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Abstract

This study introduces the use of multivariate linear regression (MLR) and support vector 

regression (SVR) models to predict postoperative outcomes in a cohort of patients who underwent 

surgery for cervical spondylotic myelopathy (CSM). Currently, predicting outcomes after surgery 

for CSM remains a challenge. We recruited patients who had a diagnosis of CSM and required 

decompressive surgery with or without fusion. Fine motor function was tested preoperatively and 

postoperatively with a handgrip-based tracking device that has been previously validated, yielding 

mean absolute accuracy (MAA) results for two tracking tasks (sinusoidal and step). All patients 

completed Oswestry disability index (ODI) and modified Japanese Orthopaedic Association 

questionnaires preoperatively and postoperatively. Preoperative data was utilized in MLR and SVR 

models to predict postoperative ODI. Predictions were compared to the actual ODI scores with the 

coefficient of determination (R2) and mean absolute difference (MAD). From this, 20 patients met 

the inclusion criteria and completed follow-up at least 3 months after surgery. With the MLR 
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model, a combination of the preoperative ODI score, preoperative MAA (step function), and 

symptom duration yielded the best prediction of postoperative ODI (R2 = 0.452; MAD = 0.0887; p 
= 1.17 × 10−3). With the SVR model, a combination of preoperative ODI score, preoperative 

MAA (sinusoidal function), and symptom duration yielded the best prediction of postoperative 

ODI (R2 = 0.932; MAD = 0.0283; p = 5.73 × 10−12). The SVR model was more accurate than the 

MLR model. The SVR can be used preoperatively in risk/benefit analysis and the decision to 

operate.
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1. Introduction

Cervical spondylotic myelopathy (CSM) is characterized by spondylosis leading to 

compression of the spinal cord [1]. When conservative therapy fails, surgical management 

involving anterior cervical discectomy, with or without fusion, is the most common 

approach. While treatment is normally effective, results can vary [2]. Ebersold et al. [2] 

reported long term functional decline or no improvement in 45% of patients undergoing 

anterior cervical discectomy with fusion (ACDF) for CSM and Chang et al. [3] found a lack 

of improvement in 14.5% of patients undergoing laminectomy and fusion for CSM.

While prognostic factors for patients undergoing surgery for CSM have been investigated, 

predicting outcomes remains challenging. Age, symptom duration and preoperative 

neurological function have been reported as prognostic indicators [4–6]. These findings are 

frequently limited by bias towards specific surgical procedures and non-standardized 

evaluations of clinical outcomes [7].

Multivariate regression models have been used as prediction mechanisms for postoperative 

outcomes in conditions such as spinal cord injury [8], stroke [9], and Parkinson’s disease 

[10]. However, to the best of our knowledge, this approach has not been applied to CSM. 

The goal of this study was to investigate two different regression models, multivariate linear 

regression (MLR) and support vector regression (SVR), in a cohort of patients receiving 

decompressive surgery for CSM to develop a mathematical tool for predicting postoperative 

outcomes. An accurate predictive model of functional outcomes would allow for optimal 

patient selection for surgery, realistic postoperative goals for patients, planning for 

environmental adjustments to accommodate the patient’s postoperative functional status, and 

preparation for appropriate rehabilitation procedures [9, 11].

2. Methods

2.1. Patient selection and chart review

This study was approved by the authors’ Institutional Review Board and all patients 

provided consent to participate in the study. All patients were enrolled through a spine clinic 

and a single neurosurgeon performed all procedures. Patients with coexisting neuromuscular 
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or other spinal cord conditions were excluded. Patient charts were reviewed for information 

regarding pathology including the level of the spinal cord lesion, symptom duration, and the 

narrowest spinal cord diameter. Additionally, we investigated whether the patient was 

rehospitalized subsequent to the hospitalization for the procedure.

2.2. Functional outcome

Patients’ disability levels were measured by administering the Oswestry disability index 

(ODI) questionnaire [12] during the preoperative consultation and at a minimum of 3 

months postoperatively. ODI version 2.0 [13] was used, and the score was linearly scaled 

from 0 to 1 with 0 representing no disability and 1 representing maximum disability. In 

addition to the ODI, patients completed the modified Japanese Orthopaedic Association 

(JOA) survey, which is modified from the original JOA survey to measure the functional 

capacity of CSM patients [14].

