
Article

Some recommendations for
multi-arm multi-stage trials

James Wason,1 Dominic Magirr,2 Martin Law1

and Thomas Jaki2

Abstract

Multi-arm multi-stage designs can improve the efficiency of the drug-development process by evaluating

multiple experimental arms against a common control within one trial. This reduces the number of

patients required compared to a series of trials testing each experimental arm separately against

control. By allowing for multiple stages experimental treatments can be eliminated early from the

study if they are unlikely to be significantly better than control. Using the TAILoR trial as a motivating

example, we explore a broad range of statistical issues related to multi-arm multi-stage trials including a

comparison of different ways to power a multi-arm multi-stage trial; choosing the allocation ratio to the

control group compared to other experimental arms; the consequences of adding additional experimental

arms during a multi-arm multi-stage trial, and how one might control the type-I error rate when this is

necessary; and modifying the stopping boundaries of a multi-arm multi-stage design to account for

unknown variance in the treatment outcome. Multi-arm multi-stage trials represent a large financial

investment, and so considering their design carefully is important to ensure efficiency and that they

have a good chance of succeeding.
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1 Introduction

Bringing a drug from the laboratory to the market is a long and expensive process often ending in
failure.1 Typically, a novel medicinal product will take 10–15 years to develop and validate, at the
cost of hundreds of millions of dollars.2 Any improvements in design that potentially increase the
efficiency of the development process are therefore of great practical interest.

One class of trial designs that have been proposed to improve the efficiency of the drug
development process as a whole are multi-arm multi-stage (MAMS) designs. MAMS designs are
a rich class of designs but fundamentally consist of simultaneously testing several experimental
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treatments against a common control. Interim analyses are used in order to decide which treatments
should continue. Using MAMS designs provides several advantages over running separate
controlled trials for each experimental treatment:

(1) a shared control group can be used, instead of a separate control group for each treatment;
(2) a direct head-to-head comparison of treatments is conducted, minimising biases that can be

introduced from making comparisons between treatments tested in separate trials;
(3) the use of interim analyses allows ineffective treatments to be dropped early, or early stopping of

the trial if one treatment is clearly superior (although this advantage applies also in the case of
separate trials of each treatment through use of group-sequential designs).

Within the class of MAMS studies a variety of different designs are available that differ mainly in
the treatment selection at the interim analyses. A ‘Pick-the-winner’ design selects the most promising
experimental treatment at the first interim analysis and compares it to control in the subsequent
stages.3–5 Stallard and Friede6 allow more than one treatment to continue beyond the first stage,
where the number of treatment arms within each stage is pre-specified while Kelly et al.7 prefer using
a rule that allows all treatments that are close to the best performing treatment to be selected.
Flexible adaptive two-stage multi-arm designs utilising p-value combination ideas together with
closed testing have been discussed in, for example.8,9 These designs do not require pre-
specification of a treatment selection rule and hence flexible decision making that takes other
information from the first stage of the trial into consideration is possible. Study designs with two
or more stages in which all treatments are continued at each stage, provided they are sufficiently
promising, are discussed in Royston et al.10 and Magirr et al.11 This class, which we refer to as a
group-sequential MAMS design, will be considered throughout the rest of the manuscript, although
most statements will hold true irrespective of the selection rule used.

In this article, we discuss a range of statistical issues faced in the design of group-sequential
MAMS trials and use the TAILoR trial, in which the same normally distributed endpoint is used at
each analysis, as a motivating example. Much of our discussion will also apply to more complex
MAMS designs in which endpoints are not necessarily normally distributed or the same at each
analysis. We consider aspects of controlling the type-I error rate and power in a MAMS trial; choice
of stopping boundaries; how to adjust boundaries when the variance of the normally distributed
endpoint is unknown; the impact of adding a treatment arm during a MAMS trial; and whether
additional patients should be allocated to the control group.

