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Major histocompatibility complex 
harbors widespread genotypic 
variability of non-additive risk of 
rheumatoid arthritis including 
epistasis
Wen-Hua Wei1,2, John Bowes1, Darren Plant1, Sebastien Viatte1, Annie Yarwood1, 
Jonathan Massey1, Jane Worthington1,3 & Stephen Eyre1,3

Genotypic variability based genome-wide association studies (vGWASs) can identify potentially 
interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to 
make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous 
phenotypes into additive risk and non-additive environmental residuals on the liability scale and 
secondly using the Levene’s (Brown-Forsythe) test to assess equality of the residual variances across 
genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within 
the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. 
We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC 
additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was 
also identified in the discovery cohort but replicated in only one independent cohort. Combining the 
three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 
and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover 
interacting loci for complex diseases but require large samples to find additional signals.

Genome-wide association studies (GWASs) have been extremely successful in highlighting loci associated with 
complex diseases such as rheumatoid arthritis (RA)1–3. While GWASs may continue to reveal novel loci based 
on the additive assumption, analyzing non-additive effects, such as gene-gene (GxG) and/or gene-environment 
(GxE) interactions, could provide novel insights into the underlying regulatory mechanisms1,4–6. Exploring GxG 
and/or GxE interactions in GWAS data has been attempted but, despite intensive efforts, the results so far have 
been relatively disappointing mainly due to low power of detection7–9. On the other hand, these results implicate 
that gene interactions could be prevalent but unlikely carry a big effect each and thus require a large sample 
to detect6,9. Currently available methods for detecting GxG interactions suffer from unmet computational and 
statistical challenges in supporting powerful meta-analysis of multiple cohorts9, and further potentially interact-
ing environmental factors are not necessarily measured in study cohorts. Therefore, innovative approaches are 
needed to improve studying non-additive effects10.

One promising approach is genotypic variability based genome-wide association study (vGWAS) to search for 
loci with substantial genotypic variability as potential interaction signatures, i.e. differences of phenotypic varia-
tion across three SNP genotypes which tend to be small when only additive effects are important but large when 
non-additive effects such as interactions are important11,12. Such variability could be heritable to some extent and 
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thus give rise to a new avenue of mapping genetic variants13,14. Hence, vGWAS has a great advantage in prioritiz-
ing potentially interacting loci without requiring prior knowledge of interaction types and interacting factors15,16. 
Additional explicit tests of GxE and/or GxG interactions are needed but only for the identified vGWAS loci, lead-
ing to a power increase attributed to a much reduced number of multiple tests17,18. Furthermore, studying biology 
of the identified vGWAS loci may inform what environmental factors should be further investigated. Therefore, 
vGWAS could be a cost effective approach to boost studies of GxG and GxE interactions based on existing GWAS 
data. However, vGWAS loci may not necessarily interact because other factors such as overdominance and scaling 
(i.e. various transformations) could also generate apparent genotypic variability19–21. Therefore, explicit tests of 
interactions and careful interpretation are essential to claim interacting signals.

There have been several successful applications of vGWAS in quantitative traits using either GWAS18,19,22 or 
gene expression data17,23,24. For example, Brown et al.17 reported abundant vGWAS signals within the major his-
tocompatibility complex (MHC) region using RNA sequence data from lymphoblastoid cell lines derived from 
the TwinsUK cohort and subsequently confirmed GxE and GxG interactions underlying the signals. Yang et al.19 
identified a well-known locus FTO in a vGWAS of body mass index in 170,000 samples from multiple GWAS 
cohorts, which is believed to interact with physical activity and/or lifestyle25. Intriguingly, the majority of the 
reported vGWAS loci are known major GWAS loci (i.e. with strong additive effects based on allelic means): FTO 
in body mass index19, LEPR in C-reactive protein levels and ICAM1 in soluble ICAM1 levels18, SLC2A9 in serum 
urate22, MHC in autoimmune diseases5. These observations led to a concern whether vGWAS might simply redis-
cover GWAS signals due to the mean-variance correlation, i.e. a distinct difference in allelic means likely accom-
panied by obvious genotypic variability in a locus19–21. Nevertheless, increasing evidence suggest that these major 
GWAS loci tend to have multiple roles and are indeed involved in interactions26–29, therefore it is biologically 
plausible to see them having signals in both GWAS and vGWAS analyses.

