♀
i,j +

(
1− p

♀
i

)(
1− p

♀
j

)]
.

Table 1  Ten classes of parental diplotypes with different two-locus genotypes and distributions of produced gametes

Different diplotypes with identical genotypes at markers i and j are separated by a slash. Genotype indicators are given for additive (ca,i , ca,j) and dominance (cd,i , cd,j)  
effects at both parental marker genotypes. The probabilities of gametes are specific for each diplotype class and they can be summarized by three characteristic 
parameters: LD Di,j and the probabilities pi, pj for an A-allele at locus i or j. θi,j is the recombination fraction

Parental diplotype Genotype indicators Probabilities of gametes Characterizing param-
eters

ca,i ca,j cd,i cd,j pA−A pA−B pB−A pB−B Di,j pi pj

A− A
A− A

1 1 −1 −1 1 0 0 0 0 1 1

A− A
A− B

/
A− B
A− A

1 0 −1 1 1
2

1
2

0 0 0 1 1
2

A− A
B − A

/
B − A
A− A

0 1 1 −1 1
2

0 1
2

0 0 1
2

1

A− B
A− B

1 −1 −1 −1 0 1 0 0 0 1 0

B − A
B − A

−1 1 −1 −1 0 0 1 0 0 0 1

A− A
B − B

/
B − B
A− A

0 0 1 1 1−θi,j
2

θi,j
2

θi,j
2

1−θi,j
2

1−2θi,j
4

1
2

1
2

A− B
B − A

/
B − A
A− B

0 0 1 1 θi,j
2

1−θi,j
2

1−θi,j
2

θi,j
2

−
1−2θi,j

4

1
2

1
2

A− B
B − B

/
B − B
A− B

0 −1 1 −1 0 1
2

0 1
2

0 1
2

0

B − A
B − B

/
B − B
B − A

−1 0 −1 1 0 0 1
2

1
2

0 0 1
2

B − B
B − B

−1 −1 −1 −1 0 0 0 1 0 0 0

Table 2  Two-locus genotype probabilities in a full-sib family

Nine classes of two-locus genotypes (L1, L2) in the offspring, which all correspond to ordered diplotypes (separated by a slash, where the upper haplotype is 
paternal) and the probability of each class as a function of the frequencies of parental gametes (superscripts indicate the sex of the parent and subscripts indicate the 
haplotypes of gametes)

L1 L2 Diplotypes Probabilities

BB BB B − B
B − B

p♂B−Bp
♀
B−B

AB/BA B − A
B − B

/
B − B
B − A

p♂B−Ap
♀
B−B + p♂B−Bp

♀
B−A

AA B − A
B − A

p♂B−Ap
♀
B−A

AB/BA BB A− B
B − B

/
B − B
A− B

p♂A−Bp
♀
B−B + p♂B−Bp

♀
A−B

AB/BA A− A
B − B

/
B − B
A− A

/
A− B
B − A

/
B − A
A− B

 p♂A−Ap
♀
B−B + p♂B−Bp

♀
A−A + p♂A−Bp

♀
B−A + p♂B−Ap

♀
A−B

AA A− A
B − A

/
B − A
A− A

p♂A−Ap
♀
B−A + p♂B−Ap

♀
A−A

AA BB A− B
A− B

p♂A−Bp
♀
A−B

AB/BA A− A
A− B

/
A− B
A− A

p♂A−Ap
♀
A−B + p♂A−Bp

♀
A−A

AA A− A
A− A

p♂A−Ap
♀
A−A
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The covariance between the additive genotype indica-
tors in Eq. 3 is then determined by:

where the dot indicates summation over all assigned 
components, and zs,• and z

•,q are the marginal genotype 
probabilities for the first and second locus, respectively. 
Furthermore, ca,1 = −1 since the first row and the first 
column contain genotype BB; ca,2 = 0 since the second 
row and the second column contain heterozygous geno-
types; and by analogy, ca,3 = 1. After simplification (using 
Mathematica [8]), the result obtained for the off-diagonal 
elements of the covariance matrix � is:

Note that the LD depends on the recombination frac-
tion θ, which can be converted into a genetic distance x 
(in Morgan) using Haldane’s mapping function [9]

To complete the covariance matrix � = cov(ci, cj)i,j , 
the variance in the genotype indicator (as defined 
by Eq.  3) at each locus i is expressed as a func-
tion of A-allele frequency pi. The genotype frequen-
cies at locus i are (1− p♂i )(1− p

♀
i ) for genotype BB, 

p♂i (1− p♂i )+ p
♀
i (1− p

♀
i ) for AB  /  BA, and p♂i p

♀
i  for 

AA. Then,

(11)

cov
(
ca,i, ca,j

)
=

3∑

s=1

3∑

q=1

ca,sca,qzs,q

−

3∑

s=1

ca,szs,•

3∑

q=1

ca,qz•,q ,

(12)cov
(
ca,i, ca,j

)
= D♂i,j + D

♀
i,j .

