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The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor
superfamily. Upon ligand binding, PPARs activate target gene transcription and regulate a variety of important physiological
processes such as lipid metabolism, inflammation, and wound healing. Here, we describe the first database of PPAR target genes,
PPARgene. Among the 225 experimentally verified PPAR target genes, 83 are for PPAR𝛼, 83 are for PPAR𝛽/𝛿, and 104 are for PPAR𝛾.
Detailed information including tissue types, species, and reference PubMed IDs was also provided. In addition, we developed a
machine learning method to predict novel PPAR target genes by integrating in silico PPAR-responsive element (PPRE) analysis
with high throughput gene expression data. Fivefold cross validation showed that the performance of this prediction method was
significantly improved compared to the in silico PPRE analysis method. The prediction tool is also implemented in the PPARgene
database.

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are
ligand-activated transcription factors that belong to the
superfamily of nuclear receptors. PPARs form heterodimers
with a retinoid X receptor (RXR) and control gene expression
by binding to specific PPAR-responsive elements (PPREs) on
target gene promoters [1]. PPARs play critical roles in the
regulation of lipid and glucose metabolism, inflammation,
woundhealing, andmany other pathophysiological processes
[2–5]. Synthetic PPAR ligands, such as fibrates and thiazo-
lidinediones, are used for clinical treatment of dyslipidemia
and type 2 diabetes, respectively [6].

Extensive studies have demonstrated a variety of target
genes regulated by the individual PPAR subtype. Therefore,
building a database with a comprehensive collection of the
previously verified PPAR target genes for each subtype will be
helpful for PPAR research. In this study, we first established
a database of PPAR target genes, PPARgene. Experimen-
tally verified PPAR target genes were manually curated and

detailed information including PPAR subtype, tissue types,
species, and reference PubMed IDs was provided.

Recently, the application of high throughput technologies
such asmicroarray has generated a number of PPAR-induced
gene expression data sets, which are freely available in public
database. By integrating in silico PPRE analysis with high
throughput gene expression data, we developed a machine
learningmethod to predict novel PPAR target genes.The pre-
diction tool is also implemented in the PPARgene database
(http://www.ppargene.org/).

2. Methods

2.1. Data Collection

2.1.1. Collection of Experimentally Verified PPAR Target Genes.
PPAR-related publications were acquired from PubMed
database using the key words “PPAR”, “PPAR alpha”, “PPAR
beta”, “PPAR delta”, “PPAR gamma”, or “peroxisome pro-
liferator” (review articles were excluded). We then curated
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the data manually and retrieved the PPAR target genes if
experimental evidence for gene regulation (at mRNA and/or
protein levels) and functional PPRE (reporter assay and/or
DNA-binding assays) were both reported.

2.1.2. Collection of PPAR-Relevant Microarray Data Sets.
PPAR-relevant microarray data sets were acquired by search-
ing the GEO database [7] using the key words “PPAR”,
“PPAR alpha”, “PPAR beta”, “PPAR delta”, “PPAR gamma”,
or “peroxisome proliferator”. We manually curated 22 data
sets in which PPARs were activated or overexpressed.

2.2. Feature Extraction

2.2.1. High Throughput Evidence (HTE). To obtain the high
throughput experimental evidence supporting PPAR target
gene interactions, we collected microarrays in which PPARs
were activated or overexpressed. Raw data of collectedmicro-
arrays were processed using the R-packages Bioconductor
[8]. The HTE value of a gene was defined as total number of
data sets divided by number of data sets in which this gene
was upregulated (log

2
fold change > 0.5).

2.2.2. PPRE Score (PS). Reference genome of mouse
(GRCm38) and rat (Rnor 6.0) was downloaded from NCBI.
According to previous studies [9–12], PPREs were located
within 5 kb upstream or downstream of the transcription
start site (TSS) in most cases. Therefore, we extracted
−5 kb∼+5 kb TSS flanking sequences from the reference
genome for all mouse and rat genes identifiable by Entrez
Gene ID according to the genomic coordinates.

Potential PPREs were scanned in silico using the position
weight matrix (PWM) model, which was widely used to
describe cis-regulatory elements [13, 14]. Since the three sub-
types of PPARs bind to a common core consensus sequence,
we did not distinguish the difference of binding site among
subtypes and used the position frequency matrix (PFM) of
PPAR𝛾-RXR𝛼 heterodimer retrieved from JASPAR database
(ID: MA0065.2) [15] to compute the PWM of PPRE. The
PWMwas computed as described previously [16]. Briefly, we
calculated the PWM value as

𝑊
𝑏,𝑖
= log
2

𝑝 (𝑏, 𝑖)

𝑝 (𝑏)

, (1)

where 𝑊
𝑏,𝑖

is PWM value of base 𝑏 in position 𝑖, 𝑝(𝑏) is
background probability of base 𝑏 in the genome, and 𝑝(𝑏, 𝑖) is
probability of base 𝑏 in position 𝑖. Pseudocount values (square
root of the number of sites) were added to each base in each
position to smoothen the small sample effects. The PWM
score for a putative sequence was calculated as sum of the
PWM values for each nucleotide in the sequence. For each
gene identifiable by Entrez Gene ID in the mouse genome,
we scanned putative PPREs from the TSS flanking sequences
in both strands at a PWMscore cut-off of 4.56 (70% relative to
top PWM score) initially. The PS value of a gene was defined
as the highest PWM score of all PPREs identified in this
gene.