So far vGWAS has been little exploited in complex diseases probably because phenotypes classified either as 
a disease case or a healthy control provide little continuous variation. This problem can be remedied by applying 
a two-stage vGWAS approach: firstly using a mixed model method implemented in software such as GCTA30 
to partition polygenic additive risk and non-additive environmental residuals for each sample on the liability 
scale31–33 and secondly using the Levene’s (Brown-Forsythe) test to assess equality of the residual variances across 
genotype groups per marker. It is therefore of interest to find out if vGWAS can also identify interacting loci in 
complex diseases. Here we report a pilot vGWAS of RA using a large GWAS cohort for discovery and two inde-
pendent cohorts for replication. We aim to demonstrate that vGWAS is also useful to study disease traits.

Materials and Methods
Study cohorts and quality control (QC).  We used the Rheumatoid Arthritis Consortium International 
for Immunochip samples recruited in the UK (RACI-UK), US (RACI-US) and Sweden (RACI-SE, i.e. Swedish 
Epidemiological Investigation of Rheumatoid Arthritis) as described previously2. Each cohort was genotyped 
with the high density Immunochip34 in accordance with Illumina protocols and has been described in detail 
elsewhere2. Briefly, all RA patients fulfilled the 1987 criteria of the American College of Rheumatology and were 
tested for anti-citrullinated peptide antibody (ACPA) with a status of either seropositive (ACPA+), or seronega-
tive (ACPA-) or unassigned. All participants provided written informed consent for participation. Further details 
of the sample collections in the three study cohorts can be found in the Supplementary Note by Eyre et al.2. This 
study was approved by the North West Research Ethics Committee (MREC 99/8/84). All experiments (e.g. geno-
typing) were performed in accordance with relevant guidelines and regulations.

We excluded SNPs on sex chromosomes and samples of non-European origin. RA cases that were either 
ACPA- or ACPA unassigned were also excluded in each cohort to avoid disease heterogeneity. A rigorous QC 
was conducted using PLINK35 for each cohort as described previously2 followed by additional QC based on the 
criteria suggested for accurate GCTA prediction of genetic risk31,32: minor allele frequency > 0.01, SNP call rate 
> 0.95, sample call rate > 0.99, deviation from Hardy–Weinberg Equilibrium P <  1.0e-04.

Two-stage vGWAS and Statistical analysis.  Figure 1 illustrates the workflow of the proposed two-stage 
vGWAS approach with an extension of explicit interaction tests. In this study GCTA was used to compute the 
genetic relationship matrix (GRM) and subsequently the first ten principal components (PCs) and then polygenic 
liability risk for each unrelated individual was predicted by imposing a GRM relatedness threshold of 0.15 rec-
ommended for Immunochip33 while setting the disease prevalence as 0.01 and fitting gender and the first 10 PCs 
as covariates in the mixed model. The resultant environmental residuals were tested for variance heterogeneity 
across three SNP genotypes using an R package VariABEL36 implemented the Levene’s (Brown-Forsythe) test that 
requires no assumption of normally distributed phenotypes:
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where the environmental residuals were the trait y; Zi = |yi - ỹgi| is the deviation of y of the ith sample (yi) and the 
median of y in samples with genotype g (ỹgi); N is the sample size and k is the total possible genotypes; nj is the 
number of samples with genotype j; Zj. is the mean deviation from the median for genotype j and Z. is the mean 
deviation from the overall median. When N is large, T2 is an approximate χ 2 test taking two degrees of freedom.

To be extra cautious about the impact of normality, we also compared the vGWAS results based on the raw 
environmental residuals with those based on fully normalized environmental residuals using rank transformation 
available in the GenABEL package37. We found the normalization led to overly conservative vGWAS results in 
RACI-US and RACI-SE (Supplementary Figure S1) and thus reported only the results based on the raw environ-
mental residuals.
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We derived the significance threshold as 2.5e-05 based on permutation with 1000 iterations where a vGWAS 
was carried out using the randomly permutated environmental residuals and the lowest P value was recorded in 
each iteration (Supplementary Figure S2). We performed vGWAS in each of the three cohorts and used RACI-UK 
as the discovery cohort and examined any vGWAS significant SNPs for direct replication in RACI-US and 
RACI-SE, i.e. the same SNP with a vGWAS P value less than 5.0e-02.