(13)x = −0.5 ln(1− 2θ).

(14)E
(
ca,i

)
= −1+ p♂i + p

♀
i

and

and thus

with π♂i = p♂i (1− p♂i ) and π♀i = p
♀
i (1− p

♀
i ). Note that 

the only possible values for var(ca,i) are 0, 14, or 12, since π♂i  
and π♀i  can only have values of 0 or 14.

Now we have derived all of the elements of the covari-
ance matrix �, so we can express the Mendelian variance 
for a particular trait as (Eq. 2):

As already mentioned, this Mendelian sampling vari-
ance can be split into the sum of two independent paren-
tal contributions:

where �♂ and �♀ represent parent-specific covariance 
matrices for the additive effects of single alleles based on 
the paternal and maternal gametes. The paternal (mater-
nal) covariance matrix �♂ (�♀

) contains off-diagonal 
elements that are equal to D♂i,j  (D

♀
i,j) and π♂i  (π♀i ) on the 

diagonals, according to Eqs. 12 and 16.
The variance var(ca,i) becomes zero at loci for which 

both parents are homozygous. The corresponding rows 
and columns of the covariance matrix only contain 
zeroes, which causes a rank deficiency. The correspond-
ing diagonal and off-diagonal elements in the correla-
tion matrix R are defined as zero (although they are not 

(15)E
(
c2a,i

)
= 1− p♂i − p

♀
i + 2p♂i p

♀
i ,

(16)var
(
ca,i

)
= E

(
c2a,i

)
− E2

(
ca,i

)
= π♂i + π

♀
i

σ 2
g = m

′
�m.

(17)σ 2
g = m

′
�m = m

′
�♂m +m

′
�
♀
m,

Table 3  Two-locus genotype probabilities as functions of characteristic parameters

Nine classes of two-locus genotypes (L1, L2) for offspring in a full-sib family and the probability of each class as a function of the parental LD D and the A-allele 
frequency pi at locus i (the superscripts indicate the sex of the parent and the subscripts indicate the locus)

L1 L2 Probabilities

BB BB [D♂i,j + (1− p♂i )(1− p♂j )][D
♀
i,j + (1− p

♀
i )(1− p

♀
j )]

AB/BA [−D♂i,j + (1− p♂i )p♂j ][D
♀
i,j + (1− p

♀
i )(1− p

♀
j )] + [D♂i,j + (1− p♂i )(1− p♂j )][−D

♀
i,j + (1− p

♀
i )p

♀
j ]

AA [−D♂i,j + (1− p♂i )p♂j ][−D
♀
i,j + (1− p

♀
i )p

♀
j ]

AB/BA BB [−D♂i,j + p♂i (1− p♂j )][D
♀
i,j + (1− p

♀
i )(1− p

♀
j )] + [D♂i,j + (1− p♂i )(1− p♂j )][−D

♀
i,j + p

♀
i (1− p

♀
j )]

AB/BA [D♂i,j + p♂i p♂j ][D
♀
i,j + (1− p

♀
i )(1− p

♀
j )] + [D♂i,j + (1− p♂i )(1− p♂j )][D

♀
i,j + p

♀
i p

♀
j ]

+ [−D♂i,j + p♂i (1− p♂j )][−D
♀
i,j + (1− p

♀
i )p

♀
j ] + [−D♂i,j + (1− p♂i )p♂j ][−D

♀
i,j + p

♀
i (1− p

♀
j )]

AA [D♂i,j + p♂i p♂j ][−D
♀
i,j + (1− p

♀
i )p

♀
j ] + [−D♂i,j + (1− p♂i )p♂j ][D

♀
i,j + p

♀
i p

♀
j ]

AA BB [−D♂i,j + p♂i (1− p♂j )][−D
♀
i,j + p

♀
i (1− p

♀
j )]

AB/BA [D♂i,j + p♂i p♂j ][−D
♀
i,j + p

♀
i (1− p

♀
j )] + [−D♂i,j + p♂i (1− p♂j )][D

♀
i,j + p

♀
i p

♀
j ]

AA [D♂i,j + p♂i p♂j ][D
♀
i,j + p

♀
i p

♀
j ]
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defined in a strictly mathematical sense) for our purposes 
in order to maintain rank equality between � and R.