2.2.3. Conserved PPRE Score (CPS). Evolutionary conser-
vation has been used as an effective filter for improving
specificity in regulatory motif recognition [17–19]. We per-
formed comparative genomic analysis to identify conserved
PPREs. Pairs of orthologous genes in mouse and rat were
retrieved from NCBI HomoloGene database. TSS flanking
sequences (−5 kb∼+5 kb) of the orthologous gene pairs were
aligned using megaBLAST with default parameters (word
size = 28, reward = 1, mismatch penalty = −2, gap opening
penalty = 0, and gap extension penalty = 2.5) [20, 21].
Alignments less than 50 bp or with an 𝐸-value > 0.001 were
discarded. For each orthologous gene, we scanned putative
PPREs from the TSS flanking sequences at a PWM score
cut-off of 4.56. A pair of putative PPREs was identified
as conserved PPRE if they were matched in the pairwise
alignments. The CPS value of a gene was defined as the
highest PWM score of all conserved PPREs identified in this
gene.

2.3. Model Training and Evaluation

2.3.1. Training Sets for the Prediction Model. Experimentally
verified target genes collected in the PPARgene database
were defined as positive training samples. However, it would
be difficult to prove that a gene is not a target gene of
PPARs in any conditions. Thus, we obtain negative training
samples by randomly choosing equal number of genes from
the background data set, which contained all protein coding
genes excluding the positive samples. To avoid sampling
bias, we sampled the negative data set 100 times and then
combined each negative data set with the positive data set to
train the classifier.

2.3.2. Logistic Regression Classifier. We employed the bino-
mial logistical regression model to predict PPAR target
genes. All mouse protein coding genes with a HomoloGene
database ID were classified according to a combination of
the features described above. Let 𝑝

𝑖
be the probability that

the 𝑖th gene is a PPAR target gene and let 1 − 𝑝
𝑖
be

the probability that it is not. The logistic regression model
is

log
𝑝
𝑖
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where 𝛽
𝑗
is the regression coefficient of the feature 𝑋

𝑖𝑗
.

The logistic regression model was implemented using
the generalized linear model (GLM) function in R
[22].

2.3.3. Performance Evaluation. We used 5-fold cross valida-
tion to evaluate the performance of the logistic regression
model. In each round, 20% of the samples were left out as the
test data and the remaining were the training data. Precision,
recall, and 𝐹1 score were used to evaluate the performance
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of the classifier. Precision, recall, and 𝐹1 were calculated
as

Precision = TP
(TP + FP)

,

Recall = TP
(TP + FN)

,

𝐹1 =

2 precision × recall
(precision + recall)

,

(3)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
We also calculated AUC, the area under the receiver oper-
ating characteristic (ROC) curve, using ROCR package [23].
Because negative data sets were obtained by 100 random
samplings, the medians of precisions, recalls, 𝐹1s, and AUCs
of the 100 training results were used.

2.4. Web Server. All data were organized using MySQL, an
open-source relational database management system. The
website was presented using PHP. The PPARgene database is
freely available at http://www.ppargene.org/.

3. Results and Discussion

3.1. Experimentally Verified PPAR Target Genes. In this
study, we developed a database for PPAR target genes. We
curated PPAR target genes manually from 9046 PPAR-
related publications. The PPARgene database now contains
225 experimentally verified PPAR target genes, including 83
target genes for PPAR𝛼, 83 target genes for PPAR𝛽/𝛿, and 104
genes for PPAR𝛾. Forty genes were common targets of at least
two PPAR subtypes. Detailed information including tissues,
species, reference PubMed IDs, and hyperlinks to the original
articles in PubMed database was also provided.

3.2. Generation of Logistic Regression Models to Predict PPAR
Target Genes. We generated a logistic regression model to
predict novel PPAR target genes. To train the logistic regres-
sion model, experimentally verified target genes were used
as positive examples. Equal numbers of negative examples
were obtained by random sampling from the background
gene sets. Since the three PPAR subtypes bind to a conserved
core sequence and share some common target genes [24],
we currently did not distinguish subtypes in our prediction
model.

Firstly, we generated the prediction model only based on
in silico PPRE recognition using the standard position weight
matrices (PWM)model [16]. Because functional PPREs were
also found in downstream region of the TSS [9–12, 25], we
scanned PPREs on both upstream and downstream regions.
Genes were predicted as target genes or not according to
the PWM score (PS). Fivefold cross validation was used to
evaluate the performance of this model. As shown in Table 1,
the median precision, recall, 𝐹1, and AUC were 0.57, 0.49,
0.52, and 0.59, respectively.The performance was poor, which
may be due to a high number of false predictions of PPREs.

Table 1: Performances of logistic regression models trained on
different features.