2 Motivating trial and notation

At present there are only a few examples of MAMS designs being used in practice, which include the
MRC STAMPEDE trial12 and the TAILoR trial, discussed in Magirr et al.11 At the time of writing,
additional MAMS trials are in various stages of being set up. To provide a case-study to frame
discussion in this article, we consider the TAILoR (TelmisArtan and InsuLin Resistance in HIV)
trial. This trial initially was planned to test four experimental arms corresponding to four different
doses of Telmisartan. Although the final protocol of the study only uses three experimental arms we
will use four experimental arms in our examples for consistency with previous publications.
Telmisartan is thought to reduce insulin resistance in HIV-positive individuals on combination
antiretroviral therapy (cART). The primary endpoint is reduction in insulin resistance in the
telmisartan-treated groups in comparison with the control group as measured by HOMA-IR at
24 weeks. The assumption of monotonicity of dose–response relationship was thought to not be
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valid based on experimentation of the treatment in a different indication. As a consequence, a design
that made no assumption of a dose–response relationship was used.

We consider a trial testing K experimental treatments against a control treatment, we define X
ðkÞ
i

as the treatment response of the ith patient on treatment k¼ 0, 1,. . ., K (0¼control). We assume that
X
ðkÞ
i is normally distributed with mean �(k) and variance �2k and assume that the values of �k are

known. Deviations from that assumption are discussed in Section 5. The family of K null hypotheses
to be tested is then

H01 : �ð1Þ ¼ �ð1Þ � �ð0Þ � 0, . . . ,H0K : �ðKÞ ¼ �ðKÞ � �ð0Þ � 0:

For a multi-stage design, the above set of null hypothesis is tested at up to J analysis time points
(stages). After stage j, standard z-test statistics are calculated to compare each remaining
experimental arm to control. The test statistic comparing experimental arm k to the control
group is labelled Z

ðkÞ
j . Treatment k is discontinued for lack of benefit, henceforth referred to as

futility, if Z
ðkÞ
j 5 lj, where lj is a futility boundary. If Z

ðkÞ
j 4 uj, where uj is an efficacy boundary, then

the corresponding null hypothesis is rejected and treatment k is declared effective. If a treatment is
found effective, or all experimental treatments are stopped for futility, the trial stops. For the final
analysis, lJ¼ uJ, forcing all arms to be stopped after analysis J. To simplify matters, we assume that
�0¼ �1¼ . . .¼ �K¼ �, that n

ðkÞ
j ¼ jn for k> 0 and that n

ð0Þ
j ¼ rjn. That is, all the outcome variances

are assumed to be the same, all experimental arms recruit n patients per stage, and the control arm
recruits rn patients per stage. For most of the article, r is set to 1, i.e. an equal allocation across all
arms. In Section 4, the effect of changing r is investigated.

The TAILoR trial follows this setting and uses two-stages with futility boundaries (0, 2.18) and
efficacy boundaries (2.91, 2.18). These boundaries are found to give a family-wise error rate of 5%.
Note that the boundaries are similar to the popular O’Brien-Fleming boundary shape.13 The sample
size required to obtain a power of 90% is found to be n¼ 44 patients per arm per stage if a
standardised effect (i.e. �¼ 1) of 0.544 is considered interesting while an effect of 0.178 is
considered too small to warrant further study. The maximum total sample size of the study is
therefore 440.

3 Error control

Controlling the type-I and type-II error in multi-arm trials is more complicated than in traditional
randomised controlled trials (RCT) due to the simultaneous testing of several hypothesis.

3.1 Type-I error considerations

For a set (or family) of hypotheses, a type-I error is defined as rejecting any true null hypothesis.
Controlling the family-wise error rate (FWER) in the strong sense means that the probability of
rejecting any true null hypothesis is controlled at a pre-specified level for any possible values of
(�(1),. . ., �(K)). The guidance on multiplicity issues in clinical trials from the European Medicines
Agency14 states that controlling the familywise type-I error in the strong sense is required for
confirmatory trials.

Magirr et al.11 extend the multiple-testing procedure of Dunnett15 to multiple stages. They show
that the probability of rejecting any true null hypothesis is maximised when �(1)¼ . . .¼ �(K)¼ 0, and
so controlling this probability provides strong control of the FWER. The authors derive an analytic
formula for this probability which contains multi-dimensional integration, with the number of
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integrations being equal to the number of stages in the trial. Thus evaluating the formula becomes
more computationally intensive as the number of stages increases. A simulation approach using a
large number of independent replicates is an alternative method to evaluate the maximum FWER,
and may be necessary when there are more than three stages. This approach is described in Wason
and Jaki.16 The probability of rejecting any null hypothesis at �(1)¼ . . .¼ �(K)¼ 0 is determined only
by the stopping boundaries, and not the group size used as the mean of each test statistic is 0 under
the null hypothesis, regardless of n. Similarly the covariance between the test-statistics is not
dependent on n which implies that one can find a MAMS design by first choosing stopping
boundaries that give the correct FWER, and then subsequently choose a group size to power the
trial.