Joint additive and dominance genetic effects
The covariance between two dominance effects can be 
derived in a similar manner as that between additive 
effects. Again, we consider the genotype probabilities of 
Table  2 arranged in a three-by-three matrix Z = (zs,q) 
and we define: cd,1 = −1 since the first row and the first 
column contain genotype BB; cd,2 = 1 since the second 
row and the second column contain heterozygous geno-
types; and by analogy, cd,3 = −1. Inserting these domi-
nance codes into Eq. 11 and expanding yield:

Analogous to the additive effects, for the variance of 
the dominance effects we obtain:

which can take values 1 or 0. In particular, var(cd,i) is 
equal to 1 if at least one parent is heterozygous, and 0 
if both parents are homozygous. Thus, we can conclude 
that if one marker is homozygous in both parents, the 
covariance between the dominance effects is equal to 0, 
which is analogous to previous considerations of the rank 
deficiency for additive effects. Furthermore, Eqs. 18 and 
19 contain the products of the characteristic parameters 
(Di,j , pi, pj ,πi) for both the sire and the dam, which is why 
� and the Mendelian variance can no longer be split into 
a sum of two separate parental parts when dominance 
effects are included.

In order to determine the covariance cov(ca,i, cd,j) 
between the additive and dominance indicators, we 
assign the additive indicators by Eq.  3 to the first (ith) 
locus and the dominance indicators by Eq. 4 to the sec-
ond (jth) locus, i.e.,

which has to be expanded, resulting in:

Exchanging the loci yields:

(18)

cov
(
cd,i, cd,j

)
= 16D♂i,j D

♀
i,j

+ 4D♂i,j

(
1− 2p

♀
i

)(
1− 2p

♀
j

)

+ 4D
♀
i,j

(
1− 2p♂i

)(
1− 2p♂j

)
.

(19)var
(
cd,i

)
= 4

(
π♂i + π

♀
i

)
− 16π♂i π

♀
i ,

(20)

cov
(
ca,i, cd,j

)
=

3∑

s=1

3∑

q=1

ca,scd,qzs,q

−

3∑

s=1

ca,szs,•

3∑

q=1

cd,qz•,q ,

(21)cov
(
ca,i, cd,j

)
= 2D♂i,j

(
1− 2p

♀
j

)
+ 2D

♀
i,j

(
1− 2p♂j

)
.

The rank deficiencies in � arise from variances equal to 0 
as well as from perfect correlations, which is demonstrated 
by the two examples of joint correlation matrices for addi-
tive and dominance effects shown in the upper part of 
Fig. 1, as well as their corresponding parental diplotypes. 
The number of markers is 16 in both examples, which yield 
correlation matrices with dimensions 32× 32. Some diag-
onal elements of the off-diagonal blocks, which contain 
correlations between additive and dominance effects, indi-
cate a perfect dependency between the additive and domi-
nance effects at the same locus with correlations of either 
1 or −1. After the redundant rows and columns have been 
deleted from the dominance part of the matrix, the cor-
relation matrices obtained (Fig. 1, bottom) exhibit a block 
diagonal structure. The remaining covariance matrix for 
dominance effects corresponds to loci for which both par-
ents are heterozygous (five and seven for the example in 
Fig. 1). The first block remains unchanged numerically, but 
it has a different interpretation because it now represents 
the correlation matrix for a vector ma∗, which is defined as:

where ma and md are vectors of the additive and domi-
nance effects for all markers in order of their map posi-
tion and In is an identity matrix of order n. H is a diagonal 
matrix with elements:

Now, ma∗,i has the form:

As a practical consequence, we can use md
∗ (i.e., md 

with all elements md,i eliminated, where one parent is 

(22)

cov
(
cd,i, ca,j

)
= cov

(
ca,j , cd,i

)

= 2D♂i,j

(
1− 2p

♀
i

)

+ 2D
♀
i,j

(
1− 2p♂i

)
.