2.3. Testing protocol

Previously validated handgrip-based tracking tasks [15, 16] were used to quantitatively 

evaluate fine motor function. The MediSens handgrip device (MediSens Wireless, Santa 

Clara, CA, USA), a research device developed at the Wireless Health Institute of the 

University of California Los Angeles, is illustrated in Figure 1a. Using the handgrip protocol 

described by Getachew et al.[16], fine motor function was quantified by determining the 

mean absolute error (MAE) during sinusoidal (sine) and step tracking tasks (Fig. 1b). It is 

computed as the mean value between the target and the patient’s response over the period of 

the test. The mean absolute accuracy (MAA) was then calculated as 1 − MAE. Each task 

was performed in triplicate and the average MAA from the three trials was used as the final 

measure.

2.4. Statistical analyses

We employed two statistical techniques for estimating postoperative ODI scores: MLR and 

SVR. MLR was used to linearly aggregate prognostic factors to predict the postoperative 

outcomes. Conversely, SVR allows for a more flexible, non-linear relationship between the 

prognostic factors and the outcome. This algorithm is constructed upon the statistical 

learning theory, which generates a hyperplane that best describes correlation among clinical 

variables to the response variables [17]. Additional information regarding the technique is 

available [18–22]. The predicted ODI of both regression techniques were compared to the 

patient’s actual ODI using the coefficients of determination (R2 and adjusted R2), mean 

absolute difference (MAD), and corresponding p values.

Considering the sample size of this study, we limited the number of predictor variables to 

three for both MLR and SVR; the maximum number of predictors is approximately 20% of 

the sample size. This constraint was applied to minimize the chances of over-fitting the 

regression model.
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3. Results

3.1. Patient demographics

A total of 27 patients with CSM met the inclusion criteria and were followed as part of a 24 

month cohort trial. Seven patients did not complete follow-up, leaving 20 patients (11 men 

and 9 women) with a mean age of 62 years (standard deviation 13.8). The average clinical 

follow-up time was 5.6 months after the surgical procedure. There were 15 patients who 

underwent laminectomy with fusion, four anterior cervical discectomy and fusion, and one 

minimally invasive laminectomy without fusion. Of those who underwent fusion, the 

average number of levels fused was 3.9 (range: 2–7). Out of the entire cohort, the average 

number of levels decompressed was 4.1 (range: 2–7).

3.2. Univariate correlation to postoperative outcomes

Figure 2 shows the univariate correlations between postoperative ODI and each of the 

predictor variables: preoperative MAA of sine and step functions, age, narrowest spinal 

diameter, symptom duration, preoperative ODI, and preoperative modified JOA. Figure 2g 

displays the correlation between preoperative symptom duration and postoperative ODI, 

however, the plot on the right is limited to patients with symptom durations < 60 months. 

The quantitative evaluation (R2, adjusted R2, and p value) of each correlation is provided in 

Table 1.

Preoperative ODI showed the most significant correlation to the postoperative ODI (p < 

0.003). MAA of sine and step tracking tasks (p < 0.057 and p < 0.060, respectively) as well 

as age (p < 0.171) were associated with the outcome but did not reach statistical significance 

(Fig. 2e, f). The symptom duration of the entire dataset did not show statistical significance 

(p < 0.614), but when only patients with symptom duration less than 60 months were 

considered, it showed a significant correlation (p < 0.003; Fig. 2g).

3.3. Multivariate correlation to postoperative outcomes

The results of multivariate regressions using MLR and SVR are summarized in Table 2. The 

regression results and the Bland–Altman plots for both models are provided in Figure 3. In 

the MLR model, the predictors that produced the best regression results were preoperative 

ODI, MAA of the step tracking task, and symptom duration. In the SVR model, the best 

predictors were preoperative ODI, MAA of the sine tracking task, and symptom duration.