Although we recommend that the FWER of the design should be specified and controlled in
confirmatory trials, there are contrary opinions. Freidlin et al.17 advocate not adjusting multi-arm
trials for multiple testing at all when the different arms correspond to different treatments. The
argument for this position is that if the treatments were compared in separate trials, they would not
be subjected to multiple testing adjustment. Although this argument has merit, we feel that the
situation of conducting a MAMS trial is conceptually quite different to running a series of separate
trials. As an analogy, consider testing multiple primary outcomes in a confirmatory trial. In this
case, regulatory bodies would encourage (or require) that a multiple testing correction is made.
However, one could test each primary endpoint in a separate trial without requiring multiple testing.

The MRC STAMPEDE trial,12 does not explicitly control or specify the FWER, but instead
controls the pairwise type-I error rate, i.e. the type-I error rate of a test of one experimental
treatment against the control treatment. Since this pairwise type-I error rate is low (0.013) and
early stopping for efficacy is not allowed, it is likely that the overall FWER is low.

For exploratory MAMS trials (for example in phase II), controlling the FWER would not be
required by regulatory bodies. However, we believe that the FWER is a more relevant quantity than
the pairwise type-I error rate associated with each experimental treatment. The FWER provides the
maximum probability of recommending an ineffective treatment, which is important if a phase III
trial is to be carried out subsequently. An additional reason to consider designing such trials with
FWER control is due to the increased use of phase II studies as the second pivotal study when
making a confirmatory claim.

3.2 Powering a MAMS trial

If the objective of the trial is to detect the truly best treatment, then the power to do so depends on
both the mean effect of the best treatment, and also the mean effects of all the other experimental
treatments.18

The TAILoR trial was powered to detect the best treatment using what is known as the least
favourable configuration (LFC). The LFC requires specification of a clinically relevant difference,
�1, and an uninteresting treatment difference threshold, �0. The uninteresting treatment difference
threshold is the smallest mean difference between an experimental treatment and the control
treatment that would make that experimental treatment clinically interesting. Given �1 and �0, the
LFC is the probability of recommending experimental treatment 1 when �(1)¼ �1 and
�(2)¼ . . .¼ �(K)¼ �0. It is referred to as the least favourable configuration because out of all
scenarios where treatment 1 has the clinically relevant treatment effect and treatments 2, . . . ,K
are uninteresting, it provides the lowest probability of recommending treatment 1.4

Although specification of �1 and �0 should strictly be a matter for clinicians, both quantities will
strongly influence the required sample size for a MAMS trial. Table 1 shows the required sample size
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for a three-stage MAMS trial with triangular stopping boundaries19 under a range of power
scenarios. The standardised effect sizes �1 and �0 (�¼ 1) were set to 0.544, and 0.178 as in
TAILoR while the one-sided family-wise error, �, is 5% and the target power is 90%. In the
table, three distinct scenarios are considered: Design 1 uses the LFC as used in TAILoR; design
2 is powered to correctly recommend treatment 1 when �1¼ 0.544 as before, but �0 is set to 0; and
design 3 sets the power to be the probability of recommending any treatment when they all have
effect �1¼ 0.544.

Table 1 shows that the choice of �0 for the LFC does not affect the power greatly provided that �0
is not too close to �1. For example design 2, powered for the LFC with �0¼ 0, still has 87.2% power
at the LFC with �0¼ 0.178. On the other hand design 3, powered to recommend any experimental
treatment when they are all effective, does not adequately power the trial at either LFC considered.
It would be unusual for all experimental treatments in a trial to be highly effective in comparison to
the control treatment. Thus powering the trial for this situation would be highly optimistic and will
often result in under-powered trials in practice.