(23)ma∗ =
[
In Hn

][ma

md

]
,

(24)

hi,i =






0, if both parents are heterozygous
or homozygous

1, if one parent is heterozygous
and the other is BB

−1, if one parent is heterozygous
and the other is AA

.

(25)

ma∗ ,i =






ma,i , if both parents are

heterozygous

or homozygous

ma,i +md,i, if one parent is heterozygous

and the other is BB

ma,i −md,i, if one parent is heterozygous

and the other is AA

.
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homozygous at locus i) and ma
∗. Then, σ 2

g  can be com-
puted as:

where �∗ has a block-diagonal structure with unequally 
sized blocks, as in the example shown in Fig. 1.

Mendelian covariance with multiple traits
The Mendelian covariance between traits (tk , tl) is also of 
interest, especially when we aim at determining the Men-
delian variance of the aggregate genotype (multiple trait 
breeding goal). If mk and ml are the vectors of marker 
effects for traits k and l, then the Mendelian covariance 
σg (tk , tl) between these two traits is

The Mendelian variances and covariances for several 
traits can be collected in the Mendelian covariance matrix:

(26)σ 2
g =

[
m

′
a∗ m

′
d∗

]
�

∗

[
ma∗

md∗

]
,

(27)σg (tk , tl) = m
′
k�ml .

which is given by:

where each column mk of M is a vector of marker effects 
for trait k. The Mendelian sampling variance for the aggre-
gate genotype can then be obtained from V and the vector f 
of the economic weights for all traits:

This quantity has a pivotal role in mating deci-
sions because the total breeding value (defined as 
the linear combination of single breeding values f ′t , 

(28)
V =




σ 2
g (t1) σg (t1, t2) · · · σg (t1, tN )

σg (t1, t2) σ 2
g (t2) · · · σg (t2, tN )

...
...

. . .
...

σg (t1, tN ) σg (t2, tN ) · · · σ 2
g (tN )


,

(29)V = M
′
�M,

(30)σ 2
gT = f

′
Vf .

Fig. 1  Correlation matrices for two matings (top) with their respective phased genotypes (middle). The marker distance is 1 cM. The dimension 
of both matrices is 32 due to the additive and dominance effects at the 16 markers. Block diagonal matrices (bottom) remain after the rows and 
columns of dominance effects are deleted when there is a perfect correlation between a dominance and additive effect at the same locus
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t = (t1, . . . , tN ) ) is the most important criterion for 
selection.

Practical application
We compared the exact method with a recently published 
simulation approach  [5]. The Mendelian sampling vari-
ance of gametes was calculated with both methods for 
each animal from a dataset that included the diplotypes 
of 74,353 male and female German Holstein cattle. Iden-
tical sets of recombination rates and estimates of additive 
marker effects were used for both methods. These param-
eters were derived from routine genomic evaluation data. 
This comparison was done for four traits: fat yield (FKG), 
protein yield (PKG), somatic cell score (SCS), and the 
direct genetic effect on stillbirth (SBd).

The exact gametic Mendelian variances σ 2
ĝ

 of the esti-
mated gametic values were calculated for each trait and 
each animal as:

according to Eq. 2, where m̂ is the vector of the estimated 
additive marker effects. The simulation method used 
100,000 randomly generated gametes for each animal. 
Thus, the estimate of the Mendelian variability for the 
estimated gametic values was:

where K = 100,000 is the number of simulated gametes 
per individual and wo is the vector of the genotype indi-
cators for the oth simulated gamete in the individual 
under consideration.

The Mendelian covariances between traits were also 
obtained using the exact method by applying Eq. 29. Fur-
thermore, the four traits were combined with weights of 
0.1,  0.4,  0.375, and 0.175 for the traits FKG, PKG, SCS, 
and SBd, respectively, and the (gametic) Mendelian vari-
ances were computed for this aggregate genotype. The 
covariances and aggregate genotypes were not imple-
mented in the simulation method, so no comparisons 
could be made with the simulation method for these 
quantities.

Results
Scatter plots of the estimated σ̂ 2

ĝ-values against their 
exact σ 2

ĝ
 counterparts are in Fig. 2. The slopes of the lin-

ear regression lines were close to unity for all of the traits 
and the intercepts were small, which indicated a good 
average agreement between both methods. The variation 
around the regression line was due to the Monte Carlo 
error of the simulation.