SVR produced superior regression performance (p < 5.73 × 10−12) compared to MLR (p < 

1.17 × 10−3; Fig. 3). For the SVR model, the bias and the limit of agreement of the Bland–

Altman plot were 0.0198 and 0.125, respectively. The Bland–Altman plot of the SVR results 

shows that the differences in methods are randomly distributed within the entire range of the 

averages of the methods (Fig. 3b). There exist two data points exceeding the limit of 

agreement, which are potential outliers. The Cook’s distances were computed for all data 

points to identify the outliers using
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where n is the total number of data points (20). Variable r̂j represents the regression estimate 

of the response variable (postoperative ODI) of a data point j, and r̂j−i represents the 

regression estimate of the data point j when the data point i is removed from the regression 

analysis. The variable s represents the root mean square of the regression and k represents 

the number of predictors used in the regression model (k = 3). A data point is defined as an 

outlier if the following inequality is true:

According to this definition, the two points that exceeded the limit of agreement were 

defined as outliers. Their Cook’s distances were 0.63 and 1.05 where 4/(n − (k + 1)) = 0.22. 

These points belonged to the two patients who reported their symptom durations as 20 years 

and as a consequence, their prediction results were significantly exaggerated by the SVR 

model (Fig. 3b).

4. Discussion

Predictions of surgical outcomes for CSM remain a challenge and many patients do not 

benefit from surgery. In a retrospective study by Nirala et al.[23], 18.9% of patients 

undergoing anterior surgery for CSM did not achieve good or excellent outcomes based on 

Odom’s criteria. In a retrospective analysis by Carol et al.[24], 27% of patients who 

underwent ACDF for CSM did not improve, and 32% of patients who underwent 

laminectomy did not improve. Therefore, optimizing patient selection could reduce the 

number of poor surgical outcomes.

We investigated preoperative variables that have been shown to have utility in predicting 

outcomes after surgery for CSM. The inclusion of the narrowest cervical spinal diameter 

points to evidence that narrow spinal canals contribute to accelerated disease progression 

[25]. Age and symptom duration have also shown correlations with outcomes in CSM 

patients [4, 5]. The final variables included were MAA measurements obtained from the 

handgrip tracking tasks. We hypothesized that these would correlate with postoperative 

outcomes because they are sensitive measurements of symptom severity [16].

In our MLR model, a combination of the preoperative ODI score, preoperative MAA score 

for the step tracking task, and symptom duration yielded the best prediction of postoperative 

ODI. The most accurate SVR model included the preoperative ODI score, MAA score for 

the sine tracking task and symptom duration. Both models included preoperative ODI as a 

predictor. This is consistent with the univariate analysis, in which preoperative ODI had one 

of the most significant correlations with postoperative ODI. Symptom duration also had a 

strong univariate correlation with outcomes, possibly because a greater amount of time had 

Hoffman et al. Page 5

J Clin Neurosci. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



passed for ischemia and other forms of compressive damage to develop. The selected 

predictors for the MLR model included MAA score of the step task which had the fourth 

most significant linear correlation to the postoperative ODI (p < 0.060). Overall, both 

models suggest that patients with more chronic and severe symptoms do not fare as well 

postoperatively.

While clinical maneuvers for evaluating CSM patients typically evaluate strength, sensation, 

or reflexes [26, 27], fine motor function is a factor that is less commonly accounted for. 

Nonetheless, a reduction in fine motor function is a major complaint of myelopathic patients 

[28, 29]. Its relation to postoperative ODI indicates that those with poorer fine motor 

function preoperatively experience worse postoperative outcomes. The presence of 

myelopathic symptoms may indicate greater spinal cord compression which is less likely to 

improve after surgery due to ischemia. There is evidence that ischemia may be a secondary 

cause of CSM, compounding the primary damage done by nerve compression [25, 30]. The 

importance of preoperative fine motor function in our models is consistent with the survey 

by Tetreault et al. in which the presence of myelopathic symptoms was considered one of the 

most important predictive factors of outcomes in CSM patients undergoing surgery [31]. In a 

case series by Bertalanffy and Eggert, the presence of myelopathic symptoms was inversely 

correlated with outcomes [32]. In addition, hand muscle atrophy has been found to be 

predictive of poorer postoperative outcomes[33, 34], further supporting the use of the 

handgrip device in our assessment. Symptom severity was also regarded as an important 

prognostic factor in the survey by Tetreault et al.[31], and the MAA score included in our 

models is a highly sensitive measurement of this [16].