For comparison we also performed a conventional GWAS for each cohort using PLINK and following the pre-
vious study2 that used a subset of independent common SNPs (i.e. minor allele frequency > 0.05 and minimum 
inter-SNP linkage disequilibrium (LD)) to compute GRM and subsequently the first 10 PCs. A forward selection 
approach was applied to the genome-wide significant (P <  5.0e-08) GWAS SNPs identified in RACI-UK itera-
tively to identify a set of independent signals to represent the additive background. In each iteration the logistic 
regression model fitting the covariates and any pre-selected SNPs was used to test all remaining SNPs and select 
the most associated SNP for next round until none had a P value less than 5.0e-02.

We tested interactions between the identified vGWAS SNPs in RACI-UK as follows: a) PLINK was used to 
compute pairwise LD (in r2) for all the identified SNPs and then only pairs of SNPs in low LD (i.e. r2 <  0.1)9 
were selected for interaction tests; b) the logistic regression model was used to test interactions for each of the k 
selected pairs of SNPs by fitting a pair of SNPs and their interaction terms as well as covariates of gender and the 
first 10 PCs derived from the GRM based on the subset of independent SNPs, with a significance of threshold 
defined as 0.05/(k*(k-1)/2); c) significant pairwise interactions were assessed while conditioning on the additive 
background of independent GWAS signals and unique pairs of interactions were identified using the forward 
selection approach above. Variance explained by the selected epistatic SNP pairs was calculated using a full logis-
tic regression model fitting all the covariates, the additive background and the independent pairs of SNPs and 
their interactions. The identified epistatic SNP pairs were tested for replication individually in RACI-US and 
RACI-SE and the total variance explained was calculated following the approach above.

We further merged the three study cohorts into one and then performing the two-stage vGWAS as well as 
GWAS adjusted for cohort and the covariates described above to explore the impact of increased sample size. 
After the QC and GCTA analysis the combined cohort had 18,405 unrelated samples (5954 cases and 12,451 
controls) and 107,144 SNPs in the vGWAS and GWAS. We quoted SNP genomic locations in the GRCh38/hg38 
version throughout.

Results
The vGWAS analysis identified 1639 significant SNPs (P <  2.5e-05) in the RACI-UK cohort where the 
Immunochip-wide heritability of ACPA+ RA was estimated as 24.7% (Table 1). About 92% of the identified 
vGWAS SNPs mapped to MHC and the remaining mapped to PTPN22 – both were major RA associated loci in 
the conventional GWAS that in addition identified TNFAIP3 and TYK2 at the genome-wide significance level 
(P <  5.0e-08) (Fig. 2). Forward selection of the significant GWAS SNPs led to an additive background com-
posed of 20 independent SNPs (Supplementary Table S1). The quantile-quantile (QQ) plots of both the vGWAS 

Figure 1.  Workflow of the two-stage vGWAS approach with an extension of explicit interaction tests. 

cohort SNPs cases controls heritability (se) vGWAS

RACI-UK 124 363 2402 8411 0.247 (0.013) 1639

RACI-US 118 550 1800 2125 0.246 (0.017) 154

RACI-SE 123 146 1755 1931 0.185 (0.018) 343

Table 1.   Study cohorts and vGWAS results*. *only ACPA+  cases were included in each cohort; heritability 
(se): polygenic heritability estimate and standard error in brackets.
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(Supplementary Figure S1) and GWAS (Supplementary Figure S3) analyses in RACI-UK showed no sign of 
inflation.

In contrast, the vGWAS analyses detected only 154 SNPs in RACI-US (heritability estimated as 24.6%) and 
343 in RACI-SE (heritability estimated as 18.5%) under the same significance threshold, suggesting the two inde-
pendent cohorts were underpowered probably due to the relatively small samples used (Table 1). The QQ plots 
for RACI-US and RACI-SE indicated slight deflation in the vGWAS analyses (Supplementary Figure S1) but not 
in the GWAS analyses (Supplementary Figure S3). Nearly all the vGWAS SNPs identified in both RACI-US and 
RACI-SE also mapped to MHC, except for rs2322659 (P =  7.7e-06) mapped to LCT in RACI-US (Supplementary 
Figures S4 and S5).