(31)σ 2
ĝ = m̂

′
�♂m̂ or σ 2

ĝ = m̂
′
�
♀
m̂

(32)σ̂ 2
ĝ =

K∑

o=1

(
w

′
om̂

)2

K
−

(
K∑

o=1

w
′
om̂

K

)2

,

To facilitate a better comparison between the trait 
combinations, the Mendelian covariances were trans-
formed into correlations and their distributions are in 
Fig.  3. Interestingly, the sign and magnitude of these 
correlations exhibited a very high amount of variation 
between individuals. The Mendelian correlation between 
FKG and PKG was an exception because most of the val-
ues were positive and the distribution was bimodal. This 
bimodality is a consequence of the DGAT1 gene, for 
which heterozygous animals led to the smaller peak at 
correlations below 0.5 and homozygotes were responsible 
for the larger peak with correlations above 0.5.

The coefficient of variation of the Mendelian variances 
of the aggregate genotype was 18.7 %, which was similar 
to the coefficient of variation of the Mendelian variances 
of PKG (19.0  %), SCS (20.2  %), and SBd (21.5  %), but 
somewhat smaller than that of FKG (30.3 %).

Discussion
The derived covariance matrices depend on prior infor-
mation on the order and genetic distance of mark-
ers, as well as the parental diplotypes. They allow the 
calculation of the within-family variation of the esti-
mated genetic values based on exact considerations 
of the genotypes, degrees of homozygosity, and link-
age phases in the parents. In the classical formula, 
1
4σ

2
a (1− F♂)+ 1

4σ
2
a (1− F♀), the loss of homozygosity 

in the parents is considered relative to the base popula-
tion, where inbreeding coefficients are zero and the Men-
delian variance is at maximum (12σ

2
a) for all families. Our 

covariance matrices, in contrast, mirror the absolute 
level of marker homozygosity and the Mendelian vari-
ance reaches its maximum for fully heterozygous parents 
with all positive marker alleles in coupling phase. Differ-
ent linkage phases can make a substantial difference in 
marker covariability, as shown by the example in Fig. 4, 
which presents the correlation matrices for two diplo-
types with identical 16-marker genotypes but different 
linkage phases.

Fields of application and computational aspects
In general, the method described in this study can be 
applied to all diploid animals and plants. Of course, all 
relevant input parameters must be known, such as the 
marker maps, marker effects, and phased genotypes. 
Crosses of double haploid (i.e. fully inbred) lines occur 
as parents in breeding programs for plant species such as 
e.g. maize. An advantage of such parents is that they pro-
vide reliable diplotypes because of the complete homozy-
gosity of genotyped grandparents, whereas the derivation 
of diplotypes is prone to some degree of phasing error in 
non-inbred populations [10]. In cases where the phase 
of some SNPs is only known at a probabilistic level, it 



Page 8 of 11Bonk et al. Genet Sel Evol  (2016) 48:36 

may be an option to average the Mendelian sampling 
variances over all possible linkage phases. Simplifications 
may be possible, e.g. by taking only the most probable 
diplotypes into account. However, we did not investigate 
this question in detail.

For humans and mice, it has been found that marker 
maps generally differ for male and female parents  [11]. 
All the covariances can be adjusted easily for sex-specific 
recombination rates, which is achieved most easily in 
the pure additive case by applying the male and female 

Fig. 2  Scatter plots of Mendelian gametic variances obtained from simulation versus the exact values. Differences between simulated values (each 
one derived from 100,000 simulated gametes per candidate) and exact values appear as vertical deviations from the linear regression lines (in red) 
and represent Monte Carlo errors. The traits include fat yield (FKG), protein yield (PKG), somatic cell score (SCS), and direct genetic effect on stillbirth 
(SBd)
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Fig. 3  Frequency distributions of the Mendelian correlations. The frequency distributions of the correlations between FKG and all the other traits 
(PKG, SCS, and SBd) are shown on the left, and those between PKG and all the other traits are shown on the right. FKG fat yield, PKG protein yield, SCS 
somatic cell score, and SBd direct genetic effect on stillbirth
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recombination rates to set up �♂ and �♀. In the general 
case, the LD measures for both the paternal and maternal 
gametes D♂ and D♀ must be adjusted in order to obtain 
the adjusted covariances.