Features Precision Recall 𝐹1 AUC
PS 0.57 0.49 0.52 0.59
CPS 0.61 0.68 0.64 0.68
CPS + HTE 0.83 0.59 0.69 0.82
PS: PPRE score; CPS: conserved PPRE score; HTE: high throughput
evidence.
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Figure 1: ROC curves for logistic regression models trained on dif-
ferent features. CPS: conserved PPRE score; HTE: high throughput
evidence; PS: PPRE score.

It is reported that conservation in regulatory regions can be
used to enhance the predictive specificity [17–19]. We next
performed comparative genomic analysis to identify putative
PPREs conserved in mouse and rat. Orthologous genes were
then classified according to conserved PPRE score (CPS). As
shown in Table 1, the median precision, recall, 𝐹1, and AUC
were 0.61, 0.68, 0.64, and 0.68, respectively, which indicated
a better performance.

Rather than in silico prediction of binding sites, experi-
mental data sets provide direct evidence for gene regulation.
Recently, high throughput technologies have produced a
number of public available PPAR-relevant gene expression
profiles. Thus, we collected PPAR-gain-of-function microar-
ray data sets from the GEO database and extracted the
supporting evidence for gene regulation. The logistic regres-
sion model was then generated based on a combination of
conserved PPRE score and high throughput evidence. As
shown in Table 1, the median precision, recall, 𝐹1, and AUC
were 0.61, 0.68, 0.64, and 0.68. The performance was greatly
improved. ROC curves of the prediction models also showed
the improvement in performance (Figure 1).
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Figure 2: Number of predicted target genes in mouse genome.
The predicted target genes were classified into 3 confidence levels
according to the 𝑝 value computed in the logistic regression model.

3.3. Genome-Wide Prediction of PPAR Target Genes. We pre-
dicted PPAR target genes from all 18,716 orthologous genes
in mouse genome using the prediction model based on the
combination of conserved PPRE score and high throughput
evidence. We classified the predicted target genes into 3
confidence levels according to the 𝑝 value (the probability
of being a PPAR target gene) (Figure 2). In total, 2,683 genes
with 𝑝 > 0.45 were predicted as potential PPAR target genes,
in which 448 genes were in the high-confidence category
(𝑝 > 0.8), 803 genes were in the median-confidence category
(0.8 ≥ 𝑝 > 0.6), and 1432 genes were in the low-confidence
(high-sensitivity) category (0.6 ≥ 𝑝 > 0.45). Genes with 𝑝
value ≤ 0.45 were predicted as negative. A complete list of the
predicted PPAR target genes was available in the PPARgene
website.

4. Querying the Database

The PPARgene database is composed of two modules: one
is for querying experimentally verified target genes and the
other is for querying computationally predicted target genes.

4.1. Experimentally Verified Target Genes. We provide users
two ways to query the experimentally verified target genes.
First, users can browse the results by selecting the PPAR
subtype. PPARgene will return a table of matched entries.
Users can also submit a specific gene symbol. The provided
results contain the following items: PPAR subtype, gene
symbol, species, tissue/cell types, regulation direction, and
reference PubMed IDs.

4.2. Computationally Predicted Target Genes. Users can
retrieve the prediction results by querying the gene symbol.
If the gene is predicted as a PPAR target gene, the query will
return a 𝑝 value with a confidence level. A larger 𝑝 value
means a higher confidence. High throughput gene expression
data and putative PPREswere listed to support the prediction.
For example, Klf15 was predicted as a PPAR target gene
at a high confidence (Figure 3). The prediction was made
based on the curated microarray data and identified PPREs.
PPAR agonists WY14643 and GW501516 upregulated Klf15
expression in mouse heart and skeletal muscle tissues. In
addition, 9 putative PPREs were found in the TSS flanking
regions of mouse Klf15. Six of the 9 PPREs were also found in
rat Klf15 and labeled with an asterisk. The PPRE in the +1102
has a highest PWM score (13.45).Thus, the logistic regression
model integrated both the gene expression information and
the highest PWM score of the PPRE to compute the proba-
bility value (𝑝) as 0.84298, which placed Klf15 as a predicted
target gene in the high-confidence category.

4.3. Downloadable Files. Users can download data sets of
experimentally verified PPAR target genes as well as compu-
tationally predicted target genes. We also provide hyperlinks
for downloading the high throughput experimental data sets
curated in our prediction model.

5. Future Extensions

In this release of PPARgene, we have focused on curation
and prediction of protein coding target genes. Recent studies
demonstrated that PPARs regulate non-protein coding genes
as well [26, 27]. Therefore, the future goal is to predict
noncoding target genes of PPARs. We will also develop
methods to predict target genes for each PPAR subtype.
Experimentally supported PPAR target genes in the PPAR-
gene database will be updated every 3 months.

6. Conclusion

In this study, we described PPARgene, a novel database of
experimentally verified as well as computationally predicted
PPAR target genes. By integrating in silico PPRE analysis with
high throughput gene expression data, we developed an effec-
tive machine learning method to predict novel PPAR target
genes in the mouse genome.We consider that PPARgene will
be a useful tool for PPAR research.
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Figure 3: Predicted results of a query gene. High throughput gene expression data and putative PPREs were provided to support the
prediction.
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