We found that a quarter (i.e. 413 out of 1639) of the identified vGWAS SNPs in RACI-UK had direct repli-
cation in both the RACI-US and RACI-SE cohorts (Supplementary Table S2) and they were all within the MHC 
region spanning the Class III and Class II. In addition, the two top vGWAS SNPs rs2476601 (P =  6.7e-22) and 
rs6679677 (P =  1.4e-21) within PTPN22 in RACI-UK each had a direct replication only in RACI-SE with a P 
value of 3.3e-02 and 3.0e-02 respectively, suggesting genotypic variability within the locus was detectable only 
with a large sample size. The top vGWAS SNP rs2322659 within LCT in RACI-US had no replication in either 
RACI-UK or RACI-SE.

Interestingly, in RACI-UK the most strongly associated vGWAS SNP rs1964995 (intergenic between 
HLA-DRA and HLA-DRB5) was about 134 kb away from the most strongly associated GWAS SNP rs6931277 
(near HLA-DRB1) (Fig. 3a), and the two SNPs were also the top vGWAS and GWAS signals respectively in both 
RACI-US and RACI-SE (Supplementary Table S2). These results (re)confirm that the MHC region harbors both 
strong additive and non-additive effects29,38 and suggest that the top non-additive sites could differ from the top 
additive loci. Nevertheless, the top GWAS SNP rs6931277 could also be involved in interactions as it had a strong 
vGWAS signal (i.e. P =  1.2e-96, 2.9e-07 and 7.1e-11 in RACI-UK, RACI-US and RACI-SE respectively).

We tested interactions for 11,871 pairs of the RACI-UK significant vGWAS SNPs with r2 <  0.1. Based on a 
significance threshold of 4.2e-06 derived from Bonferroni correction, we found a large number of significant 
interactions all within MHC, of which 2,962 pairs of SNPs had a conditional interaction P value between 3.4e-07 
and 5.0e-02 independent of the additive background. Applying forward selection to the 2,962 pairs and requir-
ing a conditional interaction P <  1.0e-03 in each step, we identified 10 independent epistatic pairs of SNPs that 
spanned the entire MHC region and were replicated in both RACI-US and RACI-SE except for the rs9366778 
- rs2239707 pair in RACI-US (Table 2, Supplementary Figure S6). In contrast to the additive background that 
explained 17.8% of the phenotypic variance in RACI-UK, the 10 epistatic pairs jointly explained about 2.5% of the 
phenotypic variance mainly (i.e. 1.9%) by interactions, suggesting the existence of widespread GxG interactions 

Figure 2.  Aligned Manhattan plots of GWAS (left) and vGWAS (right) analyses in RACI-UK. P values are 
at the -log10 scale; red line represents GWAS genome-wide significance threshold; blue line represents vGWAS 
significance threshold derived from permutation; significant loci are annotated to genes in red (or blue if 
reached only the vGWAS significance threshold).



www.nature.com/scientificreports/

5Scientific Reports | 6:25014 | DOI: 10.1038/srep25014

within MHC that are individually moderate/weak (on average explaining <0.2% of phenotypic variance) but 
jointly appreciable. The additive background and the 10 epistatic pairs explained 17.1% and 1.7% (0.8% by inter-
actions) of the phenotypic variance in RACI-US, and 14.5% and 1.7% (0.7% by interactions) in RACI-SE.

Combining the three study cohorts together boosted power for both the GWAS and vGWAS analyses as 
expected (Supplementary Figure S7), with no signs of inflation or deflation (Supplementary Figure S8). The 
vGWAS analysis identified two new significant loci ANKRD55 and TYK2 in addition to MHC and PTPN22, 
which were all genome-wide significant in the GWAS analysis. The top vGWAS SNPs rs71624119 for ANKRD55 
(P =  4.9e-07) and rs34536443 for TYK2 (P =  7.0e-06) both had only weak or no signals in individual member 

Figure 3.  Concordance plots of GWAS P values against vGWAS P values. (a) the Combined cohort using all 
SNPs; (b) the Combined cohort excluding SNPs within the MHC region; (c) the Combined cohort excluding 
SNPs within the MHC and PTPN22 regions; (d) the RACI-UK cohort excluding SNPs within the MHC region; 
(e) the RACI-US cohort excluding SNPs within the MHC region; (f) the RACI-SE cohort excluding SNPs within 
the MHC region.