The sex of the full sibs matters for the inclusion of 
sex chromosomes because when all considered progeny 
are female, the sire can be treated as homozygous at all 
X-chromosomal loci and the calculation can proceed as 
usual. When the focus is on male progeny, such as young 
bulls obtained from elite matings, there is no X-chromo-
somal paternal contribution to the Mendelian sampling 
variance. Of course, dominance has no effect on the 
X-chromosomal Mendelian variance in males, unlike for 
females.

From a computational viewpoint, the purely additive 
case is most convenient because the parental contribu-
tions to the Mendelian variances and covariances can 
be calculated for a large list of potential parents and all 
traits by setting up the parent-specific covariance matrix. 
Subsequently, the parental contributions only have to be 
added to the total within-family variance for each mat-
ing considered. The computational time required by the 
exact method was roughly the same as that for the simu-
lation approach. However, the computational demand 
would increase for the latter case if the Monte Carlo 
error needs to be reduced further.

Population-averaged Mendelian sampling variances for 
single traits were previously derived from large numbers 
of phased genotypes and available estimates of additive 
marker effects by Cole and VanRaden [6]. Neither sim-
ulation of gametes nor covariance matrices were used 
in this study since loci on the same chromosome were 
either assumed to be perfectly linked or fully independ-
ent. Consequently, their respective results can only be 

interpreted as upper and lower limits. In another study, 
Segelke et  al. [5] took recombination within chromo-
somes into account by simulating gametes of individu-
als with known diplotypes. Parental contributions to the 
within-family additive genetic variance were expressed as 
standard deviations of gamete breeding values in a fam-
ily-specific manner.

Consideration of the aggregate genotype calls for a 
full Mendelian sampling covariance matrix across traits, 
which, in the additive case, can also be derived by simula-
tion, but this has not yet been reported in the literature. 
This requires that genomic breeding values are estimated 
for each trait of interest and each single simulated gam-
ete and then averages of squares and cross-products are 
calculated over gametes. If dominance effects are to be 
included, pairs of paternal and maternal gametes have 
to be simulated. The simulation-inherent Monte Carlo 
errors of all single-trait variances and all pair-wise covar-
iances will, of course, propagate and induce a joint Monte 
Carlo error of the resulting variability in the aggregate 
genotype.

From a producer’s perspective, phenotypic uniformity 
of a population of plants or animals is desirable because 
it facilitates management. Matings with high additive 
genetic merit and low within-family genetic variance [6] 
may be attractive to achieve that goal. Dominance—if 
of some importance for the traits under considera-
tion—could be included for the same purpose. Breeding 
organizations, in contrast, are probably more interested 
in offspring with exceptionally high breeding values  [6], 
since e.g. in dairy cattle, semen prices are non-linearly 
related to the genetic merit of bulls. For a particular mat-
ing, the probability that the estimated breeding value of 
offspring will be greater than a certain threshold can be 

Fig. 4  Parent-specific correlation matrix �♂ of the gametes. The respective phased genotypes are listed below. All markers are heterozygous, with 
a genetic distance of 1 cM between markers. For the first animal (left), markers 1–4 and 9–12 are in coupling phase, whereas markers 5–8 and 13–16 
are in repulsion phase with respect to the first marker. For the second animal (right), all markers are in coupling phase
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determined from a normal distribution with family-spe-
cific mean and variance. The opportunity to breed the 
desired animals of top genetic merit can then be maxi-
mized by choosing the matings with the highest probabil-
ities among all possible matings, possibly by taking some 
constraints such as inbreeding into account.

The average observed degree of homozygosity in the 
German Holstein dataset was 65.3 %, with a range from 
25.2 to 88.0 %. These high degrees of homozygosity were 
exploited for computational speed by deleting the rows 
and columns for homozygous markers from the covari-
ance matrix and the respective marker effects from m̂ . 
Therefore, the dimensions of the remaining vector of 
marker effects and the remaining covariance matrix were 
reduced greatly, leading to considerable computational 
time savings. Note that both parents had to be homozy-
gous in the dominance case in order to reduce matrix 
dimension in a similar way. Clearly, computational time 
can be decreased by implementing parallel calculation of 
individuals and chromosomes. However, in the presence 
of dominance, each considered mating must be computed 
with its own covariance matrix, and thus only matings can 
be parallelized (the chromosomes are unaffected).