3.3 Choosing stopping boundaries

As for group-sequential trials, the choice of stopping boundaries influences the operating
characteristics of a MAMS trial. One approach to setting stopping boundaries is to specify a
function that determines the shape, such as those of Pocock,20 O’Brien and Flemming,13 or the
triangular stopping boundaries of Whitehead and Stratton.19 As discussed in Section 3.1, with a
given stopping boundary shape it is conceptually straightforward, although computationally
demanding, to find the MAMS design with required FWER and power. Even more complex,
though achievable, is the use of the more flexible alpha-spending approach.21 The disadvantage
of using set stopping boundaries (or alpha-spending) is that the expected sample size properties may
not be to ones liking. Wason and Jaki16 show that the triangular design performs well in terms of
expected sample size, so is a good choice if a pre-specified design is desirable.

An alternative is to search for an optimal design. This is an extremely computationally
demanding procedure, but does produce designs which have desirable expected sample size
properties. Of particular interest is a generalisation of the �-minimax design,22,23 which is
described in Wason and Jaki.16 The generalised �-minimax design has very good expected sample
size characteristics, generally improving over the triangular design when the experimental treatments
are not much better than control. It does not perform as well as the triangular test when some
experimental treatments are considerably better than control.

Table 1. Group size and power of designs 1-3 at different power scenarios. Design 1 has sample size chosen so that

power at the LFC with �1¼ 0.545 and �0¼ 0.178 is 0.9; design 2 has sample size chosen so that power at the LFC with

�1¼ 0.545 and �0¼ 0 is 0.9; design 3 has sample size chosen so that power to recommend any treatment when all

have effect �¼ 0.545

Design 1 Design 2 Design 3

Required group size 36 32 17

P (Recommend treatment 1) when �1¼ 0.545, �0¼ 0.178 0.904 0.872 0.605

P (Recommend treatment 1) when �1¼ 0.545, �0¼ 0 0.938 0.908 0.643

P (Recommend any treatment) when �¼ (0.545,. . ., 0.545) 0.996 0.992 0.905
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Due to the computational complexity of finding optimal designs, a compromise between the fixed
boundary approach and the optimal design approach may be useful. The power family of group-
sequential tests24,25 specifies a family of stopping boundaries indexed by a parameter, � which
determines the shape of the futility and efficacy stopping boundaries. By increasing �, more
weight is put on the expected sample size, and less on the maximum sample size. An extension to
allow the shape parameter for the futility boundaries to differ to that of the efficacy boundaries was
proposed for group-sequential RCTs in Wason.26 It was found that the boundaries of optimal
designs were well approximated by boundaries within the extended power-family. Investigating
whether this result holds for MAMS trials is an area for future research.

4 Control group allocation

In a traditional RCT in which the endpoint measured for both the control and experimental
treatments have the same variance, the optimal allocation between arms, in terms of maximising
the power, is 1:1. However, when there are multiple experimental arms all being compared against a
control arm, the optimal allocation is no longer 1:1. If there were no early stopping, then the optimal
allocation to the control group has been shown to be approximately

ffiffiffiffi

K
p

patients allocated to the
control group for every one patient allocated to a given experimental treatment.15 For the TAILoR
trial, this would lead to an allocation of 2 : 1 : 1 : 1 : 1 in favour of the control treatment.

Changing the allocation ratio affects both the expected sample size and maximum sample size of
the trial. Wason and Jaki16 investigate the optimal allocation ratio as part of searching for an
optimal design. For three stages and four experimental arms, the optimal allocation ratio to
controls was found to be approximately 1.33:1. The optimal allocation ratio increases when there
are six experimental arms, but is still considerably below 2:1. The optimal allocation ratio based on
expected sample size is thus substantially below the

ffiffiffiffi

K
p

: 1 rule when early stopping is allowed. This
can intuitively be explained by the fact that allowing for early stopping reduces the number of
treatments at each stage making the optimal allocation ratio closer to the situation of an RCT.

We investigated the allocation ratio that minimises the maximum sample size of MAMS designs
with different numbers of stages and experimental arms. The values of �1 and �0 were set at 0.544 and
0.178 respectively, as in TAILoR. For each combination of J and K we varied the value of the
allocation ratio between 1 and 2 in increments of 0.01. For each value of the allocation ratio, we
found the triangular design with �¼ 0.05 and 1� �¼ 0.9. The allocation ratio that minimises the
maximum sample size of the design is given in Table 2. Generally as the number of treatments

Table 2. Allocation ratio giving lowest maximum sample size as

J (number of stages) and K (number of experimental arms) varies

J

2 3 4

K 2 1.24 1.20 1.18

3 1.35 1.32 1.35

4 1.43 1.43 1.47

6 1.59 1.49 1.47

8 1.59 1.53 1.49
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increases the optimal allocation ratio also increases. As the number of stages increases, there is less
of a clear cut pattern, although generally the optimal allocation ratio does not vary greatly.