The SVR model produced superior correlation results compared to the MLR model (Table 2; 

Fig. 3). While patients with greater preoperative disability may have more postoperative 

disability than their less disabled counterparts, their improvement cannot be assumed to be 

directly proportional. The SVR superiority to MLR for predicting outcomes underscores the 

variability of the response to surgery. The greater performance of a more flexible predictive 

model suggests that even with the availability of prognostic factors, patients may not 

respond to surgery as expected. The variability in response could be a concern to patients 

and surgeons who are unsure if a surgical approach to CSM should be pursued. Using the 

SVR model to predict functional status after surgery would aid in the decision making 

process.

The models we have introduced could easily be implemented in a CSM patient’s 

preoperative evaluation. Assessing disability with the ODI questionnaire is routinely 

performed in clinics, and measuring fine motor function with the handgrip is a reliable and 

rapid clinical test [15]. Furthermore, the models we have constructed predict ODI, which is a 

single, readily interpretable score [13]. Applying a mathematical model is a more objective 

approach than analyzing subjective preoperative factors such as T2-weighted signal 

intensity, which can be difficult to interpret [7] but continues to be a commonly applied 

prognostic indicator in CSM patients [31]. Our model also has the benefit of yielding a 

quantitative measurement of outcomess, while others are qualitative [35].
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One limitation of this study was the use of ODI as an outcome measurement, while a CSM-

specific scale such as the JOA assessment may have been better suited to our patients. 

However, ODI has been applied to cervical patients before [15], and ODI correlates with the 

JOA score [36].

5. Conclusion

Currently, the preoperative factors that have been implicated in predicting patient responses 

to CSM surgery are inconsistent, and the available multivariate regression models are limited 

in scope. CSM treatment would benefit from our SVR model which can accurately and 

quantitatively predict postoperative outcomes. Our model would offer the ability to optimize 

patient selection for surgery, however, further confirmation awaits a larger scale clinical trial.
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Highlights

• Two models to predict surgical outcomes for CSM are introduced

• Models were multivariate linear regression (MLR), support vector regression 

(SVR)

• Twenty CSM patients were examined before and after surgery

• Both models used preoperative data to accurately predict postoperative 

outcomes

• The SVR model was more accurate than the MLR model
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Fig. 1. 
(a) The handgrip device used to detect grip strength in real-time. (b, c) An illustration of 

tracking tasks for two different patterns: (b) sinusoidal and (c) step.
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Fig. 2. 
Univariate correlations between postoperative Oswestry disability index (ODI) and each of 

the considered predictor variables: (a) preoperative ODI, (b) preoperative modified Japanese 

Orthopaedic Association (mJOA) score, (c) age, (d) narrowest spinal diameter, (e) mean 

absolute accuracy of sinusoidal tasks (MAA; sine) of the entire dataset (left) and with 

outliers removed (right), (f) MAA (step) of the entire dataset (left) and with outliers removed 

(right), (g) symptom duration of the entire dataset and symptom duration < 60 months. This 

figure is available in color at www.sciencedirect.com.
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Fig. 3. 
The regression plots (left) and associated Bland–Altman plots (right) for (a) multivariate 

linear regression and (b) support vector regression. ODI = Oswestry disability index. This 

figure is available in color at www.sciencedirect.com.

Hoffman et al. Page 13

J Clin Neurosci. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hoffman et al. Page 14

Table 1

Quantitative summary of the correlation between postoperative ODI and each of the considered predictor 

variables

R2 Adjusted R2 p value

Preoperative ODI 0.401 0.368 0.003*

Preoperative mJOA 0.041 −0.012 0.391

Age 0.102 0.052 0.171

Narrowest Diameter 0.012 −0.043 0.643

MAA sine 7.77 × 10−5 −0.056 0.971

MAA sine (without outliers) 0.197 0.150 0.057*

MAA step 0.0025 −0.053 0.836

MAA step (without outliers) 0.205 0.155 0.060*

Symptom duration (all data) 0.405 −0.040 0.614

Symptom duration (< 60 months) 0.401 0.368 0.003*

*
p value at or close to significance (p < 0.05 deemed significant).

MAA = mean absolute accuracy, mJOA = modified Japanese Orthopedic Association scale, ODI = Oswestry disability index, sine = sinusoidal.
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