Choosing alternative genotype indicators
The formulae for the covariances and correlations are 
functions of the chosen genotype indicators, for which 
different options exist [12]. In the present study, we 
used (1, 0, −1) (Eq. 3) for additive effects and (−1, 1,−1) 
(Eq. 4) for dominance effects, but other possible indica-
tors include (0,  1,  2) for additive effects and (0,  1,  0) or (
− 1

2 ,
1
2 ,−

1
2

)
 for dominance effects. All these indica-

tors can be transformed into each other by a shift and/
or a multiplication by a constant. Simply shifting the 
indicators does not influence the (co)variance, so it is 
also possible to use the formulae described in this study 
when additive marker effects have been estimated via the 
(0, 1, 2) coding.

However, multiplication of genotype codes by a con-
stant factor does affect the (co)variance. For example, let 
m

d̃
 be the dominance marker effect when the indicator 

c
d̃,i

= (0, 1, 0) is used for its estimation. The Mendelian 
sampling variance is then calculated by m′

a,d̃
�

a,d̃
m

a,d̃
, 

where m′

a,d̃
 is known, but �

a,d̃
 is not known. The type of 

parameterization does not affect the Mendelian sampling 
variance, so:

must hold, where the terms on the right-hand side are 
known. The relationship between indicators c

d̃
 and cd is 

c
d̃,i

=
cd,i+1

2 ; hence,

(33)m
′

a,d̃
�

a,d̃
m

a,d̃
= m

′
a,d�a,dma,d

and

and thus the Hadamard product

with

transforms the �a,d matrix into �
a,d̃

. Instead of trans-
forming the covariance matrix �, the estimated marker 
effects can also be transformed, which can be imple-
mented easily by multiplying the marker effects m

d̃
 by 12.

Genetic differences can be parameterized in terms 
of substitution effects and dominance deviations, or in 
terms of additive and dominance genotype effects, as dis-
cussed in detail by Vitezica et al. [12]. For the former, the 
m̂-vector comprises estimates of the allele substitution 
effects mα and dominance effects m

d̃
. Allele substitutions 

effects are defined as (e.g. [13]):

where ui and vi = 1− ui are the population frequen-
cies for alleles A and B, respectively. When only allele 
substitution effects mα are considered and dominance 
effects are ignored (e.g.  [5]), it is possible to use the 
covariance matrix described in this study without 
changes.

If dominance effects are not ignored, the allele substi-
tution effects must be transformed into additive marker 
effects in order to allow the use of the derived covariance 
matrix. This transformation is achieved by:

The allele frequencies u and v, which are required for 
the transformation, are already available because they are 
required for routine estimation.

(34)

cov
(
c
d̃,i
, c

d̃,j

)
= cov

(
cd,i + 1

2
,
cd,j + 1

2

)

=
1

4
cov

(
cd,i, cd,j

)
,

(35)

cov
(
c
d̃,i
, ca,j

)
= cov

(
cd,i + 1

2
, ca,j

)

=
1

2
cov

(
cd,i, ca,j

)
,

(36)

cov
(
ca,i, cd̃,j

)
= cov

(
ca,i,

cd,j + 1

2

)

=
1

2
cov

(
ca,i, cd,j

)
,

(37)�
a,d̃

= U ⊙�a,d

(38)U =

[
1

1
21

1
21

1
41

]

(39)mα,i = ma,i +m
d̃,i
(vi − ui),

(40)

ma,i = mα,i −m
d̃,i
(vi − ui)

= mα,i −
1

2
md,i(vi − ui).
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Conclusions
In this study, we proposed a new method for the exact 
calculation of Mendelian sampling (co-)variances based 
on knowledge of phased marker genotypes and marker 
effect estimates and we derived all the requisite formu-
lae. The method considers inbreeding but also the abso-
lute level of homozygosity, as indicated by the marker 
genotypes, while it also considers the linkage phase of the 
markers in both parents.

We demonstrated the applicability of our method by 
comparing its results with results produced by an estab-
lished simulation method using a large dairy cattle data-
set. We found that both approaches agreed within the 
range of the Monte Carlo error, which is inherent in the 
simulation, but which can be fully avoided because the 
derived covariance matrices represent an infinitely large 
number of progeny.
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