Although efficiency (in terms of maximum sample size) can be gained by deviating from an equal
allocation to each arm, the gain is generally fairly small (as also shown by Wassmer27). Figure 1(a)
shows the maximum sample size for the three-stage triangular design with the TAILoR design
parameters across a range of allocation ratios. By choosing the optimal allocation ratio, the
maximum sample size is reduced by only 2.5% compared to an equal allocation. Interestingly,
one has to increase the allocation to controls considerably in order to noticeably increase the
maximum sample size. Put conversely this implies that a large number of patients can be put on
the control treatment without inflating the maximum sample size considerably. This may, for
example, be of interest if the control treatment is considerably cheaper than the experimental
treatments or thought to have a better safety profile than the experimental treatments. This effect
is shown in Figure 1(b), where the total cost of allocating patients is shown as the ratio of the cost of
the control treatment and experimental treatments varies. If the cost of the control treatment is very
low, then a high allocation to control patients would be optimal.

The downside of allocating additional patients to the control treatment is that it may reduce
recruitment to the trial. There is some evidence that in placebo controlled trials, patient willingness
to take part in the trial is reduced as the allocation to the control group increases.28

5 Unknown variance

For trials with a normally distributed endpoint, a common assumption made at the design stage is
that the variance, �2, is known. Of course this is not generally the case, and even if a prior estimate of
the variance is available, it is usually subject to considerable uncertainty. Using a test statistic that
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Figure 1. Maximum sample size and maximum cost (arbitrary units) of treatment as allocation ratio changes.

Designs are chosen using triangular stopping boundaries such that they give 5% type-I error and 90% power. Maximum

cost assumes that the cost of allocating a patient to the control group is c, and the cost of allocating a patient to an

experimental treatment is 1 where c2 {1, 0.5, 0.25, 0.1}.
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assumes a known variance will lead to incorrect operating characteristics if the actual variance
differs from the quantity assumed in the test statistic. For group-sequential trials, several papers
have suggested approaches to modifying stopping boundaries to allow for unknown variance
including Monte Carlo simulation,29 a recursive algorithm30 and quantile substitution, i.e.
replacing the stopping boundaries, which are quantiles of the standard normal distribution, with
the equivalent quantiles of Student’s t-distribution, as described in Jennison and Turnbull.31

Currently there is no work on extending the recursive algorithm to group-sequential MAMS
trials; instead we examine the third method, which is straightforward and not computationally
intensive.

Recall that lj and uj are the stopping boundaries for analysis j, and jn is the number of patients per
arm that are randomised by the time of the analysis. Then the thresholds for stopping in terms of
p-values are attained from the respective quantiles of the normal distribution, i.e. 1��(uj) and
1��(lj) respectively. With unknown variance, when �¼ 0, the test-statistics would be marginally
distributed as a Student’s t-distribution with 2jn� 2 degrees of freedom. A natural approach to take
the unknown variance into consideration is to find new stopping boundaries as f 0j ¼ T2jn�2ð1��ðlj ÞÞ
and e0j ¼ T2jn�2ð1��ðuj ÞÞ, where Tp is the cumulative distribution function of Student’s
t-distribution with p degrees of freedom.

To evaluate whether the quantile-substitution method works adequately for MAMS trials, we
compare the FWER and power for three different approaches. The first is to use the known variance
test statistic with presumed value of �; the second is to use a t-test without modifying the stopping
boundaries; and the third approach is to use the t-test together with using quantile substitution to
change the stopping boundaries. The following two designs are considered:

(1) n¼ 35, f¼ (0, 1.44, 2.34), e¼ (2.71, 2.39, 2.34) a three-stage four experimental arm triangular
design when �0¼ 0.178, �1¼ 0.545, �¼ 1, �¼ 0.05, 1� �¼ 0.9;

(2) n¼ 10, f¼ (0, 1.43, 2.34), e¼ (2.70, 2.39, 2.34) a three-stage four experimental arm triangular
design for �0¼ 0, �1¼ 1, �¼ 1, �¼ 0.05, 1� �¼ 0.9.