SNP1 Position1 SNP2 Position2 Conditional_P Unconditional_P_UK Unconditional_P_US Unconditional_P_SE

rs805286 31 711 530 rs532098 32 610 275 2.5e-07 1.3e-16 6.9e-04 4.6e-04

rs9266629 31 379 045 rs3830076 32 128 467 1.0e-04 2.2e-14 4.4e-04 1.5e-04

rs9267833 32 210 123 rs2858312 32 699 453 2.5e-03 2.3e-14 2.2e-18 9.9e-12

rs3177928 32 444 658 rs9368737 32 690 652 5.6e-04 7.7e-16 2.9e-02 1.0e-02

rs3997849 32 714 625 rs3892710 32 715 085 3.2e-05 1.9e-38 5.0e-18 3.2e-15

rs9366778 31 301 396 rs2239707 31 557 542 7.1e-04 1.6e-14 8.7e-02 2.6e-03

rs2517448 31 094 890 rs2256594 32 219 095 3.2e-04 3.3e-17 1.3e-05 2.8e-02

rs4947342 32 685 293 rs2857126 32 809 363 1.0e-03 6.5e-13 1.0e-03 2.2e-02

rs241433 32 831 018 rs2239701 32 837 272 7.9e-04 9.5e-24 5.1e-07 6.2e-03

rs2736426 31 777 507 rs11244 32 812 946 6.3e-04 2.0e-16 4.6e-04 2.3e-12

Table 2.   The ten independent epistatic pairs of SNPs within MHC and their interaction P values 
conditioning on the additive background in RACI-UK and without conditioning on the additive 
background in each of the three study cohorts*. *SNP1(2): the first (second) epistatic SNP; Position1(2): the 
genomic postion of the SNP1(2); Conditional_P: the interaction P value in the final model fitting covariates, the 
additive effects of the 20 independent GWAS SNPs and the 10 epistatic pairs of SNPs and their interactions; 
Unconditional_P_UK (US or SE): the interaction P value corrected for covariates but not the additive 
background in RACI-UK (US or SE); P values greater than 0.05 underlined.
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cohorts, i.e. the P values were 4.4e-03, 2.5e-02 and 7.9e-02 in RACI-UK, RACI-US and RACI-SE respectively for 
rs71624119; and 1.8e-04, 3.4e-01 and 2.1e-01 respectively for rs34536443. In contrast, the GWAS analysis identi-
fied additional 12 genome-wide significant loci that were insignificant in the vGWAS (Supplementary Figure S7).

We plotted the vGWAS P values against the GWAS counterparts for the Combined cohort as well as each 
individual cohort to assess the impact of the mean-variance correlation (Fig. 3). In the Combined cohort, high 
concordance between GWAS and vGWAS was observed when the MHC and/or PTPN22 regions were included 
(Fig. 3a,b) but greatly diminished if excluding both MHC and PTPN22 (Fig. 3c). In individual cohorts, GWAS 
and vGWAS concordance was observed only in RACI-UK even when including PTPN22 (Fig. 3d,e,f). These 
results suggested that the mean-variance correlation might influence vGWAS directly mainly at the major GWAS 
loci. In addition, we reran the vGWAS analyses while fitting the additive effects of the pre-identified GWAS SNPs 
as additional covariates at either stage in RACI-UK and found little differences in the results, indicating the 
vGWAS signals were unlikely driven by the differences of allelic means or scaling factors.

Discussion
We showed that the two-stage vGWAS approach successfully identified MHC that harbored widespread genotypic 
variability of non-additive risk of RA across the three study cohorts. Such non-additive genotypic variability could 
be explained in part by GxG interactions across the entire MHC region that were independent of the strong additive 
effects, and had a moderate/weak effect individually but an appreciable joint effect. We also identified PTPN22 as 
a significant vGWAS locus in the discovery cohort that however was replicated in only one independent cohort. 
Combining the three study cohorts boosted the power of vGWAS and detected two additional loci ANKRD55 and 
TYK2 that are yet to be replicated. These results suggest that the two-stage vGWAS indeed works for complex diseases.

Our results of multiple GxG interactions within MHC are in line with the recent reports that focused on a few 
preselected MHC loci (e.g. HLA-DRB1) and used high resolution imputation and a much increased sample size to 
fine map within-locus interactions29,39. Similar fine mapping efforts are needed to accurately compute the additive 
background and subsequently refine GxG interactions across the entire MHC region. There is not information of 
environmental factors other than gender in the study cohorts to test GxE interactions. However, there have been 
several reports of GxE interactions (e.g. with smoking and alcohol) in RA involving MHC and/or PTPN2240–44. 
Besides, there is also evidence of non-additive effects and heterozygous advantage in MHC variants from other 
autoimmune diseases29,38,39, all supporting the notion that MHC is highly diverse owing to strong natural selec-
tion pressure in order to cope with ever changing environmental pathogens45.

One major concern about vGWAS applications is potential conflation caused by the mean-variance correlation 
that is hardly disentangled, i.e. variance can be mathematically modelled as some function of the mean20,46. Here 
we showed that the impact of such a correlation was strong only in the major RA associated loci (i.e. MHC and 
PTPN22) that tended to be involved in GxG and/or GxE interactions. We argue that co-existence of strong additive 
and non-additive effects in the major associated loci may be biologically important9 rendering these loci the key 
regulators of the study phenotype and even other related phenotypes (e.g. MHC regulates a number of autoimmune 
diseases). From this perspective, detection of the major GWAS loci should not be regarded as a rediscovery but in 
fact an assurance that vGWAS can at least pick up the key interacting loci for dichotomous disease phenotypes.

vGWAS may be more fruitful in meta-analysis of multiple cohorts as demonstrated in the Combined cohort 
analysis. We showed that the newly discovered vGWAS loci, like those in GWAS meta-analysis, had weaker asso-
ciation signals than MHC or PTPN22, suggesting that they are unlikely involved in strong interactions and thus 
require more samples to detect9. ANKRD55 is associated with multiple diseases including RA and multiple scle-
rosis3,47 but its biological functions and involvement in statistical interaction are not yet clear. TYK2 is also a 
pleiotropic gene associated with multiple autoimmune diseases and was found interacting with IRF5 in lupus but 
the interactions seemed weak and inconsistent48–50. Further work is required to validate their non-additive roles 
in RA. We anticipate that future enlarged vGWAS meta-analyses may detect additional, especially novel loci that 
may be driven more by the variance rather than the mean.

vGWAS is also useful to increase power of detection of interactions via an effective reduction of multiple tests 
concerning only the prioritized loci. For example, testing GxG interactions benefited from a much relaxed sig-
nificance threshold as 4.2e-06 after filtering on vGWAS significant SNPs and then their pairwise LD in this study. 
Caution is recommended when using such filtering because vGWAS could miss true interacting loci with limited 
genotypic variability9,11,12. Nevertheless, such a filtering is practically useful to prioritize the main non-additive 
loci particularly when a big sample size is available.

This pilot study has a few limitations. Firstly, the low power of detection in individual cohorts (particularly 
in RACI-US and RACI-SE). In addition to sample size and SNP density, power of a vGWAS is also determined 
by the effect sizes of the interactions involved and the unobserved interacting factors11,36. The MHC signals 
appeared significantly in every cohort probably because they were involved in multiple interactions as suggested 
previously17. Secondly, uncertainties associated with the estimated environmental residuals due to hidden or 
unaccounted factors. Factors influencing the accuracy of polygenic risk prediction (e.g. sample size, case con-
trol ratio, SNP density, population structure, sample relatedness and ascertainment)31–33 will also influence the 
vGWAS power. Population histories and/or special environments may also cause biases if not unaccounted for 
properly. For example, RACI-SE was the only cohort using matched cases and controls2, which might explain in 
part the relatively low estimate of heritability (Table 1) and the slight deflation observed in the vGWAS QQ plot 
(Supplementary Figure S1). Thirdly, this study concerned only the Immunochip platform for an autoimmune dis-
ease. Further investigations using GWAS arrays and other types of diseases would be useful to provide a complete 
view of this approach. A carefully designed simulation study is also recommended to assess the factors above as 
well as to quantify the impact of the mean-variance correlation comprehensively. Such a simulation study may 
also help develop a consensus protocol to facilitate future vGWAS meta-analysis of diseases.
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