Tables 3 and 4 show the estimated FWER and power from 100,000 independent replicates for
each design as the true value of � varies. Clearly assuming known variance leads to unacceptable
type-I error inflation when the true value of � is above the design value. For the design with the
group size of 35, just using the known-variance stopping boundaries together with the t-test leads to
a mild inflation in the FWER (on average, the FWER is around 0.054). However, the inflation is
much greater when the group size is 10 (FWER of around 0.070). Modifying the stopping
boundaries using quantile-substitution leads to correct nominal FWER for n¼ 35 and a very
small inflation for n¼ 10.

Modifying the stopping boundaries is not sufficient to control both the FWER and power as �
varies from its design value. In confirmatory trials, the priority should be placed on controlling the
FWER, which appears to be possible using quantile-substitution. If one wishes to simultaneously
control the FWER and power, a sample-size reestimation technique could be applied as better
estimates of � are gathered throughout the trial. An alternative approach is to use a p-value
combination test design,8,9 in which case an exact solution for unknown variance is available.27

6 Adding treatment arms

In some situations it may be of interest to add additional experimental arms to the study after the
study has already been started. The MRC STAMPEDE trial,12 for example, has recently added a
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further treatment arm due to excellent recruitment rates. If controlling the FWER is of interest, then
adding new treatments is in general not advisable as the properties of the study in terms of FWER
and power will be altered. Instead we aim to show the impact of adding treatments without adjusting
the design and to provide simple adjustments that can be made to maintain FWER control under a
specific situation. We consider a two-stage design with four experimental arms. Assuming equal
numbers of patients in each arm in each stage, the resulting boundaries, l and u, and sample size per
arm per stage, n, can be found in Table 5 for triangular, O’Brien–Flemming and Pocock boundaries
where the latter two designs are constrained by setting l1¼ 0.

We start by considering a, somewhat unrealistic, scenario in which one additional experimental
treatment arm is always added at the interim. An additional 2n patients are recruited to treatment

Table 4. FWER and power estimates as the true standard deviation varies from the assumed value of 1 for three-

stage design with four experimental treatments, n¼ 10, f¼ (0, 1.43, 2.34), e¼ (2.70, 2.39, 2.34). 100,000 independent

replicates used to estimate type-I error and power. Z-test is using the original boundaries with a Z-statistic, t-test the

original boundaries with a t-statistic while t-testcorr uses a t-statistic with corrected boundaries. Monte Carlo standard

error for estimated type-I error &0.0007. Maximum Monte Carlo standard for power estimate &0.0015

Type I error Power

� Z-test t-test t-testcorr Z-test t-test t-testcorr

0.25 0.000 0.069 0.053 1.000 1.000 1.000

0.5 0.000 0.069 0.052 0.999 1.000 1.000

0.75 0.005 0.069 0.052 0.976 0.993 0.993

1 0.051 0.070 0.052 0.910 0.918 0.911

1.25 0.140 0.068 0.051 0.853 0.758 0.740

1.5 0.238 0.070 0.053 0.777 0.587 0.562

1.75 0.326 0.069 0.052 0.707 0.455 0.429

2 0.398 0.069 0.052 0.642 0.355 0.328

Table 3. FWER and power estimates as the true standard deviation varies from the assumed value of 1 for three-

stage design with four experimental arms, n¼ 35, f¼ (0, 1.44, 2.34), e¼ (2.71, 2.39, 2.34). 100,000 independent

replicates used to estimate type-I error and power. Z-test is using the original boundaries with a Z-statistic, t-test the

original boundaries with a t-statistic while t-testcorr uses a t-statistic with corrected boundaries. Monte Carlo standard

error for estimated type-I error & 0.0007. Maximum Monte Carlo standard for power estimate &0.0015

Type-I error Power

� Z-test t -test t -testcorr Z-test t -test t -testcorr

0.25 0.000 0.054 0.050 1.000 1.000 1.000

0.5 0.000 0.054 0.050 0.999 0.997 0.997

0.75 0.005 0.056 0.051 0.975 0.973 0.975

1 0.049 0.054 0.049 0.900 0.892 0.893

1.25 0.140 0.055 0.050 0.791 0.730 0.728

1.5 0.236 0.053 0.049 0.691 0.562 0.558

1.75 0.327 0.054 0.050 0.613 0.432 0.426

2 0.396 0.054 0.050 0.549 0.330 0.325
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k¼ 5 in the second stage and an additional test statistic, Z
ð5Þ
2 is calculated and compared to the

boundaries at the end of the study. Table 5 provides Monte Carlo estimates of the FWER, �̂þ, and
the power under the LFC, 1� �̂þ, when the original boundaries are used for making test decisions.
As expected there is a clear inflation of the FWER over the nominal �¼ 0.05 while the effect on
power is negligible in these examples.

Since the fifth treatment can never stop early, the power is no longer independent of the treatment
labels so that it is of interest to also investigate the power to select treatment 5 under the LFC. The
corresponding Monte Carlo estimate, 1� �̂�þ, can be found in Table 5. From that it can be seen that
the chance of recommending the newly added treatment is considerably lower than the anticipated
power even if the treatment has a worthwhile effect.

It is, however, possible to control the type-I error rate if a fifth treatment is always added by
finding values of l1, u1, u2 (either numerically or via simulation) such that the probability of making a
type-I error is controlled. The simulations given in Table 6 confirm the adjusted boundaries control
the FWER – the power is, however, reduced.

A more realistic setting than the one described above is when a treatment is added only with
probability pþ. In this case the original boundaries are used when no treatment is added while
adjusted boundaries are used otherwise.

Consider the design in Table 5 with the O’Brien–Flemming shaped upper boundary: l1¼ 0,
u1¼ 3.068, u2¼ 2.169. Table 7 contains the adjusted second stage upper boundaries when it is
pre-planned to add 1, 3 and 10 new treatments at the interim analysis. Now consider two
mechanisms for adding the additional treatments. If the treatments are added (and the adjusted
upper boundary is used) with probability pþ¼ 0.5, independent of the first stage data, the
simulations presented in Table 7 confirm that the familywise error rate is controlled. If, however,
the treatments are only added when first-stage results are disappointing, e.g. when
maxk¼1, ...,K Z

ðkÞ
1 5 1, then the final column of Table 7 shows that the familywise error rate is

inflated. Consequently it is crucial for the decision to add new treatments to be independent of
the results obtained at interim.

Table 6. Error rates when treatment is added at interim, adjusting the upper

boundary at the second stage. Based on 100,000 simulations

Design u
adj
2 �̂þ 1� �̂þ 1� �̂�þ

OBF 2.245 0.051 0.893 0.862

P 2.455 0.051 0.894 0.730

T 2.384 0.051 0.892 0.755

Table 5. Error rates when treatment is added at interim, keeping the original boundaries. Based

on 100,000 simulations

Design l u n �̂þ 1� �̂þ 1� �̂�þ

OBF (0,2.169) (3.068,2.169) 44 0.059 0.903 0.870

P (0,2.375) (2.375,2.375) 50 0.056 0.903 0.739

T (0.811,2.293) (2.432,2.293) 50 0.057 0.901 0.767
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7 Discussion

MAMS trials have an important role to play in improving the efficiency of the drug development
process when several experimental treatments are awaiting testing. Parmar et al.32 propose MAMS
trials as a way of achieving more reliable results more quickly when evaluating new agents in cancer.
A number of recent papers have discussed design of MAMS trials8,6,9,11,12,16,33 using a variety of
different approaches.

In this article we have considered a multitude of issues in the design of MAMS trials. Our
recommendations are as follows:

(1) Strong control of the FWER should be considered a priority in the design of confirmatory
MAMS trials.

(2) A MAMS trial should be powered to recommend a clearly superior treatment, with the value of
�1, the clinically relevant difference, being important; the value of �0 (i.e. the mean effect of the
other treatments) is less important.

(3) The efficiency benefits of a higher allocation of patients to control are low, and may be
damaging to recruitment. However, if the control treatment is considerably cheaper than
other treatments, then a higher allocation may lead to large cost reduction without
compromising the design characteristics.

(4) If the group size is low (below 20), stopping boundaries should be adjusted using quantile
substitution to account for unknown variance when considering normally distributed endpoints.

(5) For confirmatory MAMS trials, we do not recommend adding treatment arms on the basis of
interim results. In the case of experimental treatment arms being added for other reasons,
subsequent stopping boundaries should be adjusted to maintain the FWER at the level
specified at the design stage.
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